1
|
Wang H, Yang Y, Abe I. Modifications of Prenyl Side Chains in Natural Product Biosynthesis. Angew Chem Int Ed Engl 2024; 63:e202415279. [PMID: 39363683 DOI: 10.1002/anie.202415279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 10/01/2024] [Accepted: 10/01/2024] [Indexed: 10/05/2024]
Abstract
In recent years, there has been a growing interest in understanding the enzymatic machinery responsible for the modifications of prenyl side chains and elucidating their roles in natural product biosynthesis. This interest stems from the pivotal role such modifications play in shaping the structural and functional diversity of natural products, as well as from their potential applications to synthetic biology and drug discovery. In addition to contributing to the diversity and complexity of natural products, unique modifications of prenyl side chains are represented by several novel biosynthetic mechanisms. Representative unique examples of epoxidation, dehydrogenation, oxidation of methyl groups to carboxyl groups, unusual C-C bond cleavage and oxidative cyclization are summarized and discussed. By revealing the intriguing chemistry and enzymology behind these transformations, this comprehensive and comparative review will guide future efforts in the discovery, characterization and application of modifications of prenyl side chains in natural product biosynthesis.
Collapse
Affiliation(s)
- Huibin Wang
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Yi Yang
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Ikuro Abe
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo Yayoi 1-1-1, Bunkyo-ku, Tokyo, 113-8657, Japan
| |
Collapse
|
2
|
Johnson SB, Li H, Valentino H, Sobrado P. Mechanism of Nitrone Formation by a Flavin-Dependent Monooxygenase. Biochemistry 2024; 63:1445-1459. [PMID: 38779817 PMCID: PMC11154958 DOI: 10.1021/acs.biochem.3c00656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 05/07/2024] [Accepted: 05/14/2024] [Indexed: 05/25/2024]
Abstract
OxaD is a flavin-dependent monooxygenase (FMO) responsible for catalyzing the oxidation of an indole nitrogen atom, resulting in the formation of a nitrone. Nitrones serve as versatile intermediates in complex syntheses, including challenging reactions like cycloadditions. Traditional organic synthesis methods often yield limited results and involve environmentally harmful chemicals. Therefore, the enzymatic synthesis of nitrone-containing compounds holds promise for more sustainable industrial processes. In this study, we explored the catalytic mechanism of OxaD using a combination of steady-state and rapid-reaction kinetics, site-directed mutagenesis, spectroscopy, and structural modeling. Our investigations showed that OxaD catalyzes two oxidations of the indole nitrogen of roquefortine C, ultimately yielding roquefortine L. The reductive-half reaction analysis indicated that OxaD rapidly undergoes reduction and follows a "cautious" flavin reduction mechanism by requiring substrate binding before reduction can take place. This characteristic places OxaD in class A of the FMO family, a classification supported by a structural model featuring a single Rossmann nucleotide binding domain and a glutathione reductase fold. Furthermore, our spectroscopic analysis unveiled both enzyme-substrate and enzyme-intermediate complexes. Our analysis of the oxidative-half reaction suggests that the flavin dehydration step is the slow step in the catalytic cycle. Finally, through mutagenesis of the conserved D63 residue, we demonstrated its role in flavin motion and product oxygenation. Based on our findings, we propose a catalytic mechanism for OxaD and provide insights into the active site architecture within class A FMOs.
Collapse
Affiliation(s)
- Sydney B Johnson
- Department of Biochemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Hao Li
- Department of Biochemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Hannah Valentino
- Department of Biochemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Pablo Sobrado
- Department of Biochemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
- Center of Drug Discovery, Virginia Tech, Blacksburg, Virginia 24061, United States
| |
Collapse
|
3
|
Hanif M, Zahoor AF, Saif MJ, Nazeer U, Ali KG, Parveen B, Mansha A, Chaudhry AR, Irfan A. Exploring the synthetic potential of epoxide ring opening reactions toward the synthesis of alkaloids and terpenoids: a review. RSC Adv 2024; 14:13100-13128. [PMID: 38655462 PMCID: PMC11036177 DOI: 10.1039/d4ra01834f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 04/15/2024] [Indexed: 04/26/2024] Open
Abstract
Epoxides are oxygen containing heterocycles which are significantly employed as crucial intermediates in various organic transformations. They are considered highly reactive three-membered heterocycles due to ring strain and they undergo epoxide ring opening reactions with diverse range of nucleophiles. Epoxide ring-opening reactions have gained prominence as flexible and effective means to obtain various functionalized molecules. These reactions have garnered substantial attention in organic synthesis, driven by the need to comprehend the synthesis of biologically and structurally important organic compounds. They have also found applications in the synthesis of complex natural products. In this review article, we have summarized the implementation of epoxide ring opening reactions in the synthesis of alkaloids and terpenoids based natural products reported within the last decade (2014-2023).
