1
|
Armbruster KM, Jiang J, Sartorio MG, Scott NE, Peterson JM, Sexton JZ, Feldman MF, Koropatkin NM. Identification and characterization of the lipoprotein N-acyltransferase in Bacteroides. Proc Natl Acad Sci U S A 2024; 121:e2410909121. [PMID: 39495918 PMCID: PMC11573676 DOI: 10.1073/pnas.2410909121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 09/12/2024] [Indexed: 11/06/2024] Open
Abstract
Members of the Bacteroidota compose a large portion of the human gut microbiota, contributing to overall gut health via the degradation of various polysaccharides. This process is facilitated by lipoproteins, globular proteins anchored to the cell surface by a lipidated N-terminal cysteine. Despite their importance, lipoprotein synthesis by these bacteria is understudied. In Escherichia coli, the α-amino-linked lipid of lipoproteins is added by the lipoprotein N-acyltransferase Lnt. Herein, we have identified a protein distinct from Lnt responsible for the same process in Bacteroides, named lipoprotein N-acyltransferase in Bacteroides (Lnb). Deletion of Lnb yields cells that synthesize diacylated lipoproteins, with impacts on cell viability and morphology, growth on polysaccharides, and protein composition of membranes and outer membrane vesicles (OMVs). Our results not only challenge the accepted paradigms of lipoprotein biosynthesis in gram-negative bacteria but also suggest the existence of a new family of lipoprotein N-acyltransferases.
Collapse
Affiliation(s)
- Krista M Armbruster
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109
| | - Jiawen Jiang
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109
| | - Mariana G Sartorio
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, MO 63110
| | - Nichollas E Scott
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, VIC 3000, Australia
| | - Jenna M Peterson
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109
| | - Jonathan Z Sexton
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48109
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, MI 48109
| | - Mario F Feldman
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, MO 63110
| | - Nicole M Koropatkin
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109
| |
Collapse
|
2
|
Armbruster KM, Jiang J, Sartorio MG, Scott NE, Peterson JM, Sexton JZ, Feldman MF, Koropatkin NM. Identification and Characterization of the Lipoprotein N-acyltransferase in Bacteroides. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.31.596883. [PMID: 38853980 PMCID: PMC11160734 DOI: 10.1101/2024.05.31.596883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Members of the Bacteroidota compose a large portion of the human gut microbiota, contributing to overall gut health via the degradation of various polysaccharides. This process is facilitated by lipoproteins, globular proteins anchored to the cell surface by a lipidated N-terminal cysteine. Despite their importance, lipoprotein synthesis by these bacteria is understudied. In E. coli, the α-amino linked lipid of lipoproteins is added by the lipoprotein N-acyltransferase Lnt. Herein, we have identified a protein distinct from Lnt responsible for the same process in Bacteroides, named lipoprotein N-acyltransferase in Bacteroides (Lnb). Deletion of Lnb yields cells that synthesize diacylated lipoproteins, with impacts on cell viability and morphology, growth on polysaccharides, and protein composition of membranes and outer membrane vesicles (OMVs). Our results not only challenge the accepted paradigms of lipoprotein biosynthesis in Gram-negative bacteria, but also support the establishment of a new family of lipoprotein N-acyltransferases.
Collapse
Affiliation(s)
- Krista M Armbruster
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Jiawen Jiang
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Mariana G Sartorio
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, MO, 63110, USA
| | - Nichollas E Scott
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria, 3000, Australia
| | - Jenna M Peterson
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Jonathan Z Sexton
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Mario F Feldman
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, MO, 63110, USA
| | - Nicole M Koropatkin
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| |
Collapse
|
3
|
Lu Y, Sen K, Yong C, Gunn DSD, Purton JA, Guan J, Desmoutier A, Abdul Nasir J, Zhang X, Zhu L, Hou Q, Jackson-Masters J, Watts S, Hanson R, Thomas HN, Jayawardena O, Logsdail AJ, Woodley SM, Senn HM, Sherwood P, Catlow CRA, Sokol AA, Keal TW. Multiscale QM/MM modelling of catalytic systems with ChemShell. Phys Chem Chem Phys 2023; 25:21816-21835. [PMID: 37097706 DOI: 10.1039/d3cp00648d] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2023]
Abstract
Hybrid quantum mechanical/molecular mechanical (QM/MM) methods are a powerful computational tool for the investigation of all forms of catalysis, as they allow for an accurate description of reactions occurring at catalytic sites in the context of a complicated electrostatic environment. The scriptable computational chemistry environment ChemShell is a leading software package for QM/MM calculations, providing a flexible, high performance framework for modelling both biomolecular and materials catalysis. We present an overview of recent applications of ChemShell to problems in catalysis and review new functionality introduced into the redeveloped Python-based version of ChemShell to support catalytic modelling. These include a fully guided workflow for biomolecular QM/MM modelling, starting from an experimental structure, a periodic QM/MM embedding scheme to support modelling of metallic materials, and a comprehensive set of tutorials for biomolecular and materials modelling.
