1
|
Haldar R, Naskar S, Jana B, Mandal D, Shanmugam M. Harnessing thermal waste with a poling-free molecular pyroelectric zinc(II) complex. Chem Commun (Camb) 2024; 61:318-321. [PMID: 39630133 DOI: 10.1039/d4cc06054g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
Transforming abundant thermal energy into electrical energy is an essential and sustainable solution to meet the rapidly growing global energy demand. In this communication, we report an electrical poling-free molecular complex [Zn(bpy)3](ClO4)2·H2O (1) with an appreciable pyroelectric coefficient value of 25 μC m-2 K-1. This allowed us to harvest waste heat energy using a pyroelectric nanogenerator (PyG) device of 1, a relatively unexplored area for molecular complexes.
Collapse
Affiliation(s)
- Rajashi Haldar
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai-400076, Maharashtra, India.
| | - Sudip Naskar
- Quantum Materials and Devices Unit, Institute of Nano Science and Technology, Knowledge City, Sector 81, Mohali 140306, India.
| | - Bapan Jana
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai-400076, Maharashtra, India.
| | - Dipankar Mandal
- Quantum Materials and Devices Unit, Institute of Nano Science and Technology, Knowledge City, Sector 81, Mohali 140306, India.
| | - Maheswaran Shanmugam
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai-400076, Maharashtra, India.
| |
Collapse
|
2
|
Ikeda T, Huang YB, Wu SQ, Zheng W, Xu WH, Zhang X, Ji T, Uematsu M, Kanegawa S, Su SQ, Sato O. Four-step electron transfer coupled spin transition in a cyano-bridged [Fe 2Co 2] square complex. Dalton Trans 2024; 53:15465-15470. [PMID: 39239808 DOI: 10.1039/d4dt01581a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2024]
Abstract
The design of molecular functional materials with multi-step magnetic transitions has attracted considerable attention. However, the development of such materials is still infrequent and challenging. Here, a cyano-bridged square Prussian blue complex that exhibits a thermally induced four-step electron transfer coupled spin transition (ETCST) is reported. The magnetic and spectroscopic analyses confirm this multi-step transition. Variable-temperature infrared spectrum suggested the electronic structures in each phase and a four-step transition model is proposed.
Collapse
Affiliation(s)
- Taisuke Ikeda
- Institute for Materials Chemistry and Engineering and IRCCS, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.
| | - Yu-Bo Huang
- Institute for Materials Chemistry and Engineering and IRCCS, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.
| | - Shu-Qi Wu
- Institute for Materials Chemistry and Engineering and IRCCS, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.
| | - Wenwei Zheng
- Institute for Materials Chemistry and Engineering and IRCCS, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.
| | - Wen-Huang Xu
- Institute for Materials Chemistry and Engineering and IRCCS, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.
| | - Xiaopeng Zhang
- Institute for Materials Chemistry and Engineering and IRCCS, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.
| | - Tianchi Ji
- Institute for Materials Chemistry and Engineering and IRCCS, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.
| | - Mikoto Uematsu
- Institute for Materials Chemistry and Engineering and IRCCS, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.
| | - Shinji Kanegawa
- Institute for Materials Chemistry and Engineering and IRCCS, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.
| | - Sheng-Qun Su
- Institute for Materials Chemistry and Engineering and IRCCS, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.
| | - Osamu Sato
- Institute for Materials Chemistry and Engineering and IRCCS, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.
| |
Collapse
|
3
|
Burrow TG, Alcock NM, Huzan MS, Dunstan MA, Seed JA, Detlefs B, Glatzel P, Hunault MOJY, Bendix J, Pedersen KS, Baker ML. Determination of Uranium Central-Field Covalency with 3 d4 f Resonant Inelastic X-ray Scattering. J Am Chem Soc 2024; 146:22570-22582. [PMID: 39083620 PMCID: PMC11328134 DOI: 10.1021/jacs.4c06869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
Understanding the nature of metal-ligand bonding is a major challenge in actinide chemistry. We present a new experimental strategy for addressing this challenge using actinide 3d4f resonant inelastic X-ray scattering (RIXS). Through a systematic study of uranium(IV) halide complexes, [UX6]2-, where X = F, Cl, or Br, we identify RIXS spectral satellites with relative energies and intensities that relate to the extent of uranium-ligand bond covalency. By analyzing the spectra in combination with ligand field density functional theory we find that the sensitivity of the satellites to the nature of metal-ligand bonding is due to the reduction of 5f interelectron repulsion and 4f-5f spin-exchange, caused by metal-ligand orbital mixing and the degree of 5f radial expansion, known as central-field covalency. Thus, this study furthers electronic structure quantification that can be obtained from 3d4f RIXS, demonstrating it as a technique for estimating actinide-ligand covalency.
