1
|
Li J, Song Z, Dong X, Li L, Gu X, Zhang K, Zhang Z, Li Y, Fan Z, Dong H, Liu Y, Liu M, Zhang H, Liu W, Zhang T. VRK1 promotes epithelial-mesenchymal transition in hepatocellular carcinoma mediated by SNAI1 via phosphorylating CHD1L. Cell Death Dis 2025; 16:302. [PMID: 40234378 PMCID: PMC12000354 DOI: 10.1038/s41419-025-07641-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 03/28/2025] [Accepted: 04/07/2025] [Indexed: 04/17/2025]
Abstract
Vaccinia-related kinase 1 (VRK1) is involved in numerous cellular processes, including DNA repair, cell cycle and cell proliferation. However, its roles and molecular mechanism underlying the progression of hepatocellular carcinoma (HCC) are yet largely unexplored. Here, we demonstrated that VRK1 expression is elevated in HCC tumor tissues, which is associated with high tumor stage and poor prognosis in HCC patients. In vitro and in vivo experiments manifested that VRK1 overexpression significantly promotes cell proliferation, colony formation, migration and tumor growth of HCC by inducing epithelial-mesenchymal transition (EMT) program. Mechanistically, immunoprecipitation combined with mass spectrometry analysis determined that VRK1 interacts with CHD1L, which mediates the phosphorylation of CHD1L at serine 122 site. RNA-seq revealed that one of the key downstream target genes of VRK1 is SNAI1, by which VRK1 promotes EMT process and HCC progression. Furthermore, VRK1 upregulates SNAI1 expression through phosphorylating CHD1L. In conclusion, these findings suggested that VRK1/CHD1L/SNAI1 axis acts as a cancer-driving pathway to promote the proliferation and EMT of HCC, indicating that targeting VRK1 may be an attractive therapeutic strategy of HCC.
Collapse
Affiliation(s)
- Jing Li
- Institute of Immunopharmaceutical Sciences, State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine, NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, Key Laboratory of Chemical Biology, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Zan Song
- Institute of Immunopharmaceutical Sciences, State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine, NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, Key Laboratory of Chemical Biology, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Xue Dong
- Institute of Immunopharmaceutical Sciences, State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine, NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, Key Laboratory of Chemical Biology, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Leilei Li
- Institute of Immunopharmaceutical Sciences, State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine, NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, Key Laboratory of Chemical Biology, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Xinyu Gu
- Institute of Immunopharmaceutical Sciences, State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine, NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, Key Laboratory of Chemical Biology, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Kailing Zhang
- Institute of Immunopharmaceutical Sciences, State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine, NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, Key Laboratory of Chemical Biology, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Zhicheng Zhang
- Institute of Immunopharmaceutical Sciences, State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine, NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, Key Laboratory of Chemical Biology, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Yu Li
- Institute of Immunopharmaceutical Sciences, State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine, NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, Key Laboratory of Chemical Biology, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Zhili Fan
- Institute of Immunopharmaceutical Sciences, State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine, NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, Key Laboratory of Chemical Biology, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Hao Dong
- Institute of Immunopharmaceutical Sciences, State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine, NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, Key Laboratory of Chemical Biology, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Ying Liu
- Institute of Immunopharmaceutical Sciences, State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine, NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, Key Laboratory of Chemical Biology, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Mengfei Liu
- Institute of Immunopharmaceutical Sciences, State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine, NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, Key Laboratory of Chemical Biology, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Huiqing Zhang
- The Department of Gastrointestinal Medical Oncology, JXHC Key Laboratory of Tumor Microenvironment and Immunoregulation, Jiangxi Cancer Hospital, Nanchang, Jiangxi, China.
| | - Wu Liu
- Institute of Immunopharmaceutical Sciences, State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine, NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, Key Laboratory of Chemical Biology, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.
| | - Tao Zhang
- Institute of Immunopharmaceutical Sciences, State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine, NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, Key Laboratory of Chemical Biology, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin, Guangxi, China.
| |
Collapse
|
2
|
Sala R, Esquer H, Kellett T, Clune S, Awolade P, Pike LA, Zhou Q, Messersmith WA, LaBarbera DV. CHD1L Inhibitor OTI-611 Synergizes with Chemotherapy to Enhance Antitumor Efficacy and Prolong Survival in Colorectal Cancer Mouse Models. Int J Mol Sci 2024; 25:13160. [PMID: 39684869 DOI: 10.3390/ijms252313160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 11/22/2024] [Accepted: 12/02/2024] [Indexed: 12/18/2024] Open
Abstract
Colorectal cancer (CRC) is one of the most prevalent and deadly forms of cancer. It is universally treated with a combination of the DNA damaging chemotherapy drugs irinotecan, 5-Fluorouracil (5-FU), and oxaliplatin. CHD1L is a novel oncogene that plays critical roles in chromatin remodeling and DNA damage repair, as well as the regulation of malignant gene expression. We show that an inhibitor of CHD1L, OTI-611, when combined with chemotherapy significantly increases DNA damage in CRC cell lines. OTI-611 also synergizes with SN-38, 5-FU, and oxaliplatin in killing CRC tumor organoids. We also demonstrate that, as in breast cancer, OTI-611 traps CHD1L, PARP1, and PARP2 onto chromatin. The entrapment of CHD1L causes the deprotection of PAR chains in the nucleus, ultimately resulting in cell death by CHD1Li-mediated PARthanatos, as measured by AIF translocation to the nucleus. Finally, the combination of low doses of OTI-611 with irinotecan significantly reduces tumor volume and extends survival in CRC xenograft mouse models compared to irinotecan alone. The combination of standard of care chemotherapy drugs with CHD1Li represents a promising advancement in future therapeutic strategies for CRC and other cancers driven by CHD1L.