Collapse
Affiliation(s)
- Madiha Hanif
- Department of Chemistry, Government College University Faisalabad 38000-Faisalabad Pakistan
| | - Ameer Fawad Zahoor
- Department of Chemistry, Government College University Faisalabad 38000-Faisalabad Pakistan
| | - Muhammad Jawwad Saif
- Department of Applied Chemistry, Government College University Faisalabad 38000-Faisalabad Pakistan
| | - Usman Nazeer
- Department of Chemistry, University of Houston 3585 Cullen Boulevard Texas 77204-5003 USA
| | - Kulsoom Ghulam Ali
- Department of Chemistry, Government College University Faisalabad 38000-Faisalabad Pakistan
| | - Bushra Parveen
- Department of Chemistry, Government College University Faisalabad 38000-Faisalabad Pakistan
| | - Asim Mansha
- Department of Chemistry, Government College University Faisalabad 38000-Faisalabad Pakistan
| | - Aijaz Rasool Chaudhry
- Department of Physics, College of Science, University of Bisha P.O. Box 551 Bisha 61922 Saudi Arabia
| | - Ahmad Irfan
- Department of Chemistry, King Khalid University P.O. Box 9004 Abha 61413 Saudi Arabia
| |
Collapse
|
4
|
Champagne SE, Chiang CH, Gemmel PM, Brooks CL, Narayan ARH. Biocatalytic Stereoselective Oxidation of 2-Arylindoles. J Am Chem Soc 2024; 146:2728-2735. [PMID: 38237569 PMCID: PMC11214688 DOI: 10.1021/jacs.3c12393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
3-Hydroxyindolenines can be used to access several structural motifs that are featured in natural products and pharmaceutical compounds, yet the chemical synthesis of 3-hydroxyindolenines is complicated by overoxidation, rearrangements, and complex product mixtures. The selectivity possible in enzymatic reactions can overcome these challenges and deliver enantioenriched products. Herein, we present the development of an asymmetric biocatalytic oxidation of 2-arylindole substrates aided by a curated library of flavin-dependent monooxygenases (FDMOs) sampled from an ancestral sequence space, a sequence similarity network, and a deep-learning-based latent space model. From this library of FDMOs, a previously uncharacterized enzyme, Champase, from the Valley fever fungus, Coccidioides immitis strain RS, was found to stereoselectively catalyze the oxidation of a variety of substituted indole substrates. The promiscuity of this enzyme is showcased by the oxidation of a wide variety of substituted 2-arylindoles to afford the respective 3-hydroxyindolenine products in moderate to excellent yields and up to 95:5 er.
Collapse
Affiliation(s)
- Sarah E. Champagne
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, USA
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Chang-Hwa Chiang
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, USA
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Philipp M. Gemmel
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Charles L. Brooks
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA
- Enhanced Program in Biophysics, University of Michigan, Ann Arbor, Michigan 48109, USA
- Program in Chemical Biology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Alison R. H. Narayan
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, USA
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA
- Program in Chemical Biology, University of Michigan, Ann Arbor, Michigan 48109, USA
| |
Collapse
|
5
|
Wang Q, Liu N, Deng Y, Guan Y, Xiao H, Nitka TA, Yang H, Yadav A, Vukovic L, Mathews II, Chen X, Kim CY. Triepoxide formation by a flavin-dependent monooxygenase in monensin biosynthesis. Nat Commun 2023; 14:6273. [PMID: 37805629 PMCID: PMC10560226 DOI: 10.1038/s41467-023-41889-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 09/18/2023] [Indexed: 10/09/2023] Open
Abstract
Monensin A is a prototypical natural polyether polyketide antibiotic. It acts by binding a metal cation and facilitating its transport across the cell membrane. Biosynthesis of monensin A involves construction of a polyene polyketide backbone, subsequent epoxidation of the alkenes, and, lastly, formation of cyclic ethers via epoxide-opening cyclization. MonCI, a flavin-dependent monooxygenase, is thought to transform all three alkenes in the intermediate polyketide premonensin A into epoxides. Our crystallographic study has revealed that MonCI's exquisite stereocontrol is due to the preorganization of the active site residues which allows only one specific face of the alkene to approach the reactive C(4a)-hydroperoxyflavin moiety. Furthermore, MonCI has an unusually large substrate-binding cavity that can accommodate premonensin A in an extended or folded conformation which allows any of the three alkenes to be placed next to C(4a)-hydroperoxyflavin. MonCI, with its ability to perform multiple epoxidations on the same substrate in a stereospecific manner, demonstrates the extraordinary versatility of the flavin-dependent monooxygenase family of enzymes.