Collapse
Affiliation(s)
- Timothy G Burrow
- Department of Chemistry, The University of Manchester, Manchester, M13 9PL, U.K
- The University of Manchester at Harwell, Diamond Light Source, Harwell Campus, OX11 0DE, U.K
- Centre for Radiochemistry Research, The University of Manchester, Oxford Road, Manchester, M13 9PL, U.K
| | - Nathan M Alcock
- Department of Chemistry, The University of Manchester, Manchester, M13 9PL, U.K
- The University of Manchester at Harwell, Diamond Light Source, Harwell Campus, OX11 0DE, U.K
- Centre for Radiochemistry Research, The University of Manchester, Oxford Road, Manchester, M13 9PL, U.K
| | - Myron S Huzan
- Department of Chemistry, The University of Manchester, Manchester, M13 9PL, U.K
- The University of Manchester at Harwell, Diamond Light Source, Harwell Campus, OX11 0DE, U.K
- Centre for Radiochemistry Research, The University of Manchester, Oxford Road, Manchester, M13 9PL, U.K
| | - Maja A Dunstan
- Department of Chemistry, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - John A Seed
- Department of Chemistry, The University of Manchester, Manchester, M13 9PL, U.K
- Centre for Radiochemistry Research, The University of Manchester, Oxford Road, Manchester, M13 9PL, U.K
| | - Blanka Detlefs
- European Synchrotron Radiation Facility, 38000 Grenoble, France
| | - Pieter Glatzel
- European Synchrotron Radiation Facility, 38000 Grenoble, France
| | | | - Jesper Bendix
- Department of Chemistry, University of Copenhagen, 1172 Copenhagen, Denmark
| | - Kasper S Pedersen
- Department of Chemistry, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Michael L Baker
- Department of Chemistry, The University of Manchester, Manchester, M13 9PL, U.K
- The University of Manchester at Harwell, Diamond Light Source, Harwell Campus, OX11 0DE, U.K
- Centre for Radiochemistry Research, The University of Manchester, Oxford Road, Manchester, M13 9PL, U.K
| |
Collapse
|
4
|
Liu ZK, Ji XY, Yu M, Li YX, Hu JS, Zhao YM, Yao ZS, Tao J. Proton-Induced Reversible Spin-State Switching in Octanuclear Fe III Spin-Crossover Metal-Organic Cages. J Am Chem Soc 2024; 146:22036-22046. [PMID: 39041064 DOI: 10.1021/jacs.4c07469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Responsive spin-crossover (SCO) metal-organic cages (MOCs) are emerging dynamic platforms with potential for advanced applications in magnetic sensing and molecular switching. Among these, FeIII-based MOCs are particularly noteworthy for their air stability, yet they remain largely unexplored. Herein, we report the synthesis of two novel FeIII MOCs using a bis-bidentate ligand approach, which exhibit SCO activity above room temperature. These represent the first SCO-active FeIII cages and feature an atypical {FeN6}-type coordination sphere, uncommon for FeIII SCO compounds. Our study reveals that these MOCs are sensitive to acid/base variations, enabling reversible magnetic switching in solution. The presence of multiple active proton sites within these SCO-MOCs facilitates multisite, multilevel proton-induced spin-state modulation. This behavior is observed at room temperature through 1H NMR spectroscopy, capturing the subtle proton-induced spin-state transitions triggered by pH changes. Further insights from extended X-ray absorption fine structure (EXAFS) and theoretical analyses indicate that these magnetic alterations primarily result from the protonation and deprotonation processes at the NH active sites on the ligands. These processes induce changes in the secondary coordination sphere, thereby modulating the magnetic properties of the cages. The capability of these FeIII MOCs to integrate magnetic responses with environmental stimuli underscores their potential as finely tunable magnetic sensors and highlights their versatility as molecular switches. This work paves the way for the development of SCO-active materials with tailored properties for applications in sensing and molecular switching.
Collapse
Affiliation(s)
- Zhi-Kun Liu
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Liangxiang Campus, Beijing Institute of Technology, Beijing 102488, P. R. China
| | - Xue-Yang Ji
- School of Materials Science and Engineering, Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, Liaocheng University, Liaocheng 252000, P. R. China
| | - Meng Yu
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Liangxiang Campus, Beijing Institute of Technology, Beijing 102488, P. R. China
| | - Yu-Xia Li
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Liangxiang Campus, Beijing Institute of Technology, Beijing 102488, P. R. China
| | - Jie-Sheng Hu
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Liangxiang Campus, Beijing Institute of Technology, Beijing 102488, P. R. China
| | - Yu-Meng Zhao
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Liangxiang Campus, Beijing Institute of Technology, Beijing 102488, P. R. China
| | - Zi-Shuo Yao
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Liangxiang Campus, Beijing Institute of Technology, Beijing 102488, P. R. China
| | - Jun Tao
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Liangxiang Campus, Beijing Institute of Technology, Beijing 102488, P. R. China
| |
Collapse
|
5
|
Liu C, Li Y, Tang Z, Gao KG, Xie J, Tao J, Yao ZS. High-performance Pyroelectric Property Accompanied by Spin Crossover in a Single Crystal of Fe(II) Complex. Angew Chem Int Ed Engl 2024; 63:e202405514. [PMID: 38584585 DOI: 10.1002/anie.202405514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/07/2024] [Accepted: 04/08/2024] [Indexed: 04/09/2024]
Abstract
Pyroelectric materials hold significant potential for energy harvesting, sensing, and imaging applications. However, achieving high-performance pyroelectricity across a wide temperature range near room temperature remains a significant challenge. Herein, we demonstrate a single crystal of Fe(II) spin-crossover compound shows remarkable pyroelectric properties accompanied by a thermally controlled spin transition. In this material, the uniaxial alignment of polar molecules results in a polarization of the lattice. As the molecular geometry is modulated during a gradual spin transition, the polar axis experiences a colossal thermal expansion with a coefficient of 796×10-6 K-1. Consequently, the material's polarization undergoes significant modulation as a secondary pyroelectric effect. The considerable shift in polarization (pyroelectric coefficient, p=3.7-22 nC K-1cm-2), coupled with a low dielectric constant (ϵ'=4.4-5.4) over a remarkably wide temperature range of 298 to 400 K, suggests this material is a high-performance pyroelectric. The demonstration of pyroelectricity combined with magnetic switching in this study will inspire further investigations in the field of molecular electronics and magnetism.