Collapse
Affiliation(s)
- You Lu
- STFC Scientific Computing, Daresbury Laboratory, Keckwick Lane, Daresbury, Warrington, WA4 4AD, UK.
| | - Kakali Sen
- STFC Scientific Computing, Daresbury Laboratory, Keckwick Lane, Daresbury, Warrington, WA4 4AD, UK.
| | - Chin Yong
- STFC Scientific Computing, Daresbury Laboratory, Keckwick Lane, Daresbury, Warrington, WA4 4AD, UK.
| | - David S D Gunn
- STFC Scientific Computing, Daresbury Laboratory, Keckwick Lane, Daresbury, Warrington, WA4 4AD, UK.
| | - John A Purton
- STFC Scientific Computing, Daresbury Laboratory, Keckwick Lane, Daresbury, Warrington, WA4 4AD, UK.
| | - Jingcheng Guan
- Kathleen Lonsdale Materials Chemistry, Department of Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ, UK
| | - Alec Desmoutier
- Kathleen Lonsdale Materials Chemistry, Department of Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ, UK
| | - Jamal Abdul Nasir
- Kathleen Lonsdale Materials Chemistry, Department of Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ, UK
| | - Xingfan Zhang
- Kathleen Lonsdale Materials Chemistry, Department of Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ, UK
| | - Lei Zhu
- Kathleen Lonsdale Materials Chemistry, Department of Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ, UK
| | - Qing Hou
- Kathleen Lonsdale Materials Chemistry, Department of Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ, UK
| | - Joe Jackson-Masters
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Cardiff CF10 3AT, UK
| | - Sam Watts
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Cardiff CF10 3AT, UK
| | - Rowan Hanson
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Cardiff CF10 3AT, UK
| | - Harry N Thomas
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Cardiff CF10 3AT, UK
| | - Omal Jayawardena
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Cardiff CF10 3AT, UK
| | - Andrew J Logsdail
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Cardiff CF10 3AT, UK
| | - Scott M Woodley
- Kathleen Lonsdale Materials Chemistry, Department of Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ, UK
| | - Hans M Senn
- School of Chemistry, University of Glasgow, Joseph Black Building, Glasgow G12 8QQ, UK
| | - Paul Sherwood
- Department of Chemistry, Lancaster University, Lancaster, LA1 4YB, UK
| | - C Richard A Catlow
- Kathleen Lonsdale Materials Chemistry, Department of Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ, UK
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Cardiff CF10 3AT, UK
| | - Alexey A Sokol
- Kathleen Lonsdale Materials Chemistry, Department of Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ, UK
| | - Thomas W Keal
- STFC Scientific Computing, Daresbury Laboratory, Keckwick Lane, Daresbury, Warrington, WA4 4AD, UK.
| |
Collapse
|
4
|
Smithers L, Degtjarik O, Weichert D, Huang CY, Boland C, Bowen K, Oluwole A, Lutomski C, Robinson CV, Scanlan EM, Wang M, Olieric V, Shalev-Benami M, Caffrey M. Structure snapshots reveal the mechanism of a bacterial membrane lipoprotein N-acyltransferase. SCIENCE ADVANCES 2023; 9:eadf5799. [PMID: 37390210 PMCID: PMC10313180 DOI: 10.1126/sciadv.adf5799] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 05/26/2023] [Indexed: 07/02/2023]
Abstract
Bacterial lipoproteins (BLPs) decorate the surface of membranes in the cell envelope. They function in membrane assembly and stability, as enzymes, and in transport. The final enzyme in the BLP synthesis pathway is the apolipoprotein N-acyltransferase, Lnt, which is proposed to act by a ping-pong mechanism. Here, we use x-ray crystallography and cryo-electron microscopy to chart the structural changes undergone during the progress of the enzyme through the reaction. We identify a single active site that has evolved to bind, individually and sequentially, substrates that satisfy structural and chemical criteria to position reactive parts next to the catalytic triad for reaction. This study validates the ping-pong mechanism, explains the molecular bases for Lnt's substrate promiscuity, and should facilitate the design of antibiotics with minimal off-target effects.