Collapse
Affiliation(s)
- Qian Wang
- Department of Chemistry and Biochemistry, The University of Texas at El Paso, 500 West University Avenue, El Paso, TX, 79968, USA
| | - Ning Liu
- Key Laboratory of Synthetic and Natural Functional Molecular Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, 710127, Xi'an, China
| | - Yaming Deng
- Key Laboratory of Synthetic and Natural Functional Molecular Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, 710127, Xi'an, China
| | - Yuze Guan
- Key Laboratory of Synthetic and Natural Functional Molecular Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, 710127, Xi'an, China
| | - Hongli Xiao
- Key Laboratory of Synthetic and Natural Functional Molecular Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, 710127, Xi'an, China
| | - Tara A Nitka
- Department of Chemistry and Biochemistry, The University of Texas at El Paso, 500 West University Avenue, El Paso, TX, 79968, USA
| | - Hui Yang
- Key Laboratory of Synthetic and Natural Functional Molecular Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, 710127, Xi'an, China
| | - Anju Yadav
- Department of Chemistry and Biochemistry, The University of Texas at El Paso, 500 West University Avenue, El Paso, TX, 79968, USA
| | - Lela Vukovic
- Department of Chemistry and Biochemistry, The University of Texas at El Paso, 500 West University Avenue, El Paso, TX, 79968, USA
| | - Irimpan I Mathews
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA, 95124, USA
| | - Xi Chen
- Key Laboratory of Synthetic and Natural Functional Molecular Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, 710127, Xi'an, China.
| | - Chu-Young Kim
- Department of Chemistry and Biochemistry, The University of Texas at El Paso, 500 West University Avenue, El Paso, TX, 79968, USA.
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA.
| |
Collapse
|
6
|
Liu S, Nie Q, Liu Z, Patil S, Gao X. Fungal P450 Deconstructs the 2,5-Diazabicyclo[2.2.2]octane Ring En Route to the Complete Biosynthesis of 21 R-Citrinadin A. J Am Chem Soc 2023; 145:14251-14259. [PMID: 37352463 PMCID: PMC11025717 DOI: 10.1021/jacs.3c02109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/25/2023]
Abstract
Prenylated indole alkaloids (PIAs) possess great structural diversity and show biological activities. Despite significant efforts in investigating the biosynthetic mechanism, the key step in the transformation of 2,5-diazabicyclo[2.2.2]octane-containing PIAs into a distinct class of pentacyclic compounds remains unknown. Here, using a combination of gene deletion, heterologous expression, and biochemical characterization, we show that a unique fungal P450 enzyme CtdY catalyzes the cleavage of the amide bond in the 2,5-diazabicyclo[2.2.2]octane system, followed by a decarboxylation step to form the 6/5/5/6/6 pentacyclic ring in 21R-citrinadin A. We also demonstrate the function of a subsequent cascade of stereospecific oxygenases to further modify the 6/5/5/6/6 pentacyclic intermediate en route to the complete 21R-citrinadin A biosynthesis. Our findings reveal a key enzyme CtdY for the pathway divergence in the biosynthesis of PIAs and uncover the complex late-stage post-translational modifications in 21R-citrinadin A biosynthesis.