Collapse
Affiliation(s)
- Chengdong Liu
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Liang-xiang Campus, Beijing Institute of Technology, Beijing, 100081, People's Republic of China
| | - Yun Li
- Engineering Research Center for Nanomaterials, Henan University, Kaifeng, 475004, People's Republic of China
| | - Zheng Tang
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Liang-xiang Campus, Beijing Institute of Technology, Beijing, 100081, People's Republic of China
| | - Kai-Ge Gao
- College of Physical Science and Technology Yangzhou, Yangzhou University, Yangzhou, Jiangsu 225009, People's Republic of China
| | - Jing Xie
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Liang-xiang Campus, Beijing Institute of Technology, Beijing, 100081, People's Republic of China
| | - Jun Tao
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Liang-xiang Campus, Beijing Institute of Technology, Beijing, 100081, People's Republic of China
| | - Zi-Shuo Yao
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Liang-xiang Campus, Beijing Institute of Technology, Beijing, 100081, People's Republic of China
| |
Collapse
|
6
|
Kanegawa S, Wu SQ, Zhou Z, Shiota Y, Nakanishi T, Yoshizawa K, Sato O. Polar Crystals Using Molecular Chirality: Pseudosymmetric Crystallization toward Polarization Switching Materials. J Am Chem Soc 2024. [PMID: 38604977 DOI: 10.1021/jacs.4c02882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2024]
Abstract
Polar compounds with switchable polarization properties are applicable in various devices such as ferroelectric memory and pyroelectric sensors. However, a strategy to prepare polar compounds has not been established. We report a rational synthesis of a polar CoGa crystal using chiral cth ligands (SS-cth and RR-cth, cth = 5,7,7,12,14,14-hexamethyl-1,4,8,11-tetraazacyclotetradecane). Both the original homo metal Co crystal and Ga crystal exhibit a centrosymmetric isostructure, where the dipole moment of metal complexes with the SS-cth ligand and those with the RR-cth ligand are canceled out. To obtain a polar compound, the Co valence tautomeric complex with SS-cth in the homo metal Co crystal is replaced with the Ga complex with SS-cth by mixing Co valence tautomeric complexes with RR-cth and Ga complexes with SS-cth. The CoGa crystal exhibits polarization switching between the pseudononpolar state at a low temperature and the polar state at a high temperature because only Co complexes exhibit changes in electric dipole moment due to metal-to-ligand charge transfer. Following the same strategy, the polarization-switchable CoZn complex was synthesized. The CoZn crystal exhibits polarization switching between the polar state at a low temperature and the pseudononpolar state at a high temperature, which is the opposite temperature dependence to that of the CoGa crystal. These results revealed that the polar crystal can be synthesized by design, using a chiral ligand. Moreover, our method allows for the control of temperature-dependent polarization changes, which contrasts with typical ferroelectric compounds, in which the polar ferroelectric phase typically occurs at low temperatures.