Collapse
Affiliation(s)
- Luke Smithers
- School of Medicine and School of Biochemistry and Immunology, Trinity College Dublin, Dublin D02 R590, Ireland
| | - Oksana Degtjarik
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Dietmar Weichert
- School of Medicine and School of Biochemistry and Immunology, Trinity College Dublin, Dublin D02 R590, Ireland
| | - Chia-Ying Huang
- Swiss Light Source, Paul Scherrer Institute, CH-5232 Villigen, Switzerland
| | - Coilín Boland
- School of Medicine and School of Biochemistry and Immunology, Trinity College Dublin, Dublin D02 R590, Ireland
| | - Katherine Bowen
- School of Chemistry, Trinity College Dublin, Dublin D02 R590, Ireland
| | - Abraham Oluwole
- Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Corinne Lutomski
- Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Carol V. Robinson
- Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Eoin M. Scanlan
- School of Chemistry, Trinity College Dublin, Dublin D02 R590, Ireland
| | - Meitian Wang
- Swiss Light Source, Paul Scherrer Institute, CH-5232 Villigen, Switzerland
| | - Vincent Olieric
- Swiss Light Source, Paul Scherrer Institute, CH-5232 Villigen, Switzerland
| | - Moran Shalev-Benami
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Martin Caffrey
- School of Medicine and School of Biochemistry and Immunology, Trinity College Dublin, Dublin D02 R590, Ireland
| |
Collapse
|
5
|
A Copper-Responsive Two-Component System Governs Lipoprotein Remodeling in Listeria monocytogenes. J Bacteriol 2023; 205:e0039022. [PMID: 36622228 PMCID: PMC9879112 DOI: 10.1128/jb.00390-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Bacterial lipoproteins are membrane-associated proteins with a characteristic acylated N-terminal cysteine residue anchoring C-terminal globular domains to the membrane surface. While all lipoproteins are modified with acyl chains, the number, length, and position can vary depending on host. The acylation pattern also alters ligand recognition by the Toll-like receptor 2 (TLR2) protein family, a signaling system that is central to bacterial surveillance and innate immunity. In select Listeria monocytogenes isolates carrying certain plasmids, copper exposure converts the lipoprotein chemotype into a weak TLR2 ligand through expression of the enzyme lipoprotein intramolecular acyltransferase (Lit). In this study, we identify the response regulator (CopR) from a heavy metal-sensing two-component system as the transcription factor that integrates external copper levels with lipoprotein structural modifications. We show that phosphorylated CopR controls the expression of three distinct transcripts within the plasmid cassette encoding Lit2, prolipoprotein diacylglyceryl transferase (Lgt2), putative copper resistance determinants, and itself (the CopRS two-component system). CopR recognizes a direct repeat half-site consensus motif (TCTACACA) separated by 3 bp that overlaps the -35 promoter element. Target gene expression and lipoprotein conversion were not observed in the absence of the response regulator, indicating that CopR phosphorylation is the dominant mechanism of regulation. IMPORTANCE Copper is a frontline antimicrobial used to limit bacterial growth in multiple settings. Here, we demonstrate how the response regulator CopR from a plasmid-borne two-component system in the opportunistic pathogen L. monocytogenes directly induces lipoprotein remodeling in tandem with copper resistance genes due to extracellular copper stress. Activation of CopR by phosphorylation converts the lipoprotein chemotype from a high- to low-immunostimulatory TLR2 ligand. The two-component system-mediated coregulation of copper resistance determinants, in tandem with lipoprotein biosynthesis demonstrated here in L. monocytogenes, may be a common feature of transmissible copper resistance cassettes found in other Firmicutes.
Collapse
|
6
|
The Extracellular Electron Transport Pathway Reduces Copper for Sensing by the CopRS Two-Component System under Anaerobic Conditions in Listeria monocytogenes. J Bacteriol 2023; 205:e0039122. [PMID: 36622231 PMCID: PMC9879103 DOI: 10.1128/jb.00391-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The renowned antimicrobial activity of copper stems in part from its ability to undergo redox cycling between Cu1+/2+ oxidation states. Bacteria counter copper toxicity with a network of sensors that often include two-component signaling systems to direct transcriptional responses. As in typical two-component systems, ligand binding by the extracellular domain of the membrane bound copper sensor component leads to phosphorylation and activation of the cognate response regulator transcription factor. In Listeria monocytogenes, the plasmid-borne CopRS two-component system upregulates both copper resistance and lipoprotein remodeling genes upon copper challenge, but the oxidation state of copper bound by CopS is unknown. Herein, we show CopS utilizes a triad of key residues (His-His-Phe) that are predicted to be at the dimerization interface and that are analogous with the Escherichia coli CusS copper sensor to specifically bind Cu1+/Ag1+ and activate CopR transcription. We demonstrate Cu2+ only induces CopRS if first reduced by electron transport systems, as strains lacking menaquinone carriers were unable to respond to Cu2+. The flavin-dependent extracellular electron transport system (EET) was the main mechanism for metal reduction, capable of either generating inducing ligand (Cu2+ to Cu1+) or removing it by precipitation (Ag1+ to Ag0). We show that EET flux is directly proportional to the rate of Cu2+ reduction and that since EET activity is low under oxygenated conditions when a competing respiratory chain is operating, CopRS signaling in turn is activated only under anaerobic conditions. EET metal reduction thus sensitizes cells to copper while providing resistance to silver under anaerobic growth. IMPORTANCE Two-component extracellular copper sensing from the periplasm of Gram-negative bacteria has been well studied, but copper detection at the cell surface of the Gram-positive L. monocytogenes is less understood. Collectively, our results show that EET is most active under anaerobic conditions and reduces Cu2+ and Ag1+ to, respectively, generate or remove the monovalent ligands that directly bind to CopS and lead to the induction of lipoprotein remodeling genes. This reducing activity regulates CopRS signaling and links the upregulation of copper resistance genes with increasing EET flux. Our studies provide insight into how a two-component copper sensing system is integrated into a model monoderm Firmicute to take cues from the electron transport chain activity.