Collapse
Affiliation(s)
- Rita Sala
- Department of Pharmaceutical Sciences, The Skaggs School of Pharmacy and Pharmaceutical Sciences, The University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Hector Esquer
- Department of Pharmaceutical Sciences, The Skaggs School of Pharmacy and Pharmaceutical Sciences, The University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- The CU Anschutz Center for Drug Discovery, Aurora, CO 80045, USA
- The University of Colorado Cancer Center, Aurora, CO 80045, USA
| | - Timothy Kellett
- Department of Pharmaceutical Sciences, The Skaggs School of Pharmacy and Pharmaceutical Sciences, The University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Sophia Clune
- Department of Pharmaceutical Sciences, The Skaggs School of Pharmacy and Pharmaceutical Sciences, The University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Paul Awolade
- Department of Pharmaceutical Sciences, The Skaggs School of Pharmacy and Pharmaceutical Sciences, The University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- The CU Anschutz Center for Drug Discovery, Aurora, CO 80045, USA
| | - Laura A Pike
- Department of Pharmaceutical Sciences, The Skaggs School of Pharmacy and Pharmaceutical Sciences, The University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Qiong Zhou
- Department of Pharmaceutical Sciences, The Skaggs School of Pharmacy and Pharmaceutical Sciences, The University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- The CU Anschutz Center for Drug Discovery, Aurora, CO 80045, USA
- The University of Colorado Cancer Center, Aurora, CO 80045, USA
| | - Wells A Messersmith
- The CU Anschutz Center for Drug Discovery, Aurora, CO 80045, USA
- The University of Colorado Cancer Center, Aurora, CO 80045, USA
- Division of Medical Oncology, The School of Medicine, The University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Daniel V LaBarbera
- Department of Pharmaceutical Sciences, The Skaggs School of Pharmacy and Pharmaceutical Sciences, The University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- The CU Anschutz Center for Drug Discovery, Aurora, CO 80045, USA
- The University of Colorado Cancer Center, Aurora, CO 80045, USA
| |
Collapse
|
3
|
Ljubic M, D'Ercole C, Waheed Y, de Marco A, Borišek J, De March M. Computational study of the HLTF ATPase remodeling domain suggests its activity on dsDNA and implications in damage tolerance. J Struct Biol 2024; 216:108149. [PMID: 39491691 DOI: 10.1016/j.jsb.2024.108149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 10/04/2024] [Accepted: 10/28/2024] [Indexed: 11/05/2024]
Abstract
The Helicase-Like Transcription Factor (HLTF) is member of the SWI/SNF-family of ATP dependent chromatin remodellers known primarily for maintaining genome stability. Biochemical and cellular assays support its multiple roles in DNA Damage Tolerance. However, the lack of sufficient structural data limits the comprehension of the molecular basis of its modes of action. In this work we have modelled and characterized the HLTF ATPase remodeling domain by using bioinformatic tools and all-atoms molecular dynamics simulations. In-silico results suggested that its binding to dsDNA is mainly mediated by the positively charged residues Arg563 and Lys913, found conserved in HLTF homologs, and Arg620 and Lys999, found only in HLTF. Interestingly, these residues are mutated in cancer cells. During translocation on dsDNA, HLTF remains persistently bound through the N-terminal ATPase subunit. However, DNA advancement occurs only in the presence of the synergic-anticorrelated action of both motor lobes. In contrast, the C-terminal facilitates substrate remodeling through DNA deformation and generation of bulges according to a wave-model. Finally, the large conformational change suggested between the two motor-remodeling subunits might be activated upon the release of PARP1 on stalled fork and be responsible for the intervention of HLTF-HIRAN in the formation of D-loop and 4-way junction DNA structures.
Collapse
Affiliation(s)
- Martin Ljubic
- Theory Department, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
| | - Claudia D'Ercole
- Laboratory for Environmental and Life Sciences, University of Nova Gorica, Vipavska 13, SI-500, Nova Gorica, Slovenia
| | - Yossma Waheed
- Laboratory for Environmental and Life Sciences, University of Nova Gorica, Vipavska 13, SI-500, Nova Gorica, Slovenia; National Institute of Science and Technology, Sector H-12, Islamabad Capital Territory, Pakistan
| | - Ario de Marco
- Laboratory for Environmental and Life Sciences, University of Nova Gorica, Vipavska 13, SI-500, Nova Gorica, Slovenia
| | - Jure Borišek
- Theory Department, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
| | - Matteo De March
- Laboratory for Environmental and Life Sciences, University of Nova Gorica, Vipavska 13, SI-500, Nova Gorica, Slovenia.
| |
Collapse
|
4
|
Zhang C, Zhang H, Zhang Q, Fan H, Yu P, Xia W, Zhang JZH, Liang X, Chen Y. Targeting ATP catalytic activity of chromodomain helicase CHD1L for the anticancer inhibitor discovery. Int J Biol Macromol 2024; 281:136678. [PMID: 39426766 DOI: 10.1016/j.ijbiomac.2024.136678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 10/16/2024] [Accepted: 10/16/2024] [Indexed: 10/21/2024]
Abstract
CHD1L functions as an ATP-dependent chromatin remodeling enzyme, featuring an ATPase catalytic domain activated by double-stranded DNA. Its involvement in critical aspects of cancer progression, such as drug resistance and epithelial-mesenchymal transition, underscores its potential as a promising therapeutic target for cancer treatment. In this study, we have pioneered an innovative approach that integrates multiple deep learning methodologies alongside biochemical and cellular experiments to identify promising inhibitors of CHD1L. Through virtual screening of over 1.5 million small molecule compounds, we carefully curated a set of 36 candidate compounds and rigorously evaluated the top 13 candidates. Our findings establish the lead compound C071-0684 as a potent anticancer agent with a novel molecular backbone, demonstrating remarkable efficacy against colorectal and breast cancer cells targeting CHD1L. This compound exhibited a comparable effect on ATPase activity and binding affinity with CHD1Li 6.11, highlighting its superior pharmacological potential. These results provide valuable insights and pave the way for the discovery and development of CHD1L-targeted therapeutics, holding great promise for cancer patients.