Collapse
Affiliation(s)
- Shinji Kanegawa
- Institute for Materials Chemistry and Engineering, Kyushu University, 744 Motooka Nishi-ku, Fukuoka 819-0395, Japan
- Integrated Research Consortium on Chemical Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Shu-Qi Wu
- Institute for Materials Chemistry and Engineering, Kyushu University, 744 Motooka Nishi-ku, Fukuoka 819-0395, Japan
- Integrated Research Consortium on Chemical Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Ziqi Zhou
- Institute for Materials Chemistry and Engineering, Kyushu University, 744 Motooka Nishi-ku, Fukuoka 819-0395, Japan
| | - Yoshihito Shiota
- Institute for Materials Chemistry and Engineering, Kyushu University, 744 Motooka Nishi-ku, Fukuoka 819-0395, Japan
- Integrated Research Consortium on Chemical Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Takumi Nakanishi
- Institute for Materials Chemistry and Engineering, Kyushu University, 744 Motooka Nishi-ku, Fukuoka 819-0395, Japan
| | - Kazunari Yoshizawa
- Institute for Materials Chemistry and Engineering, Kyushu University, 744 Motooka Nishi-ku, Fukuoka 819-0395, Japan
- Integrated Research Consortium on Chemical Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Osamu Sato
- Institute for Materials Chemistry and Engineering, Kyushu University, 744 Motooka Nishi-ku, Fukuoka 819-0395, Japan
- Integrated Research Consortium on Chemical Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| |
Collapse
|
7
|
Haldar R, Kumar A, Mandal D, Shanmugam M. Deciphering the anisotropic energy harvesting responses of an above room temperature molecular ferroelectric copper(II) complex single crystal. MATERIALS HORIZONS 2024; 11:454-459. [PMID: 37961867 DOI: 10.1039/d3mh01336g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
The mechanical/piezoelectric and/or thermal/pyroelectric energy harvesting efficiency is observed to be extremely good in multi-component ferroelectric inorganic oxides in their single-crystal form rather than in their polycrystalline counterparts (pellets and thick/thin films). However, growing such multi-component single crystals is a challenging and cost-intensive process besides the difficulty in tuning their long-range ferroic ordering and the involvement of toxic heavy elements. Instead, discrete inorganic metal complexes can be potential alternatives for which one can overcome these caveats by an appropriate design strategy. Herein, we report a biocompatible and an above room temperature (Tc > 380 K) molecular ferroelectric [Cu2(L-phe)2(bpy)2(H2O)](ClO4)2·2H2O single crystal (1) with profound anisotropic piezo- and pyro-electric responses along different unit cell axes. Energy harvesting data at room temperature reveal that the highest possibility of scavenging mechanical energy (∼30 μW m-2) is preferentially along the b-axis. This is attributed to the large spontaneous polarization (Ps = 2.5 μC cm-2) and piezoelectric coefficient (d33 = 23.5 pm V-1) observed along the b-axis, compared to those along the other two axes. The highest output voltage (7.4 V cm-2) and pyroelectric coefficient (29 μC m-2 K-1) obtained for the single-crystal device are impressively higher than those of most of the reported materials. Such a molecular anisotropic single-crystal piezo-/pyro-electric nanogenerator (SC-PENG) with excellent mechanical and thermal energy harvesting competence is reported for the first time.
Collapse
Affiliation(s)
- Rajashi Haldar
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India.
| | - Ajay Kumar
- Quantum Materials and Devices Unit, Institute of Nano Science and Technology, Knowledge City, Sector 81, Mohali 140306, India.
| | - Dipankar Mandal
- Quantum Materials and Devices Unit, Institute of Nano Science and Technology, Knowledge City, Sector 81, Mohali 140306, India.
| | - Maheswaran Shanmugam
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India.
| |
Collapse
|
8
|
Huang YB, Li JQ, Xu WH, Zheng W, Zhang X, Gao KG, Ji T, Ikeda T, Nakanishi T, Kanegawa S, Wu SQ, Su SQ, Sato O. Electrically Detectable Photoinduced Polarization Switching in a Molecular Prussian Blue Analogue. J Am Chem Soc 2024; 146:201-209. [PMID: 38134356 DOI: 10.1021/jacs.3c07545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2023]
Abstract
Light, a nondestructive and remotely controllable external stimulus, effectively triggers a variety of electron-transfer phenomena in metal complexes. One prime example includes using light in molecular cyanide-bridged [FeCo] bimetallic Prussian blue analogues, where it switches the system between the electron-transferred metastable state and the system's ground state. If this process is coupled to a ferroelectric-type phase transition, the generation and disappearance of macroscopic polarization, entirely under light control, become possible. In this research, we successfully executed a nonpolar-to-polar phase transition in a trinuclear cyanide-bridged [Fe2Co] complex crystal via directional electron transfer. Intriguingly, by exposing the crystal to the wavelength of light─785 nm─without any electric field─we can drive this ferroelectric phase transition to completely depolarize the crystal, during which a measurable electric current response can be detected. These discoveries signify an important step toward the realization of fully light-controlled ferroelectric memory devices.