Collapse
Affiliation(s)
- Shuai Liu
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005, USA
| | - Qiuyue Nie
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005, USA
| | - Zhiwen Liu
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005, USA
| | - Siddhant Patil
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005, USA
| | - Xue Gao
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005, USA
- Department of Bioengineering, Rice University, Houston, TX 77005, USA
- Department of Chemistry, Rice University, Houston, TX 77005, USA
| |
Collapse
|
7
|
Asif M, Alvi SS, Azaz T, Khan AR, Tiwari B, Hafeez BB, Nasibullah M. Novel Functionalized Spiro [Indoline-3,5'-pyrroline]-2,2'dione Derivatives: Synthesis, Characterization, Drug-Likeness, ADME, and Anticancer Potential. Int J Mol Sci 2023; 24:ijms24087336. [PMID: 37108498 PMCID: PMC10139052 DOI: 10.3390/ijms24087336] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 03/29/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023] Open
Abstract
A highly stereo-selective, one-pot, multicomponent method was chosen to synthesize the novel functionalized 1, 3-cycloaddition spirooxindoles (SOXs) (4a-4h). Synthesized SOXs were analyzed for their drug-likeness and ADME parameters and screened for their anticancer activity. Our molecular docking analysis revealed that among all derivatives of SOXs (4a-4h), 4a has a substantial binding affinity (∆G) -6.65, -6.55, -8.73, and -7.27 Kcal/mol with CD-44, EGFR, AKR1D1, and HER-2, respectively. A functional study demonstrated that SOX 4a has a substantial impact on human cancer cell phenotypes exhibiting abnormality in cytoplasmic and nuclear architecture as well as granule formation leading to cell death. SOX 4a treatment robustly induced reactive oxygen species (ROS) generation in cancer cells as observed by enhanced DCFH-DA signals. Overall, our results suggest that SOX (4a) targets CD-44, EGFR, AKR1D1, and HER-2 and induces ROS generation in cancer cells. We conclude that SOX (4a) could be explored as a potential chemotherapeutic molecule against various cancers in appropriate pre-clinical in vitro and in vivo model systems.
Collapse
Affiliation(s)
- Mohd Asif
- Department of Chemistry, Integral University, Lucknow 226026, Uttar Pradesh, India
| | - Sahir Sultan Alvi
- Department of Immunology and Microbiology, South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
| | - Tazeen Azaz
- Department of Biological and Synthetic Chemistry, Centre of Biomedical Research, SGPGIMS-Campus, Raebareli Road, Lucknow 226014, Uttar Pradesh, India
| | - Abdul Rahman Khan
- Department of Chemistry, Integral University, Lucknow 226026, Uttar Pradesh, India
| | - Bhoopendra Tiwari
- Department of Biological and Synthetic Chemistry, Centre of Biomedical Research, SGPGIMS-Campus, Raebareli Road, Lucknow 226014, Uttar Pradesh, India
| | - Bilal Bin Hafeez
- Department of Immunology and Microbiology, South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
| | - Malik Nasibullah
- Department of Chemistry, Integral University, Lucknow 226026, Uttar Pradesh, India
| |
Collapse
|
8
|
Liu Z, Rivera S, Newmister SA, Sanders JN, Nie Q, Liu S, Zhao F, Ferrara JD, Shih HW, Patil S, Xu W, Miller MD, Phillips GN, Houk KN, Sherman DH, Gao X. An NmrA-like enzyme-catalysed redox-mediated Diels-Alder cycloaddition with anti-selectivity. Nat Chem 2023; 15:526-534. [PMID: 36635598 PMCID: PMC10073347 DOI: 10.1038/s41557-022-01117-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 11/22/2022] [Indexed: 01/14/2023]
Abstract
The Diels-Alder cycloaddition is one of the most powerful approaches in organic synthesis and is often used in the synthesis of important pharmaceuticals. Yet, strictly controlling the stereoselectivity of the Diels-Alder reactions is challenging, and great efforts are needed to construct complex molecules with desired chirality via organocatalysis or transition-metal strategies. Nature has evolved different types of enzymes to exquisitely control cyclization stereochemistry; however, most of the reported Diels-Alderases have been shown to only facilitate the energetically favourable diastereoselective cycloadditions. Here we report the discovery and characterization of CtdP, a member of a new class of bifunctional oxidoreductase/Diels-Alderase, which was previously annotated as an NmrA-like transcriptional regulator. We demonstrate that CtdP catalyses the inherently disfavoured cycloaddition to form the bicyclo[2.2.2]diazaoctane scaffold with a strict α-anti-selectivity. Guided by computational studies, we reveal a NADP+/NADPH-dependent redox mechanism for the CtdP-catalysed inverse electron demand Diels-Alder cycloaddition, which serves as the first example of a bifunctional Diels-Alderase that utilizes this mechanism.
Collapse
Affiliation(s)
- Zhiwen Liu
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX, USA
| | - Sebastian Rivera
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
- Program in Chemical Biology, University of Michigan, Ann Arbor, MI, USA
| | - Sean A Newmister
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
| | - Jacob N Sanders
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, USA
| | - Qiuyue Nie
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX, USA
| | - Shuai Liu
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX, USA
| | - Fanglong Zhao
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX, USA
| | | | - Hao-Wei Shih
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX, USA
| | - Siddhant Patil
- Department of Biosciences, Rice University, Houston, TX, USA
| | - Weijun Xu
- Department of Biosciences, Rice University, Houston, TX, USA
| | | | - George N Phillips
- Department of Biosciences, Rice University, Houston, TX, USA
- Department of Chemistry, Rice University, Houston, TX, USA
| | - K N Houk
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, USA.
| | - David H Sherman
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA.