Collapse
Affiliation(s)
- Caiying Zhang
- Ganjiang Chinese Medicine Innovation Center, Nanchang 330000, China
| | - Haiping Zhang
- Faculty of Synthetic Biology and Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Qiuyun Zhang
- Ganjiang Chinese Medicine Innovation Center, Nanchang 330000, China
| | - Hongjie Fan
- Ganjiang Chinese Medicine Innovation Center, Nanchang 330000, China
| | - Pengfei Yu
- Ganjiang Chinese Medicine Innovation Center, Nanchang 330000, China
| | - Wei Xia
- Faculty of Synthetic Biology and Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - John Z H Zhang
- Faculty of Synthetic Biology and Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Xinmiao Liang
- Ganjiang Chinese Medicine Innovation Center, Nanchang 330000, China; CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| | - Yang Chen
- Ganjiang Chinese Medicine Innovation Center, Nanchang 330000, China; CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| |
Collapse
|
5
|
Johann To Berens P, Peter J, Koechler S, Bruggeman M, Staerck S, Molinier J. The histone demethylase JMJ27 acts during the UV-induced modulation of H3K9me2 landscape and facilitates photodamage repair. NATURE PLANTS 2024; 10:1698-1709. [PMID: 39367258 DOI: 10.1038/s41477-024-01814-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 09/11/2024] [Indexed: 10/06/2024]
Abstract
Plants have evolved sophisticated DNA repair mechanisms to cope with the deleterious effects of ultraviolet (UV)-induced DNA damage. Indeed, DNA repair pathways cooperate with epigenetic-related processes to efficiently maintain genome integrity. However, it remains to be deciphered how photodamages are recognized within different chromatin landscapes, especially in compacted genomic regions such as constitutive heterochromatin. Here we combined cytogenetics and epigenomics to identify that UV-C irradiation induces modulation of the main epigenetic mark found in constitutive heterochromatin, H3K9me2. We demonstrated that the histone demethylase, Jumonji27 (JMJ27), contributes to the UV-induced reduction of H3K9me2 content at chromocentres. In addition, we identified that JMJ27 forms a complex with the photodamage recognition factor, DNA Damage Binding protein 2 (DDB2), and that the fine-tuning of H3K9me2 contents orchestrates DDB2 dynamics on chromatin in response to UV-C exposure. Hence, this study uncovers the unexpected existence of an interplay between photodamage repair and H3K9me2 homeostasis.
Collapse
Affiliation(s)
| | - Jackson Peter
- Institut de biologie moléculaire des plantes du CNRS, Strasbourg, France
| | - Sandrine Koechler
- Institut de biologie moléculaire des plantes du CNRS, Strasbourg, France
| | - Mathieu Bruggeman
- Institut de biologie moléculaire des plantes du CNRS, Strasbourg, France
| | - Sébastien Staerck
- Institut de biologie moléculaire des plantes du CNRS, Strasbourg, France
| | - Jean Molinier
- Institut de biologie moléculaire des plantes du CNRS, Strasbourg, France.
| |
Collapse
|
6
|
Reid XJ, Zhong Y, Mackay JP. How does CHD4 slide nucleosomes? Biochem Soc Trans 2024; 52:1995-2008. [PMID: 39221830 PMCID: PMC11555702 DOI: 10.1042/bst20230070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/12/2024] [Accepted: 08/14/2024] [Indexed: 09/04/2024]
Abstract
Chromatin remodelling enzymes reposition nucleosomes throughout the genome to regulate the rate of transcription and other processes. These enzymes have been studied intensively since the 1990s, and yet the mechanism by which they operate has only very recently come into focus, following advances in cryoelectron microscopy and single-molecule biophysics. CHD4 is an essential and ubiquitous chromatin remodelling enzyme that until recently has received less attention than remodellers such as Snf2 and CHD1. Here we review what recent work in the field has taught us about how CHD4 reshapes the genome. Cryoelectron microscopy and single-molecule studies demonstrate that CHD4 shares a central remodelling mechanism with most other chromatin remodellers. At the same time, differences between CHD4 and other chromatin remodellers result from the actions of auxiliary domains that regulate remodeller activity by for example: (1) making differential interactions with nucleosomal epitopes such as the acidic patch and the N-terminal tail of histone H4, and (2) inducing the formation of distinct multi-protein remodelling complexes (e.g. NuRD vs ChAHP). Thus, although we have learned much about remodeller activity, there is still clearly much more waiting to be revealed.
Collapse
Affiliation(s)
- Xavier J. Reid
- School of Life and Environmental Sciences, University of Sydney, Darlington, NSW 2006, Australia
| | - Yichen Zhong
- School of Life and Environmental Sciences, University of Sydney, Darlington, NSW 2006, Australia
| | - Joel P. Mackay
- School of Life and Environmental Sciences, University of Sydney, Darlington, NSW 2006, Australia
| |
Collapse
|
7
|
Sala R, Esquer H, Kellett T, Kearns JT, Awolade P, Zhou Q, LaBarbera DV. CHD1L Regulates Cell Survival in Breast Cancer and Its Inhibition by OTI-611 Impedes the DNA Damage Response and Induces PARthanatos. Int J Mol Sci 2024; 25:8590. [PMID: 39201277 PMCID: PMC11354643 DOI: 10.3390/ijms25168590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 08/01/2024] [Accepted: 08/02/2024] [Indexed: 09/02/2024] Open
Abstract
The Chromodomain helicase DNA-binding protein 1-like (CHD1L) is a nucleosome remodeling enzyme, which plays a key role in chromatin relaxation during the DNA damage response. Genome editing has shown that deletion of CHD1L sensitizes cells to PARPi, but the effect of its pharmacological inhibition has not been defined. Triple-negative breast cancer SUM149PT, HCC1937, and MDA-MB-231 cells were used to assess the mechanism of action of the CHD1Li OTI-611. Cytotoxicity as a single agent or in combination with standard-of-care treatments was assessed in tumor organoids. Immunofluorescence was used to assess the translocation of PAR and AIF to the cytoplasm or the nucleus and to study markers of DNA damage or apoptosis. Trapping of PARP1/2 or CHD1L onto chromatin was also assessed by in situ subcellular fractionation and immunofluorescence and validated by Western blot. We show that the inhibition of CHD1L's ATPase activity by OTI-611 is cytotoxic to triple-negative breast cancer tumor organoids and synergizes with PARPi and chemotherapy independently of the BRCA mutation status. The inhibition of the remodeling function blocks the phosphorylation of H2AX, traps CHD1L on chromatin, and leaves PAR chains on PARP1/2 open for hydrolysis. PAR hydrolysis traps PARP1/2 at DNA damage sites and mediates PAR translocation to the cytoplasm, release of AIF from the mitochondria, and induction of PARthanatos. The targeted inhibition of CHD1L's oncogenic function by OTI-611 signifies an innovative therapeutic strategy for breast cancer and other cancers. This approach capitalizes on CHD1L-mediated DNA repair and cell survival vulnerabilities, thereby creating synergy with standard-of-care therapies.