Collapse
Affiliation(s)
- Yu-Bo Huang
- Institute for Materials Chemistry and Engineering and IRCCS, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Jun-Qiu Li
- Chaozhou Three-circle (Group) Co., Ltd., Sanhuan Industrial District, Fengtang, Chaozhou 515646, Guangdong, China
| | - Wen-Huang Xu
- Institute for Materials Chemistry and Engineering and IRCCS, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Wenwei Zheng
- Institute for Materials Chemistry and Engineering and IRCCS, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Xiaopeng Zhang
- Institute for Materials Chemistry and Engineering and IRCCS, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Kai-Ge Gao
- College of Physical Science and Technology, Yangzhou University, Jiangsu 225009, PR China
| | - Tianchi Ji
- Institute for Materials Chemistry and Engineering and IRCCS, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Taisuke Ikeda
- Institute for Materials Chemistry and Engineering and IRCCS, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Takumi Nakanishi
- Institute for Materials Chemistry and Engineering and IRCCS, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Shinji Kanegawa
- Institute for Materials Chemistry and Engineering and IRCCS, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Shu-Qi Wu
- Institute for Materials Chemistry and Engineering and IRCCS, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Sheng-Qun Su
- Institute for Materials Chemistry and Engineering and IRCCS, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Osamu Sato
- Institute for Materials Chemistry and Engineering and IRCCS, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| |
Collapse
|
9
|
Su SQ, Wu SQ, Kanegawa S, Yamamoto K, Sato O. Control of electronic polarization via charge ordering and electron transfer: electronic ferroelectrics and electronic pyroelectrics. Chem Sci 2023; 14:10631-10643. [PMID: 37829034 PMCID: PMC10566498 DOI: 10.1039/d3sc03432a] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 08/31/2023] [Indexed: 10/14/2023] Open
Abstract
Ferroelectric, pyroelectric, and piezoelectric compounds whose electric polarization properties can be controlled by external stimuli such as electric field, temperature, and pressure have various applications, including ferroelectric memory materials, sensors, and thermal energy-conversion devices. Numerous polarization switching compounds, particularly molecular ferroelectrics and pyroelectrics, have been developed. In these materials, the polarization switching usually proceeds via ion displacement and reorientation of polar molecules, which are responsible for the change in ionic polarization and orientational polarization, respectively. Recently, the development of electronic ferroelectrics, in which the mechanism of polarization change is charge ordering and electron transfer, has attracted great attention. In this article, representative examples of electronic ferroelectrics are summarized, including (TMTTF)2X (TMTTF = tetramethyl-tetrathiafulvalene, X = anion), α-(BEDT-TTF)2I3 (BEDT-TTF = bis(ethylenedithio)-tetrathiafulvalene), TTF-CA (TTF = tetrathiafulvalene, CA = p-chloranil), and [(n-C3H7)4N][FeIIIFeII(dto)3] (dto = 1,2-dithiooxalate = C2O2S2). Furthermore, polarization switching materials using directional electron transfer in nonferroelectrics, the so-called electronic pyroelectrics, such as [(Cr(SS-cth))(Co(RR-cth))(μ-dhbq)](PF6)3 (dhbq = deprotonated 2,5-dihydroxy-1,4-benzoquinone, cth = 5,5,7,12,12,14-hexamethyl-1,4,8,11-tetraaza-cyclotetradecane), are introduced. Future prospects are also discussed, particularly the development of new properties in polarization switching through the manipulation of electronic polarization in electronic ferroelectrics and electronic pyroelectrics by taking advantage of the inherent properties of electrons.
Collapse
Affiliation(s)
- Sheng-Qun Su
- Institute for Materials Chemistry and Engineering & IRCCS, Kyushu University 744 Motooka, Nishi-ku Fukuoka 819-0395 Japan
| | - Shu-Qi Wu
- Institute for Materials Chemistry and Engineering & IRCCS, Kyushu University 744 Motooka, Nishi-ku Fukuoka 819-0395 Japan
| | - Shinji Kanegawa
- Institute for Materials Chemistry and Engineering & IRCCS, Kyushu University 744 Motooka, Nishi-ku Fukuoka 819-0395 Japan
| | - Kaoru Yamamoto
- Department of Applied Physics, Okayama University of Science Okayama 700-0005 Japan
| | - Osamu Sato
- Institute for Materials Chemistry and Engineering & IRCCS, Kyushu University 744 Motooka, Nishi-ku Fukuoka 819-0395 Japan
| |
Collapse
|
10
|
Barrios LA, Teat SJ, Roubeau O, Aromí G. A supramolecular helicate with two independent Fe(II) switchable centres and a [Fe(anilate) 3] 3- guest. Chem Commun (Camb) 2023; 59:10628-10631. [PMID: 37578490 DOI: 10.1039/d3cc02278a] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
A biphenyl-spaced bis-pyrazolylpyridine ligand interacts with ferrous ions to engender a dimetallic helical coordination cage that encapsulates an Fe3+ tris-anilate complex. The host-guest interaction breaks the symmetry of the Fe2+ centers causing a differential spin crossover behavior in them that can be followed in great detail crystallographically.
Collapse
Affiliation(s)
- Leoní A Barrios
- Departament de Química Inorgànica i Orgànica, Secció Química Inorgànica, Universitat de Barcelona, Barcelona, Spain
- Institute of Nanoscience and Nanotechnology of the University of Barcelona (IN2UB), Barcelona, Spain.
| | - Simon J Teat
- Advanced Light Source, Berkeley Laboratory, 1 Cyclotron Road, Berkeley, California 94720, USA
| | - Olivier Roubeau
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Zaragoza, Spain.
- Departamento de Física de la Materia Condensada, Universidad de Zaragoza, Zaragoza, Spain
| | - Guillem Aromí
- Departament de Química Inorgànica i Orgànica, Secció Química Inorgànica, Universitat de Barcelona, Barcelona, Spain
- Institute of Nanoscience and Nanotechnology of the University of Barcelona (IN2UB), Barcelona, Spain.
| |
Collapse
|
11
|
Zhang X, Xu WH, Zheng W, Su SQ, Huang YB, Shui Q, Ji T, Uematsu M, Chen Q, Tokunaga M, Gao K, Okazawa A, Kanegawa S, Wu SQ, Sato O. Magnetoelectricity Enhanced by Electron Redistribution in a Spin Crossover [FeCo] Complex. J Am Chem Soc 2023; 145:15647-15651. [PMID: 37462373 DOI: 10.1021/jacs.3c02977] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2023]
Abstract
Molecular-based magnetoelectric materials are among the most promising materials for next-generation magnetoelectric memory devices. However, practical application of existing molecular systems has proven difficult largely because the polarization change is far lower than the practical threshold of the ME memory devices. Herein, we successfully obtained an [FeCo] dinuclear complex that exhibits a magnetic field-induced spin crossover process, resulting in a significant polarization change of 0.45 μC cm-2. Mössbauer spectroscopy and theoretical calculations suggest that the asymmetric structural change, coupled with electron redistribution, leads to the observed polarization change. Our approach provides a new strategy toward rationally enhancing the polarization change.