- Program in Chemical Biology, University of Michigan, Ann Arbor, MI, USA.
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, MI, USA.
- Department of Microbiology & Immunology, University of Michigan, Ann Arbor, MI, USA.
- Department of Chemistry, University of Michigan, Ann Arbor, MI, USA.
| | - Xue Gao
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX, USA.
- Department of Chemistry, Rice University, Houston, TX, USA.
- Department of Bioengineering, Rice University, Houston, TX, USA.
| |
Collapse
|
9
|
Shalaby MA, Fahim AM, Rizk SA. Microwave-assisted synthesis, antioxidant activity, docking simulation, and DFT analysis of different heterocyclic compounds. Sci Rep 2023; 13:4999. [PMID: 36973332 PMCID: PMC10042854 DOI: 10.1038/s41598-023-31995-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 03/21/2023] [Indexed: 03/29/2023] Open
Abstract
In this investigation, pressure microwave irradiation was used to clarify the activity of 1-(2-hydroxyphenyl)-3-(4-methylphenyl)prop-2-en-1-one (3) towards several active methylene derivatives utilized the pressurized microwave irradiation as green energy resource . Chalcone 3 was allowed to react with ethyl cyanoacetate, acetylacetone, and thioglycolic acid; respectively, at 70 °C with pressure under microwave reaction condition to afford the corresponding 2-hydroxyphenylcyanopyridone, 2-hydroxyphenyl acetylcyclohexanone, and thieno[2,3-c]chromen-4-one derivatives respectively. Moreover, the reaction of chalcone 3 with hydrogen peroxide with stirring affords the corresponding chromen-4-one derivative. All the synthesized compounds were confirmed through spectral tools such as FT-IR, 1HNMR, 13CNMR, and mass spectrum. Furthermore, the synthesized heterocycles were exhibited excellent antioxidant activity and comparable with vitamin C, where the presence of the OH group increases the scavenger radical inhibition. Furthermore, the biological activity of compound 12 was demonstrated through molecular docking stimulation using two proteins, PDBID: 1DH2 and PDBID: 3RP8, which showed that compound 12 possesses greater binding energy and a shorter bond length comparable with ascorbic acid. Also, the compounds were optimized through DFT/B3LYP/6-31G (d,p) basis set and identification of their physical descriptors, whereas the compound 12 was confirmed through X-Ray single structure with Hirsh field analysis of the compound to know the hydrogen electrostatic bond interaction, and correlated with the optimized structure by comparing their bond length, bond angle, FT-IR, and NMR, which gave excellent correlation.
Collapse
Affiliation(s)
- Mona A Shalaby
- Chemistry Department, Faculty of Science, Ain Shams University, Abbassia, P.O. 11566, Cairo, Egypt
| | - Asmaa M Fahim
- Green Chemistry Department, National Research Centre Dokki, P.O. Box 12622, Cairo, Egypt.
| | - Sameh A Rizk
- Chemistry Department, Faculty of Science, Ain Shams University, Abbassia, P.O. 11566, Cairo, Egypt
| |
Collapse
|
10
|
Nguyen TAM, Grzech D, Chung K, Xia Z, Nguyen TD, Dang TTT. Discovery of a cytochrome P450 enzyme catalyzing the formation of spirooxindole alkaloid scaffold. FRONTIERS IN PLANT SCIENCE 2023; 14:1125158. [PMID: 36818833 PMCID: PMC9936145 DOI: 10.3389/fpls.2023.1125158] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 01/12/2023] [Indexed: 06/18/2023]
Abstract
Spirooxindole alkaloids feature a unique scaffold of an oxindole ring sharing an atom with a heterocyclic moiety. These compounds display an extensive range of biological activities such as anticancer, antibiotics, and anti-hypertension. Despite their structural and functional significance, the establishment and rationale of the spirooxindole scaffold biosynthesis are yet to be elucidated. Herein, we report the discovery and characterization of a cytochrome P450 enzyme from kratom (Mitragyna speciosa) responsible for the formation of the spirooxindole alkaloids 3-epi-corynoxeine (3R, 7R) and isocorynoxeine (3S, 7S) from the corynanthe-type (3R)-secoyohimbane precursors. Expression of the newly discovered enzyme in Saccharomyces cerevisiae yeast allows for the efficient in vivo and in vitro production of spirooxindoles. This discovery highlights the versatility of plant cytochrome P450 enzymes in building unusual alkaloid scaffolds and opens a gateway to access the prestigious spirooxindole pharmacophore and its derivatives.