Collapse
Affiliation(s)
- Rita Sala
- Department of Pharmaceutical Sciences, The Skaggs School of Pharmacy and Pharmaceutical Sciences, Aurora, CO 80045, USA; (R.S.); (H.E.); (T.K.); (J.T.K.); (P.A.); (Q.Z.)
| | - Hector Esquer
- Department of Pharmaceutical Sciences, The Skaggs School of Pharmacy and Pharmaceutical Sciences, Aurora, CO 80045, USA; (R.S.); (H.E.); (T.K.); (J.T.K.); (P.A.); (Q.Z.)
- The CU Anschutz Center for Drug Discovery, Aurora, CO 80045, USA
- The University of Colorado Cancer Center, The University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Timothy Kellett
- Department of Pharmaceutical Sciences, The Skaggs School of Pharmacy and Pharmaceutical Sciences, Aurora, CO 80045, USA; (R.S.); (H.E.); (T.K.); (J.T.K.); (P.A.); (Q.Z.)
| | - Jeffrey T. Kearns
- Department of Pharmaceutical Sciences, The Skaggs School of Pharmacy and Pharmaceutical Sciences, Aurora, CO 80045, USA; (R.S.); (H.E.); (T.K.); (J.T.K.); (P.A.); (Q.Z.)
| | - Paul Awolade
- Department of Pharmaceutical Sciences, The Skaggs School of Pharmacy and Pharmaceutical Sciences, Aurora, CO 80045, USA; (R.S.); (H.E.); (T.K.); (J.T.K.); (P.A.); (Q.Z.)
| | - Qiong Zhou
- Department of Pharmaceutical Sciences, The Skaggs School of Pharmacy and Pharmaceutical Sciences, Aurora, CO 80045, USA; (R.S.); (H.E.); (T.K.); (J.T.K.); (P.A.); (Q.Z.)
- The CU Anschutz Center for Drug Discovery, Aurora, CO 80045, USA
- The University of Colorado Cancer Center, The University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Daniel V. LaBarbera
- Department of Pharmaceutical Sciences, The Skaggs School of Pharmacy and Pharmaceutical Sciences, Aurora, CO 80045, USA; (R.S.); (H.E.); (T.K.); (J.T.K.); (P.A.); (Q.Z.)
- The CU Anschutz Center for Drug Discovery, Aurora, CO 80045, USA
- The University of Colorado Cancer Center, The University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
8
|
Cunningham ML, Schiewer MJ. PARP-ish: Gaps in Molecular Understanding and Clinical Trials Targeting PARP Exacerbate Racial Disparities in Prostate Cancer. Cancer Res 2024; 84:743102. [PMID: 38635890 PMCID: PMC11217733 DOI: 10.1158/0008-5472.can-23-3458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 01/25/2024] [Accepted: 04/02/2024] [Indexed: 04/20/2024]
Abstract
PARP is a nuclear enzyme with a major function in the DNA damage response. PARP inhibitors (PARPi) have been developed for treating tumors harboring homologous recombination repair (HRR) defects that lead to a dependency on PARP. There are currently three PARPi approved for use in advanced prostate cancer (PCa), and several others are in clinical trials for this disease. Recent clinical trial results have reported differential efficacy based on the specific PARPi utilized as well as patient race. There is a racial disparity in PCa, where African American (AA) males are twice as likely to develop and die from the disease compared to European American (EA) males. Despite the disparity, there continues to be a lack of diversity in clinical trial cohorts for PCa. In this review, PARP nuclear functions, inhibition, and clinical relevance are explored through the lens of racial differences. This review will touch on the biological variations that have been explored thus far between AA and EA males with PCa to offer rationale for investigating PARPi response in the context of race at both the basic science and the clinical development levels.
Collapse
Affiliation(s)
- Moriah L. Cunningham
- Department of Urology, Thomas Jefferson University, Philadelphia, Pennsylvania.
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania.
| | - Matthew J. Schiewer
- Department of Urology, Thomas Jefferson University, Philadelphia, Pennsylvania.
- Department of Pharmacology, Physiology, and Cancer Biology, Thomas Jefferson University, Philadelphia, Pennsylvania.
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania.
| |
Collapse
|
9
|
Eustermann S, Patel AB, Hopfner KP, He Y, Korber P. Energy-driven genome regulation by ATP-dependent chromatin remodellers. Nat Rev Mol Cell Biol 2024; 25:309-332. [PMID: 38081975 DOI: 10.1038/s41580-023-00683-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/24/2023] [Indexed: 03/28/2024]
Abstract
The packaging of DNA into chromatin in eukaryotes regulates gene transcription, DNA replication and DNA repair. ATP-dependent chromatin remodelling enzymes (re)arrange nucleosomes at the first level of chromatin organization. Their Snf2-type motor ATPases alter histone-DNA interactions through a common DNA translocation mechanism. Whether remodeller activities mainly catalyse nucleosome dynamics or accurately co-determine nucleosome organization remained unclear. In this Review, we discuss the emerging mechanisms of chromatin remodelling: dynamic remodeller architectures and their interactions, the inner workings of the ATPase cycle, allosteric regulation and pathological dysregulation. Recent mechanistic insights argue for a decisive role of remodellers in the energy-driven self-organization of chromatin, which enables both stability and plasticity of genome regulation - for example, during development and stress. Different remodellers, such as members of the SWI/SNF, ISWI, CHD and INO80 families, process (epi)genetic information through specific mechanisms into distinct functional outputs. Combinatorial assembly of remodellers and their interplay with histone modifications, histone variants, DNA sequence or DNA-bound transcription factors regulate nucleosome mobilization or eviction or histone exchange. Such input-output relationships determine specific nucleosome positions and compositions with distinct DNA accessibilities and mediate differential genome regulation. Finally, remodeller genes are often mutated in diseases characterized by genome dysregulation, notably in cancer, and we discuss their physiological relevance.