Collapse
Affiliation(s)
- Xiaopeng Zhang
- Institute for Materials Chemistry and Engineering and IRCCS, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Wen-Huang Xu
- Institute for Materials Chemistry and Engineering and IRCCS, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Wenwei Zheng
- Institute for Materials Chemistry and Engineering and IRCCS, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Sheng-Qun Su
- Institute for Materials Chemistry and Engineering and IRCCS, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Yu-Bo Huang
- Institute for Materials Chemistry and Engineering and IRCCS, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Qirui Shui
- Institute for Materials Chemistry and Engineering and IRCCS, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Tianchi Ji
- Institute for Materials Chemistry and Engineering and IRCCS, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Mikoto Uematsu
- Institute for Materials Chemistry and Engineering and IRCCS, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Qian Chen
- Institute for Solid State Physics, The University of Tokyo, Kashiwa, 277-8581, Japan
| | - Masashi Tokunaga
- Institute for Solid State Physics, The University of Tokyo, Kashiwa, 277-8581, Japan
| | - Kaige Gao
- College of Physical Science and Technology, Yangzhou University, Jiangsu, 225009, China
| | - Atsushi Okazawa
- Department of Electrical Engineering and Bioscience, Waseda University, Okubo 3-4-1, Shinjuku-ku, Tokyo 169-8555, Japan
| | - Shinji Kanegawa
- Institute for Materials Chemistry and Engineering and IRCCS, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Shu-Qi Wu
- Institute for Materials Chemistry and Engineering and IRCCS, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Osamu Sato
- Institute for Materials Chemistry and Engineering and IRCCS, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| |
Collapse
|
12
|
Sadhukhan P, Wu SQ, Kanegawa S, Su SQ, Zhang X, Nakanishi T, Long JI, Gao K, Shimada R, Okajima H, Sakamoto A, Chiappella JG, Huzan MS, Kroll T, Sokaras D, Baker ML, Sato O. Energy conversion and storage via photoinduced polarization change in non-ferroelectric molecular [CoGa] crystals. Nat Commun 2023; 14:3394. [PMID: 37296168 DOI: 10.1038/s41467-023-39127-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 05/31/2023] [Indexed: 06/12/2023] Open
Abstract
To alleviate the energy and environmental crisis, in the last decades, energy harvesting by utilizing optical control has emerged as a promising solution. Here we report a polar crystal that exhibits photoenergy conversion and energy storage upon light irradiation. The polar crystal consists of dinuclear [CoGa] molecules, which are oriented in a uniform direction inside the crystal lattice. Irradiation with green light induces a directional intramolecular electron transfer from the ligand to a low-spin CoIII centre, and the resultant light-induced high-spin CoII excited state is trapped at low temperature, realizing energy storage. Additionally, electric current release is observed during relaxation from the trapped light-induced metastable state to the ground state, because the intramolecular electron transfer in the relaxation process is accompanied with macroscopic polarization switching at the single-crystal level. It demonstrates that energy storage and conversion to electrical energy is realized in the [CoGa] crystals, which is different from typical polar pyroelectric compounds that exhibit the conversion of thermal energy into electricity.
Collapse
Affiliation(s)
- Pritam Sadhukhan
- Institute for Materials Chemistry and Engineering & IRCCS, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Shu-Qi Wu
- Institute for Materials Chemistry and Engineering & IRCCS, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Shinji Kanegawa
- Institute for Materials Chemistry and Engineering & IRCCS, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan.
| | - Sheng-Qun Su
- Institute for Materials Chemistry and Engineering & IRCCS, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Xiaopeng Zhang
- Institute for Materials Chemistry and Engineering & IRCCS, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Takumi Nakanishi
- Institute for Materials Chemistry and Engineering & IRCCS, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Jeremy Ian Long
- Institute for Materials Chemistry and Engineering & IRCCS, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Kaige Gao
- College of Physical Science and Technology, Yangzhou University, Jiangsu, 225009, P. R. China
| | - Rintaro Shimada
- Graduate School of Science and Engineering, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara, Kanagawa, 252-5258, Japan
| | - Hajime Okajima
- Graduate School of Science and Engineering, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara, Kanagawa, 252-5258, Japan
| | - Akira Sakamoto
- Graduate School of Science and Engineering, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara, Kanagawa, 252-5258, Japan
| | - Joy G Chiappella
- The Department of Chemistry, The University of Manchester, Manchester, M13 9PL, UK
- The Department of Chemistry, The University of Manchester at Harwell, Didcot, OX11 0FA, UK
| | - Myron S Huzan
- The Department of Chemistry, The University of Manchester, Manchester, M13 9PL, UK
- The Department of Chemistry, The University of Manchester at Harwell, Didcot, OX11 0FA, UK
| | - Thomas Kroll
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, 94025, CA, USA
| | - Dimosthenis Sokaras
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, 94025, CA, USA
| | - Michael L Baker
- The Department of Chemistry, The University of Manchester, Manchester, M13 9PL, UK
- The Department of Chemistry, The University of Manchester at Harwell, Didcot, OX11 0FA, UK
| | - Osamu Sato
- Institute for Materials Chemistry and Engineering & IRCCS, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan.