Collapse
Affiliation(s)
- Tuan-Anh M. Nguyen
- Department of Chemistry, Irving K. Barber Faculty of Science, University of British Columbia, Kelowna, BC, Canada
| | - Dagny Grzech
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Khoa Chung
- Chemistry Research Laboratory, University of Oxford, Oxford, United Kingdom
| | - Zhicheng Xia
- Department of Chemistry, Faculty of Science, University of British Columbia, Vancouver, BC, Canada
| | - Trinh-Don Nguyen
- Department of Chemistry, Irving K. Barber Faculty of Science, University of British Columbia, Kelowna, BC, Canada
| | - Thu-Thuy T. Dang
- Department of Chemistry, Irving K. Barber Faculty of Science, University of British Columbia, Kelowna, BC, Canada
| |
Collapse
|
11
|
Shi H, Jiang J, Zhang H, Jiang H, Su Z, Liu D, Jie L, He F. Antibacterial spirooxindole alkaloids from Penicillium brefeldianum inhibit dimorphism of pathogenic smut fungi. Front Microbiol 2022; 13:1046099. [PMID: 36452922 PMCID: PMC9702524 DOI: 10.3389/fmicb.2022.1046099] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 10/20/2022] [Indexed: 09/14/2024] Open
Abstract
Three new antibacterial spirooxindole alkaloids, spirobrefeldins A-C (1-3), together with four known analogs, spirotryprostatin M (4), spirotryprostatin G (5), 12β-hydroxyverruculogen TR-2 (6), and 12α-hydroxyverruculogen TR-2 (7), were isolated from terrestrial fungus Penicillium brefeldianum. All the new compounds were elucidated extensively by the interpretation of their NMR (1D and 2D) spectra and high-resolution mass data, and their absolute configurations were determined by computational chemistry and CD spectra. The absolute configurations of spiro carbon C-2 in spirotryprostatin G (5) and spirotryprostatin C in literature were reported as S, which were revised to R based on experimental and calculated CD spectra. All the compounds were evaluated for their antimicrobial activities toward Pseudomonas aeruginosa PAO1, Dickeya zeae EC1, Staphylococcus epidermidis, Escherichia coli, and Sporisorium scitamineum. Compound 7 displayed moderate inhibitory activity toward dimorphic switch of pathogenic smut fungi Sporisorium scitamineum at 25 μM. Compounds 3 and 6 showed weak antibacterial activities against phytopathogenic bacterial Dickeya zeae EC1 at 100 μM.
Collapse
Affiliation(s)
- Huajun Shi
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Jinyan Jiang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Hang Zhang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Haimei Jiang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Zijie Su
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Dandan Liu
- Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Ligang Jie
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
- Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Fei He
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
- Zhujiang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
12
|
Nie Q, Guo S, Gao X. Unraveling the biosynthesis of penicillenols by genome mining PKS-NRPS gene clusters in Penicillium citrinum. AIChE J 2022; 68:e17885. [PMID: 36591370 PMCID: PMC9797205 DOI: 10.1002/aic.17885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 07/16/2022] [Indexed: 01/05/2023]
Abstract
Penicillenols belong to the family of tetramic acids with anticancer and antibacterial activities. Here, we report the discovery of the biosynthetic gene cluster (pnc) for penicillenol A1 and E in Penicillium citrinum ATCC9849 by genome mining. We discover the pnc cluster based on the results of gene deletions in P. citrinum and gene cluster heterologous expression in Aspergillus nidulans. We also propose the assembly line of the PKS module in PncA with the reduction by PncB provides a highly reduce polyketide chain to be further linked with an L-threonine molecule and released from PncA to produce penicillenol E. Further formation of penicillenol A1 requires the N-methylation of tetramic acid group by PncC. Our work deepens the understanding of the biosynthetic logic for N-methylated tetramic acids and contributes to the discovery of new penicillenols by genome mining.