Collapse
Affiliation(s)
- Sebastian Eustermann
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Avinash B Patel
- Department of Molecular Biosciences, Robert H. Lurie Comprehensive Cancer Center, Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, USA
| | - Karl-Peter Hopfner
- Gene Center and Department of Biochemistry, Faculty of Chemistry and Pharmacy, LMU Munich, Munich, Germany
| | - Yuan He
- Department of Molecular Biosciences, Robert H. Lurie Comprehensive Cancer Center, Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, USA.
| | - Philipp Korber
- Biomedical Center (BMC), Molecular Biology, Faculty of Medicine, LMU Munich, Martinsried, Germany.
| |
Collapse
|
10
|
Chio US, Palovcak E, Smith AAA, Autzen H, Muñoz EN, Yu Z, Wang F, Agard DA, Armache JP, Narlikar GJ, Cheng Y. Functionalized graphene-oxide grids enable high-resolution cryo-EM structures of the SNF2h-nucleosome complex without crosslinking. Nat Commun 2024; 15:2225. [PMID: 38472177 PMCID: PMC10933330 DOI: 10.1038/s41467-024-46178-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 02/15/2024] [Indexed: 03/14/2024] Open
Abstract
Single-particle cryo-EM is widely used to determine enzyme-nucleosome complex structures. However, cryo-EM sample preparation remains challenging and inconsistent due to complex denaturation at the air-water interface (AWI). Here, to address this issue, we develop graphene-oxide-coated EM grids functionalized with either single-stranded DNA (ssDNA) or thiol-poly(acrylic acid-co-styrene) (TAASTY) co-polymer. These grids protect complexes between the chromatin remodeler SNF2h and nucleosomes from the AWI and facilitate collection of high-quality micrographs of intact SNF2h-nucleosome complexes in the absence of crosslinking. The data yields maps ranging from 2.3 to 3 Å in resolution. 3D variability analysis reveals nucleotide-state linked conformational changes in SNF2h bound to a nucleosome. In addition, the analysis provides structural evidence for asymmetric coordination between two SNF2h protomers acting on the same nucleosome. We envision these grids will enable similar detailed structural analyses for other enzyme-nucleosome complexes and possibly other protein-nucleic acid complexes in general.
Collapse
Affiliation(s)
- Un Seng Chio
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, USA
| | - Eugene Palovcak
- Biophysics Graduate Program, University of California San Francisco, San Francisco, CA, USA
| | - Anton A A Smith
- Department of Materials Science & Engineering, Stanford University, Stanford, CA, USA
- Department of Health Technology, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Henriette Autzen
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, USA
- Linderstrom-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, København, Denmark
| | - Elise N Muñoz
- Tetrad Graduate Program, University of California, San Francisco, San Francisco, CA, USA
| | - Zanlin Yu
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, USA
| | - Feng Wang
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, USA
| | - David A Agard
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, USA
| | - Jean-Paul Armache
- Department of Biochemistry and Molecular Biology and the Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, USA.
| | - Geeta J Narlikar
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, USA.
| | - Yifan Cheng
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, USA.
- Howard Hughes Medical Institute, University of California San Francisco, San Francisco, CA, USA.
| |
Collapse
|
11
|
Bacic L, Gaullier G, Mohapatra J, Mao G, Brackmann K, Panfilov M, Liszczak G, Sabantsev A, Deindl S. Asymmetric nucleosome PARylation at DNA breaks mediates directional nucleosome sliding by ALC1. Nat Commun 2024; 15:1000. [PMID: 38307862 PMCID: PMC10837151 DOI: 10.1038/s41467-024-45237-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 01/16/2024] [Indexed: 02/04/2024] Open
Abstract
The chromatin remodeler ALC1 is activated by DNA damage-induced poly(ADP-ribose) deposited by PARP1/PARP2 and their co-factor HPF1. ALC1 has emerged as a cancer drug target, but how it is recruited to ADP-ribosylated nucleosomes to affect their positioning near DNA breaks is unknown. Here we find that PARP1/HPF1 preferentially initiates ADP-ribosylation on the histone H2B tail closest to the DNA break. To dissect the consequences of such asymmetry, we generate nucleosomes with a defined ADP-ribosylated H2B tail on one side only. The cryo-electron microscopy structure of ALC1 bound to such an asymmetric nucleosome indicates preferential engagement on one side. Using single-molecule FRET, we demonstrate that this asymmetric recruitment gives rise to directed sliding away from the DNA linker closest to the ADP-ribosylation site. Our data suggest a mechanism by which ALC1 slides nucleosomes away from a DNA break to render it more accessible to repair factors.
Collapse
Affiliation(s)
- Luka Bacic
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, 75124, Uppsala, Sweden
| | - Guillaume Gaullier
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, 75124, Uppsala, Sweden
- Department of Chemistry - Ångström, Uppsala University, 75120, Uppsala, Sweden
| | - Jugal Mohapatra
- Department of Biochemistry, The University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, 75390, USA
| | - Guanzhong Mao
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, 75124, Uppsala, Sweden
| | - Klaus Brackmann
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, 75124, Uppsala, Sweden
| | - Mikhail Panfilov
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, 75124, Uppsala, Sweden
| | - Glen Liszczak
- Department of Biochemistry, The University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, 75390, USA
| | - Anton Sabantsev
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, 75124, Uppsala, Sweden.
| | - Sebastian Deindl
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, 75124, Uppsala, Sweden.