Collapse
|
7
|
Effects of extracellular vesicles derived from oral bacteria on osteoclast differentiation and activation. Sci Rep 2022; 12:14239. [PMID: 35987920 PMCID: PMC9396627 DOI: 10.1038/s41598-022-18412-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 08/10/2022] [Indexed: 11/13/2022] Open
Abstract
Dysbiosis of the oral microbiota plays an important role in the progression of periodontitis, which is characterized by chronic inflammation and alveolar bone loss, and associated with systemic diseases. Bacterial extracellular vesicles (EVs) contain various bioactive molecules and show diverse effects on host environments depending on the bacterial species. Recently, we reported that EVs derived from Filifactor alocis, a Gram-positive periodontal pathogen, had osteoclastogenic activity. In the present study, we analysed the osteoclastogenic potency and immunostimulatory activity of EVs derived from the Gram-negative periodontal pathogens Porphyromonas gingivalis and Tannerella forsythia, the oral commensal bacterium Streptococcus oralis, and the gut probiotic strain Lactobacillus reuteri. Bacterial EVs were purified by density gradient ultracentrifugation using OptiPrep (iodixanol) reagent. EVs from P. gingivalis, T. forsythia, and S. oralis increased osteoclast differentiation and osteoclstogenic cytokine expression in osteoclast precursors, whereas EVs from L. reuteri did not. EVs from P. gingivalis, T. forsythia, and S. oralis preferentially activated Toll-like receptor 2 (TLR2) rather than TLR4 or TLR9, and induced osteoclastogenesis mainly through TLR2. The osteoclastogenic effects of EVs from P. gingivalis and T. forsythia were reduced by both lipoprotein lipase and polymyxin B, an inhibitor of lipopolysaccharide (LPS), while the osteoclastogenic effects of EVs from S. oralis were reduced by lipoprotein lipase alone. These results demonstrate that EVs from periodontal pathogens and oral commensal have osteoclastogenic activity through TLR2 activation by lipoproteins and/or LPS.
Collapse
|
8
|
Smithers L, Olatunji S, Caffrey M. Bacterial Lipoprotein Posttranslational Modifications. New Insights and Opportunities for Antibiotic and Vaccine Development. Front Microbiol 2021; 12:788445. [PMID: 34950121 PMCID: PMC8689077 DOI: 10.3389/fmicb.2021.788445] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Accepted: 11/16/2021] [Indexed: 12/17/2022] Open
Abstract
Lipoproteins are some of the most abundant proteins in bacteria. With a lipid anchor to the cell membrane, they function as enzymes, inhibitors, transporters, structural proteins, and as virulence factors. Lipoproteins activate the innate immune system and have biotechnological applications. The first lipoprotein was described by Braun and Rehn in 1969. Up until recently, however, work on lipoproteins has been sluggish, in part due to the challenges of handling proteins that are anchored to membranes by covalently linked lipids or are membrane integral. Activity in the area has quickened of late. In the past 5 years, high-resolution structures of the membrane enzymes of the canonical lipoprotein synthesis pathway have been determined, new lipoprotein types have been discovered and the enzymes responsible for their synthesis have been characterized biochemically. This has led to a flurry of activity aimed at developing novel antibiotics targeting these enzymes. In addition, surface exposed bacterial lipoproteins have been utilized as candidate vaccine antigens, and their potential to act as self-adjuvanting antigens is increasingly recognized. A summary of the latest developments in lipoproteins and their synthesis, as well as how this information is being exploited for therapeutic purposes is presented here.
Collapse
Affiliation(s)
- Luke Smithers
- School of Medicine, Trinity College Dublin, Dublin, Ireland
- School of Biochemistry and Immunology, Trinity College Dublin, Dublin, Ireland
| | - Samir Olatunji
- School of Medicine, Trinity College Dublin, Dublin, Ireland
- School of Biochemistry and Immunology, Trinity College Dublin, Dublin, Ireland
| | - Martin Caffrey
- School of Medicine, Trinity College Dublin, Dublin, Ireland
- School of Biochemistry and Immunology, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|