Collapse
Affiliation(s)
- Qiuyue Nie
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005, USA
| | - Shuqi Guo
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005, USA
| | - Xue Gao
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005, USA
- Department of Bioengineering, Rice University, Houston, TX 77005, USA
- Department of Chemistry, Rice University, Houston, TX 77005, USA
| |
Collapse
|
13
|
Mori T, Nakashima Y, Chen H, Hoshino S, Mitsuhashi T, Abe I. Structure-based redesign of Fe(II)/2-oxoglutarate-dependent oxygenase AndA to catalyze spiro-ring formation. Chem Commun (Camb) 2022; 58:5510-5513. [PMID: 35420093 DOI: 10.1039/d2cc00736c] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Structure- and mechanism-based redesign of the Fe(II)/2-oxoglutarate-dependent oxygenase AndA was performed. The function of AndA was expanded to catalyze a spiro-ring formation reaction from an isomerization reaction. The redesigned AndA variants produced two unnatural novel spiro-ring containing compounds through two and three consecutive oxidation reactions.
Collapse
Affiliation(s)
- Takahiro Mori
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, 113-0033, Japan. .,Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan.,PRESTO, Japan Science and Technology Agency (JST), Kawaguchi, Saitama 332-0012, Japan
| | - Yu Nakashima
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, 113-0033, Japan.
| | - Heping Chen
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, 113-0033, Japan.
| | - Shotaro Hoshino
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, 113-0033, Japan.
| | - Takaaki Mitsuhashi
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, 113-0033, Japan.
| | - Ikuro Abe
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, 113-0033, Japan. .,Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
| |
Collapse
|
14
|
Jiang J, Jiang H, Shen D, Chen Y, Shi H, He F. Citrinadin C, a new cytotoxic pentacyclic alkaloid from marine-derived fungus Penicillium citrinum. J Antibiot (Tokyo) 2022; 75:301-303. [DOI: 10.1038/s41429-022-00516-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 02/18/2022] [Accepted: 02/20/2022] [Indexed: 11/09/2022]
|
15
|
Yan D, Wang K, Bai S, Liu B, Bai J, Qi X, Hu Y. Flavin-Dependent Monooxygenase-Mediated 1,2-Oxazine Construction via Meisenheimer Rearrangement in the Biosynthesis of Paeciloxazine. J Am Chem Soc 2022; 144:4269-4276. [PMID: 35192348 DOI: 10.1021/jacs.2c00881] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The [1,2]-Meisenheimer rearrangement is well known as the [1,2]-migration of an O-substituted hydroxylamine from a tertiary amine N-oxide, and it is frequently employed in organic synthesis to enforce adjacent carbon oxidation or install a 1,2-oxazine core, which is a prevalent structural feature and pharmacophore of many bioactive natural products. Although the [1,2]-Meisenheimer rearrangement was proposed to occur in the biosynthesis of a number of 1,2-oxazine-containing natural products, it has never been proved biosynthetically. Here, we identified the biosynthetic gene cluster of an insecticidal natural product, paeciloxazine (1), from Penicillium janthinellum and characterized a flavin-dependent monooxygenase, PaxA, as the first example that mediates the formation of a 1,2-oxazine moiety via Meisenheimer rearrangement. In vitro biochemical assays, site-directed mutations, docking and molecular dynamics simulations, and density functional theory calculations support the mechanism that PaxA first catalyzes N-oxidation to form an N-oxide intermediate, which undergoes [1,2]-Meisenheimer rearrangement with the assistance of an amino acid with proton transfer property. This study expands the repertoire of rearrangement reactions during the biosynthesis of natural products and provides a new strategy for discovering natural products with N-O tethers by genome mining.
Collapse
Affiliation(s)
- Daojiang Yan
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Kunya Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Songlin Bai
- National Institute of Biological Sciences, Beijing 102206, China
| | - Bingyu Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Jian Bai
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Xiangbing Qi
- National Institute of Biological Sciences, Beijing 102206, China.,Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing 100084, China
| | - Youcai Hu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China.,NHC Key Laboratory of Biosynthesis of Natural Products, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China.,CAMS Key Laboratory of Enzyme and Catalysis of Natural Drugs, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
16
|
Zheng Y, Cheung YT, Liang L, Qiu H, Zhang L, Tsang A, Chen Q, Tong R. Electrochemical oxidative rearrangement of tetrahydro-β-carbolines in a zero-gap flow cell. Chem Sci 2022; 13:10479-10485. [PMID: 36277623 PMCID: PMC9473527 DOI: 10.1039/d2sc03951f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 08/17/2022] [Indexed: 01/21/2023] Open
Abstract