| |
Collapse
|
12
|
Yao X, Wang C, Yu W, Sun L, Lv Z, Xie X, Tian S, Yan L, Zhang H, Liu J. SRSF1 is essential for primary follicle development by regulating granulosa cell survival via mRNA alternative splicing. Cell Mol Life Sci 2023; 80:343. [PMID: 37907803 PMCID: PMC11072053 DOI: 10.1007/s00018-023-04979-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 09/14/2023] [Accepted: 09/24/2023] [Indexed: 11/02/2023]
Abstract
Granulosa cell abnormalities are characteristics of premature ovarian insufficiency (POI). Abnormal expression of serine/arginine-rich splicing factor 1 (SRSF1) can cause various diseases, but the role of SRSF1 in mouse granulosa cells remains largely unclear. In this study, we found that SRSF1 was expressed in the nuclei of both mouse oocytes and granulosa cells. The specific knockout of Srsf1 in granulosa cells led to follicular development inhibition, decreased granulosa cell proliferation, and increased apoptosis. Gene Ontology (GO) analysis of RNA-seq results revealed abnormal expression of genes involved in DNA repair, cell killing and other signalling pathways. Alternative splicing (AS) analysis showed that SRSF1 affected DNA damage in granulosa cells by regulating genes related to DNA repair. In summary, SRSF1 in granulosa cells controls follicular development by regulating AS of genes associated with DNA repair, thereby affecting female reproduction.
Collapse
Affiliation(s)
- Xiaohong Yao
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Chaofan Wang
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Weiran Yu
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Longjie Sun
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Zheng Lv
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Xiaomei Xie
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Shuang Tian
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Lu Yan
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Hua Zhang
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Jiali Liu
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
13
|
Suskiewicz MJ, Prokhorova E, Rack JGM, Ahel I. ADP-ribosylation from molecular mechanisms to therapeutic implications. Cell 2023; 186:4475-4495. [PMID: 37832523 PMCID: PMC10789625 DOI: 10.1016/j.cell.2023.08.030] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 08/23/2023] [Accepted: 08/23/2023] [Indexed: 10/15/2023]
Abstract
ADP-ribosylation is a ubiquitous modification of biomolecules, including proteins and nucleic acids, that regulates various cellular functions in all kingdoms of life. The recent emergence of new technologies to study ADP-ribosylation has reshaped our understanding of the molecular mechanisms that govern the establishment, removal, and recognition of this modification, as well as its impact on cellular and organismal function. These advances have also revealed the intricate involvement of ADP-ribosylation in human physiology and pathology and the enormous potential that their manipulation holds for therapy. In this review, we present the state-of-the-art findings covering the work in structural biology, biochemistry, cell biology, and clinical aspects of ADP-ribosylation.
Collapse
Affiliation(s)
| | | | - Johannes G M Rack
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK; MRC Centre of Medical Mycology, University of Exeter, Exeter, UK
| | - Ivan Ahel
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK.
| |
Collapse
|
14
|
Zhong Y, Moghaddas Sani H, Paudel BP, Low JKK, Silva APG, Mueller S, Deshpande C, Panjikar S, Reid XJ, Bedward MJ, van Oijen AM, Mackay JP. The role of auxiliary domains in modulating CHD4 activity suggests mechanistic commonality between enzyme families. Nat Commun 2022; 13:7524. [PMID: 36473839 PMCID: PMC9726900 DOI: 10.1038/s41467-022-35002-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 11/14/2022] [Indexed: 12/12/2022] Open
Abstract
CHD4 is an essential, widely conserved ATP-dependent translocase that is also a broad tumour dependency. In common with other SF2-family chromatin remodelling enzymes, it alters chromatin accessibility by repositioning histone octamers. Besides the helicase and adjacent tandem chromodomains and PHD domains, CHD4 features 1000 residues of N- and C-terminal sequence with unknown structure and function. We demonstrate that these regions regulate CHD4 activity through different mechanisms. An N-terminal intrinsically disordered region (IDR) promotes remodelling integrity in a manner that depends on the composition but not sequence of the IDR. The C-terminal region harbours an auto-inhibitory region that contacts the helicase domain. Auto-inhibition is relieved by a previously unrecognized C-terminal SANT-SLIDE domain split by ~150 residues of disordered sequence, most likely by binding of this domain to substrate DNA. Our data shed light on CHD4 regulation and reveal strong mechanistic commonality between CHD family members, as well as with ISWI-family remodellers.
Collapse
Affiliation(s)
- Yichen Zhong
- grid.1013.30000 0004 1936 834XSchool of Life and Environmental Sciences, University of Sydney, The University of Sydney, NSW 2006 Australia
| | - Hakimeh Moghaddas Sani
- grid.1013.30000 0004 1936 834XSchool of Life and Environmental Sciences, University of Sydney, The University of Sydney, NSW 2006 Australia
| | - Bishnu P. Paudel
- grid.1007.60000 0004 0486 528XMolecular Horizons, School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522 Australia ,grid.510958.0Illawarra Health and Medical Research Institute, Wollongong, NSW 2522 Australia
| | - Jason K. K. Low
- grid.1013.30000 0004 1936 834XSchool of Life and Environmental Sciences, University of Sydney, The University of Sydney, NSW 2006 Australia
| | - Ana P. G. Silva
- grid.1013.30000 0004 1936 834XSchool of Life and Environmental Sciences, University of Sydney, The University of Sydney, NSW 2006 Australia
| | - Stefan Mueller
- grid.1007.60000 0004 0486 528XMolecular Horizons, School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522 Australia ,grid.510958.0Illawarra Health and Medical Research Institute, Wollongong, NSW 2522 Australia
| | - Chandrika Deshpande
- grid.1013.30000 0004 1936 834XSchool of Life and Environmental Sciences, University of Sydney, The University of Sydney, NSW 2006 Australia
| | - Santosh Panjikar
- grid.248753.f0000 0004 0562 0567Australian Synchrotron, Clayton, VIC 3168 Australia ,grid.1002.30000 0004 1936 7857Department of Molecular Biology and Biochemistry, Monash University, Clayton, VIC 3800 Australia
| | - Xavier J. Reid
- grid.1013.30000 0004 1936 834XSchool of Life and Environmental Sciences, University of Sydney, The University of Sydney, NSW 2006 Australia
| | - Max J. Bedward
- grid.1013.30000 0004 1936 834XSchool of Life and Environmental Sciences, University of Sydney, The University of Sydney, NSW 2006 Australia
| | - Antoine M. van Oijen