| |
Collapse
|
13
|
Liu X, Liu Q, Zhao H, Zhuang G, Ren Y, Liu T, Long L, Zheng L. Magnetoelectric effect generated through electron transfer from organic radical to metal ion. Natl Sci Rev 2023; 10:nwad059. [PMID: 37200675 PMCID: PMC10187783 DOI: 10.1093/nsr/nwad059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 06/07/2022] [Accepted: 11/17/2022] [Indexed: 07/27/2023] Open
Abstract
Magnetoelectric (ME) materials induced by electron transfer are extremely rare. Electron transfer in these materials invariably occurs between the metal ions. In contrast, ME properties induced by electron transfer from an organic radical to a metal ion have never been observed. Here, we report the ME coupling effect in a mononuclear molecule-based compound [(CH3)3NCH2CH2Br][Fe(Cl2An)2(H2O)2] (1) [Cl2An = chloranilate, (CH3)3NCH2CH2Br+ = (2-bromoethyl)trimethylammonium]. Investigation of the mechanism revealed that the ME coupling effect is realized through electron transfer from the Cl2An to the Fe ion. Measurement of the magnetodielectric (MD) coefficient of 1 indicated a positive MD of up to ∼12% at 103.0 Hz and 370 K, which is very different from that of ME materials with conventional electron transfer for which the MD is generally negative. Thus, the current work not only presents a novel ME coupling mechanism, but also opens a new route to the synthesis of ME coupling materials.
Collapse
Affiliation(s)
- Xiaolin Liu
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Qiang Liu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China
| | | | | | - Yanping Ren
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Tao Liu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China
| | | | - Lansun Zheng
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|
14
|
Lohmeyer L, Werr M, Kaifer E, Himmel H. Interplay and Competition Between Two Different Types of Redox-Active Ligands in Cobalt Complexes: How to Allocate the Electrons? Chemistry 2022; 28:e202201789. [PMID: 35894809 PMCID: PMC9804828 DOI: 10.1002/chem.202201789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Indexed: 01/09/2023]
Abstract
The field of molecular transition metal complexes with redox-active ligands is dominated by compounds with one or two units of the same redox-active ligand; complexes in which different redox-active ligands are bound to the same metal are uncommon. This work reports the first molecular coordination compounds in which redox-active bisguanidine or urea azine (biguanidine) ligands as well as oxolene ligands are bound to the same cobalt atom. The combination of two different redox-active ligands leads to mono- as well as unprecedented dinuclear cobalt complexes, being multiple (four or six) center redox systems with intriguing electronic structures, all exhibiting radical ligands. By changing the redox potential of the ligands through derivatisation, the electronic structure of the complexes could be altered in a rational way.
Collapse
Affiliation(s)
- Lukas Lohmeyer
- Anorganisch-Chemisches InstitutRuprecht-Karls-Universität HeidelbergIm Neuenheimer Feld 27069120HeidelbergGermany
| | - Marco Werr
- Anorganisch-Chemisches InstitutRuprecht-Karls-Universität HeidelbergIm Neuenheimer Feld 27069120HeidelbergGermany
| | - Elisabeth Kaifer
- Anorganisch-Chemisches InstitutRuprecht-Karls-Universität HeidelbergIm Neuenheimer Feld 27069120HeidelbergGermany
| | - Hans‐Jörg Himmel
- Anorganisch-Chemisches InstitutRuprecht-Karls-Universität HeidelbergIm Neuenheimer Feld 27069120HeidelbergGermany
| |
Collapse
|
15
|
|
16
|
Liu XL, Zhang XY, Zhao HX, Long LS, Zheng LS. Thermally induced charge transfer in a quinoid-bridged linear Cu 3 compound. Dalton Trans 2022; 51:13826-13830. [PMID: 36039876 DOI: 10.1039/d2dt01980a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Charge transfer always occurs in molecular valence tautomers, leading to the redistribution of electron density and exhibiting electrical, optical, and magnetic properties, and can be further controlled by multiple external stimuli such as temperature, light and electric field. The design of molecule-based materials capable of charge transfer remains a challenge. Herein, a linear Cu3 compound [(CH3)3NCH2CH2Br]2[Cu3L4(H2O)2] (H2L = chloranilic acid) (1) with a multi-center donor-acceptor architecture was constructed using the redox-active chloranilic acid quinoid ligand. Temperature-dependent dielectric measurement was performed to capture the charge transfer valence tautomer transition because it is difficult to detect this transition by crystal structure and magnetism analysis. Temperature-dependent XPS and EPR further confirmed that the charge transfer valence tautomer transition is based on the CuII-L2- to CuI-L-˙ multi-center charge transfer. Thus, the present work builds a charge transfer compound with a multi-center donor-acceptor architecture and proves that dielectric measurement is a very effective means to detect charge transfer.