Oxidative rearrangement of tetrahydro-β-carbolines (THβCs) is one of the most efficient methods for the synthesis of biologically active spirooxindoles, including natural products and drug molecules. Here, we report the first electrochemical approach to achieve this important organic transformation in a flow cell. The key to the high efficiency was the use of a multifunctional LiBr electrolyte, where the bromide (Br−) ion acts as a mediator and catalyst and lithium ion (Li+) acts as a likely hydrophilic spectator, which might considerably reduce diffusion of THβCs into the double layer and thus prevent possible nonselective electrode oxidation of indoles. Additionally, we build a zero-gap flow cell to speed up mass transport and minimize concentration polarization, simultaneously achieving a high faradaic efficiency (FE) of 96% and an outstanding productivity of 0.144 mmol (h−1 cm−2). This electrochemical method is demonstrated with twenty substrates, offering a general, green path towards bioactive spirooxindoles without using hazardous oxidants. A zero-gap flow cell was designed for the first electro-oxidative rearrangement of tetrahydro-β-carbolines to spirooxindoles with high yield, faradaic efficiency and productivity when LiBr was discovered as a bi-functional mediator and catalyst.![]()
Collapse
Affiliation(s)
- Yiting Zheng
- Department of Mechanical and Aerospace Engineering, and Energy Institute, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, P. R. China
- State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Yuen Tsz Cheung
- Department of Chemistry, The Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Lixin Liang
- Department of Chemistry, The Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Huiying Qiu
- Department of Chemistry, The Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Lei Zhang
- State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Anson Tsang
- Department of Mechanical and Aerospace Engineering, and Energy Institute, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, P. R. China
| | - Qing Chen
- Department of Mechanical and Aerospace Engineering, and Energy Institute, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, P. R. China
- Department of Chemistry, The Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Rongbiao Tong
- Department of Chemistry, The Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| |
Collapse
|
17
|
Cao F, Tao WT, Yu Q, Xu CX, Cheng JT, Liu RX, Zhao QW, Jiang XH, Liu Y, Li YQ, Zhan ZJ, Shi T, Mao XM. Discovery of Semi-Pinacolases from the Epoxide Hydrolase Family during Efficient Assembly of a Fungal Polyketide. ACS Catal 2021. [DOI: 10.1021/acscatal.1c03899] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Fei Cao
- Research Center for Clinical Pharmacy, The First Affiliated Hospital & Institute of Pharmaceutical Biotechnology, School of Medicine, Zhejiang University, Hangzhou 310058, China
- Zhejiang Provincial Key Laboratory for Microbial Biochemistry and Metabolic Engineering, Zhejiang University, Hangzhou 310058, China
| | - Wen-Tao Tao
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
- Clinical Research Center, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Qian Yu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Chu-Xuan Xu
- Research Center for Clinical Pharmacy, The First Affiliated Hospital & Institute of Pharmaceutical Biotechnology, School of Medicine, Zhejiang University, Hangzhou 310058, China
- Zhejiang Provincial Key Laboratory for Microbial Biochemistry and Metabolic Engineering, Zhejiang University, Hangzhou 310058, China
| | - Jin-Tao Cheng
- Research Center for Clinical Pharmacy, The First Affiliated Hospital & Institute of Pharmaceutical Biotechnology, School of Medicine, Zhejiang University, Hangzhou 310058, China
- Zhejiang Provincial Key Laboratory for Microbial Biochemistry and Metabolic Engineering, Zhejiang University, Hangzhou 310058, China
| | - Ruo-Xi Liu
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China
| | - Qing-Wei Zhao
- Research Center for Clinical Pharmacy, The First Affiliated Hospital & Institute of Pharmaceutical Biotechnology, School of Medicine, Zhejiang University, Hangzhou 310058, China
- Zhejiang Provincial Key Laboratory for Microbial Biochemistry and Metabolic Engineering, Zhejiang University, Hangzhou 310058, China
| | - Xin-Hang Jiang
- Equipment and Technology Service Platform, College of Life Science, Zhejiang University, Hangzhou 310058, China
| | - Yu Liu
- Equipment and Technology Service Platform, College of Life Science, Zhejiang University, Hangzhou 310058, China
| | - Yong-Quan Li
- Research Center for Clinical Pharmacy, The First Affiliated Hospital & Institute of Pharmaceutical Biotechnology, School of Medicine, Zhejiang University, Hangzhou 310058, China
- Zhejiang Provincial Key Laboratory for Microbial Biochemistry and Metabolic Engineering, Zhejiang University, Hangzhou 310058, China
| | - Zha-Jun Zhan
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China
| | - Ting Shi
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xu-Ming Mao
- Research Center for Clinical Pharmacy, The First Affiliated Hospital & Institute of Pharmaceutical Biotechnology, School of Medicine, Zhejiang University, Hangzhou 310058, China
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- Zhejiang Provincial Key Laboratory for Microbial Biochemistry and Metabolic Engineering, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|