- grid.1007.60000 0004 0486 528XMolecular Horizons, School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522 Australia ,grid.510958.0Illawarra Health and Medical Research Institute, Wollongong, NSW 2522 Australia
| | - Joel P. Mackay
- grid.1013.30000 0004 1936 834XSchool of Life and Environmental Sciences, University of Sydney, The University of Sydney, NSW 2006 Australia
| |
Collapse
|
15
|
Structure of human chromatin-remodelling PBAF complex bound to a nucleosome. Nature 2022; 605:166-171. [PMID: 35477757 DOI: 10.1038/s41586-022-04658-5] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 03/16/2022] [Indexed: 12/17/2022]
Abstract
DNA wraps around the histone octamer to form nucleosomes1, the repeating unit of chromatin, which create barriers for accessing genetic information. Snf2-like chromatin remodellers couple the energy of ATP binding and hydrolysis to reposition and recompose the nucleosome, and have vital roles in various chromatin-based transactions2,3. Here we report the cryo-electron microscopy structure of the 12-subunit human chromatin-remodelling polybromo-associated BRG1-associated factor (PBAF) complex bound to the nucleosome. The motor subunit SMARCA4 engages the nucleosome in the active conformation, which reveals clustering of multiple disease-associated mutations at the interfaces that are essential for chromatin-remodelling activity. SMARCA4 recognizes the H2A-H2B acidic pocket of the nucleosome through three arginine anchors of the Snf2 ATP coupling (SnAc) domain. PBAF shows notable functional modularity, and most of the auxiliary subunits are interwoven into three lobe-like submodules for nucleosome recognition. The PBAF-specific auxiliary subunit ARID2 acts as the structural core for assembly of the DNA-binding lobe, whereas PBRM1, PHF10 and BRD7 are collectively incorporated into the lobe for histone tail binding. Together, our findings provide mechanistic insights into nucleosome recognition by PBAF and a structural basis for understanding SMARCA4-related human diseases.
Collapse
|
16
|
Acidic patch histone mutations and their effects on nucleosome remodeling. Biochem Soc Trans 2022; 50:907-919. [PMID: 35356970 DOI: 10.1042/bst20210773] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 03/16/2022] [Accepted: 03/18/2022] [Indexed: 12/15/2022]
Abstract
Structural and biochemical studies have identified a histone surface on each side of the nucleosome disk termed 'the nucleosome acidic patch' that acts as a regulatory hub for the function of numerous nuclear proteins, including ATP-dependent chromatin complexes (remodelers). Four major remodeler subfamilies, SWI/SNF, ISWI, CHD, and INO80, have distinct modes of interaction with one or both nucleosome acidic patches, contributing to their specific remodeling outcomes. Genome-wide sequencing analyses of various human cancers have uncovered high-frequency mutations in histone coding genes, including some that map to the acidic patch. How cancer-related acidic patch histone mutations affect nucleosome remodeling is mainly unknown. Recent advances in in vitro chromatin reconstitution have enabled access to physiologically relevant nucleosomes, including asymmetric nucleosomes that possess both wild-type and acidic patch mutant histone copies. Biochemical investigation of these substrates revealed unexpected remodeling outcomes with far-reaching implications for alteration of chromatin structure. This review summarizes recent findings of how different remodeler families interpret wild-type and mutant acidic patches for their remodeling functions and discusses models for remodeler-mediated changes in chromatin landscapes as a consequence of acidic patch mutations.
Collapse
|
17
|
Huang D, Kraus WL. The expanding universe of PARP1-mediated molecular and therapeutic mechanisms. Mol Cell 2022; 82:2315-2334. [PMID: 35271815 DOI: 10.1016/j.molcel.2022.02.021] [Citation(s) in RCA: 130] [Impact Index Per Article: 43.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 02/03/2022] [Accepted: 02/10/2022] [Indexed: 12/25/2022]
Abstract
ADP-ribosylation (ADPRylation) is a post-translational modification of proteins catalyzed by ADP-ribosyl transferase (ART) enzymes, including nuclear PARPs (e.g., PARP1 and PARP2). Historically, studies of ADPRylation and PARPs have focused on DNA damage responses in cancers, but more recent studies elucidate diverse roles in a broader array of biological processes. Here, we summarize the expanding array of molecular mechanisms underlying the biological functions of nuclear PARPs with a focus on PARP1, the founding member of the family. This includes roles in DNA repair, chromatin regulation, gene expression, ribosome biogenesis, and RNA biology. We also present new concepts in PARP1-dependent regulation, including PAR-dependent post-translational modifications, "ADPR spray," and PAR-mediated biomolecular condensate formation. Moreover, we review advances in the therapeutic mechanisms of PARP inhibitors (PARPi) as well as the progress on the mechanisms of PARPi resistance. Collectively, the recent progress in the field has yielded new insights into the expanding universe of PARP1-mediated molecular and therapeutic mechanisms in a variety of biological processes.
Collapse
Affiliation(s)
- Dan Huang
- Laboratory of Signaling and Gene Regulation, Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Division of Basic Research, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, China.
| | - W Lee Kraus
- Laboratory of Signaling and Gene Regulation, Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Division of Basic Research, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
18
|
Prigaro BJ, Esquer H, Zhou Q, Pike LA, Awolade P, Lai XH, Abraham AD, Abbott JM, Matter B, Kompella UB, Messersmith WA, Gustafson DL, LaBarbera DV. Design, Synthesis, and Biological Evaluation of the First Inhibitors of Oncogenic CHD1L. J Med Chem 2022; 65:3943-3961. [PMID: 35192363 DOI: 10.1021/acs.jmedchem.1c01778] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Chromodomain helicase DNA-binding protein 1 like (CHD1L) is an oncogene implicated in tumor progression, multidrug resistance, and metastasis in many types of cancer. In this article, we described the optimization of the first lead CHD1L inhibitors (CHD1Li) through drug design and medicinal chemistry. More than 30 CHD1Li were synthesized and evaluated using a variety of colorectal cancer (CRC) tumor organoid models and functional assays. The results led to the prioritization of six lead CHD1Li analogues with improved potency, antitumor activity, and drug-like properties including metabolic stability and in vivo pharmacokinetics. Furthermore, lead CHD1Li 6.11 proved to be an orally bioavailable antitumor agent, significantly reducing the tumor volume of CRC xenografts generated from isolated quasi mesenchymal cells (M-phenotype), which possess enhanced tumorigenic properties. In conclusion, we reported the optimization of first-in-class inhibitors of oncogenic CHD1L as a novel therapeutic strategy with potential for the treatment of cancer.
Collapse
Affiliation(s)
- Brett J Prigaro
- The Skaggs School of Pharmacy and Pharmaceutical Sciences, Department of Pharmaceutical Sciences, The CU Cancer Center, Aurora, Colorado 80045, United States
| | - Hector Esquer
- The Skaggs School of Pharmacy and Pharmaceutical Sciences, Department of Pharmaceutical Sciences, The CU Cancer Center, Aurora, Colorado 80045, United States
| | - Qiong Zhou
- The Skaggs School of Pharmacy and Pharmaceutical Sciences, Department of Pharmaceutical Sciences, The CU Cancer Center, Aurora, Colorado 80045, United States
| | - Laura A Pike
- The Skaggs School of Pharmacy and Pharmaceutical Sciences, Department of Pharmaceutical Sciences, The CU Cancer Center, Aurora, Colorado 80045, United States
| | - Paul Awolade
- The Skaggs School of Pharmacy and Pharmaceutical Sciences, Department of Pharmaceutical Sciences, The CU Cancer Center, Aurora, Colorado 80045, United States
| | - Xin-He Lai
- The Skaggs School of Pharmacy and Pharmaceutical Sciences, Department of Pharmaceutical Sciences, The CU Cancer Center, Aurora, Colorado 80045, United States
| | - Adedoyin D Abraham
- The Skaggs School of Pharmacy and Pharmaceutical Sciences, Department of Pharmaceutical Sciences, The CU Cancer Center, Aurora, Colorado 80045, United States
| | - Joshua M Abbott
- The Skaggs School of Pharmacy and Pharmaceutical Sciences, Department of Pharmaceutical Sciences, The CU Cancer Center, Aurora, Colorado 80045, United States
| | - Brock Matter
- The Skaggs School of Pharmacy and Pharmaceutical Sciences, Department of Pharmaceutical Sciences, The CU Cancer Center, Aurora, Colorado 80045, United States
| | - Uday B Kompella
- The Skaggs School of Pharmacy and Pharmaceutical Sciences, Department of Pharmaceutical Sciences, The CU Cancer Center, Aurora, Colorado 80045, United States.,The University of Colorado (CU) Anschutz Medical Campus (AMC) Center for Drug Discovery, The CU Cancer Center, Aurora, Colorado 80045, United States
| | - Wells A Messersmith
- The School of Medicine, Division of Medical Oncology, The CU Cancer Center, Aurora, Colorado 80045, United States.,The University of Colorado (CU) Anschutz Medical Campus (AMC) Center for Drug Discovery, The CU Cancer Center, Aurora, Colorado 80045, United States.,The CU Cancer Center, Aurora, Colorado 80045, United States
| | - Daniel L Gustafson
- Flint Animal Cancer Center and Department of Clinical Sciences, School of Biomedical Engineering, Colorado State University, Fort Collins, Colorado 80523, United States.,The University of Colorado (CU) Anschutz Medical Campus (AMC) Center for Drug Discovery, The CU Cancer Center, Aurora, Colorado 80045, United States.,The CU Cancer Center, Aurora, Colorado 80045, United States
| | - Daniel V LaBarbera
- The Skaggs School of Pharmacy and Pharmaceutical Sciences, Department of Pharmaceutical Sciences, The CU Cancer Center, Aurora, Colorado 80045, United States.,The University of Colorado (CU) Anschutz Medical Campus (AMC) Center for Drug Discovery, The CU Cancer Center, Aurora, Colorado 80045, United States.,The CU Cancer Center, Aurora, Colorado 80045, United States
| |
Collapse
|
19
|
Bacic L, Gaullier G, Sabantsev A, Lehmann LC, Brackmann K, Dimakou D, Halic M, Hewitt G, Boulton SJ, Deindl S. Structure and dynamics of the chromatin remodeler ALC1 bound to a PARylated nucleosome. eLife 2021; 10:e71420. [PMID: 34486521 PMCID: PMC8463071 DOI: 10.7554/elife.71420] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 09/05/2021] [Indexed: 12/21/2022] Open
Abstract
The chromatin remodeler ALC1 is recruited to and activated by DNA damage-induced poly(ADP-ribose) (PAR) chains deposited by PARP1/PARP2/HPF1 upon detection of DNA lesions. ALC1 has emerged as a candidate drug target for cancer therapy as its loss confers synthetic lethality in homologous recombination-deficient cells. However, structure-based drug design and molecular analysis of ALC1 have been hindered by the requirement for PARylation and the highly heterogeneous nature of this post-translational modification. Here, we reconstituted an ALC1 and PARylated nucleosome complex modified in vitro using PARP2 and HPF1. This complex was amenable to cryo-EM structure determination without cross-linking, which enabled visualization of several intermediate states of ALC1 from the recognition of the PARylated nucleosome to the tight binding and activation of the remodeler. Functional biochemical assays with PARylated nucleosomes highlight the importance of nucleosomal epitopes for productive remodeling and suggest that ALC1 preferentially slides nucleosomes away from DNA breaks.
Collapse
Affiliation(s)
- Luka Bacic
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala UniversityUppsalaSweden
| | - Guillaume Gaullier
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala UniversityUppsalaSweden
| | - Anton Sabantsev
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala UniversityUppsalaSweden
| | - Laura C Lehmann
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala UniversityUppsalaSweden
| | - Klaus Brackmann
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala UniversityUppsalaSweden
| | - Despoina Dimakou
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala UniversityUppsalaSweden
| | - Mario Halic
- Department of Structural Biology, St Jude Children's Research HospitalMemphisUnited States
| | | | | | - Sebastian Deindl
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala UniversityUppsalaSweden
| |
Collapse
|