Collapse
Affiliation(s)
- Xiao-Lin Liu
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China.
| | - Xiao-Yi Zhang
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China.
| | - Hai-Xia Zhao
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China.
| | - La-Sheng Long
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China.
| | - Lan-Sun Zheng
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China.
| |
Collapse
|
17
|
Cheng F, Wu S, Zheng W, Su S, Nakanishi T, Xu W, Sadhukhan P, Sejima H, Ikenaga S, Yamamoto K, Gao K, Kanegawa S, Sato O. Macroscopic Polarization Change of Mononuclear Valence Tautomeric Cobalt Complexes Through the Use of Enantiopure Ligand. Chemistry 2022; 28:e202202161. [DOI: 10.1002/chem.202202161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Indexed: 11/08/2022]
Affiliation(s)
- Feng Cheng
- Institute for Materials Chemistry and Engineering & IRCCS Kyushu University 744 Motooka Nishi-ku Fukuoka 819-0395 Japan
| | - Shuqi Wu
- Institute for Materials Chemistry and Engineering & IRCCS Kyushu University 744 Motooka Nishi-ku Fukuoka 819-0395 Japan
| | - Wenwei Zheng
- Institute for Materials Chemistry and Engineering & IRCCS Kyushu University 744 Motooka Nishi-ku Fukuoka 819-0395 Japan
| | - Shengqun Su
- Institute for Materials Chemistry and Engineering & IRCCS Kyushu University 744 Motooka Nishi-ku Fukuoka 819-0395 Japan
| | - Takumi Nakanishi
- Institute for Materials Chemistry and Engineering & IRCCS Kyushu University 744 Motooka Nishi-ku Fukuoka 819-0395 Japan
| | - Wenhuang Xu
- Institute for Materials Chemistry and Engineering & IRCCS Kyushu University 744 Motooka Nishi-ku Fukuoka 819-0395 Japan
| | - Pritam Sadhukhan
- Institute for Materials Chemistry and Engineering & IRCCS Kyushu University 744 Motooka Nishi-ku Fukuoka 819-0395 Japan
| | - Hibiki Sejima
- Institute for Materials Chemistry and Engineering & IRCCS Kyushu University 744 Motooka Nishi-ku Fukuoka 819-0395 Japan
| | - Shimon Ikenaga
- Department of Physics Okayama University of Science Okayama Japan
| | - Kaoru Yamamoto
- Department of Physics Okayama University of Science Okayama Japan
| | - Kaige Gao
- College of Physical Science and Technology Yangzhou University Yangzhou Jiangsu P. R. China
| | - Shinji Kanegawa
- Institute for Materials Chemistry and Engineering & IRCCS Kyushu University 744 Motooka Nishi-ku Fukuoka 819-0395 Japan
| | - Osamu Sato
- Institute for Materials Chemistry and Engineering & IRCCS Kyushu University 744 Motooka Nishi-ku Fukuoka 819-0395 Japan
| |
Collapse
|
18
|
Chegerev M, Demidov O, Vasilyev P, Efimov N, Kubrin S, Starikov A, Vlasenko V, Piskunov A, Shapovalova S, Guda A, Rusalev Y, Soldatov A. Spin transitions in ferric catecholate complexes mediated by outer-sphere counteranions. Dalton Trans 2022; 51:10909-10919. [PMID: 35792083 DOI: 10.1039/d2dt01207c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
A family of ionic ferric catecholate complexes 1-4 bearing a disubstituted 3,6-di-tert-butyl-catecholate ligand (3,6-DBCatH2) and tetradentate tris(2-pyridylmethyl)amine (TPA) was prepared and its spin transitions were investigated. Variation of the outer-sphere counteranions (PF6, BPh4, ClO4, BF4) is accompanied by changes in the magnetic behavior of the compounds under consideration. The crystal structures of complexes 1, 3 and 4 were determined by single crystal X-ray diffraction analysis at 100 K and 293 K. The complexes were characterized by the occurrence of a thermally induced spin-crossover process in the solid state with different degrees of completeness, which was confirmed by the comprehensive spectroscopic investigation (EPR, magnetic susceptibility, Mössbauer, and XAS) of the isolated compounds. Complex 4 containing BF4 anions was found to demonstrate valence tautomeric transition along with spin-crossover. This finding makes compound 4 the first salt-like mononuclear ferric catecholate complex exhibiting valence tautomerism.
Collapse
Affiliation(s)
- Maxim Chegerev
- Institute of Physical and Organic Chemistry, Southern Federal University, Stachki Avenue, 194/2, 344090, Rostov-on-Don, Russia.
| | - Oleg Demidov
- North Caucasus Federal University, Pushkin st. 1, 355017, Stavropol, Russia
| | - Pavel Vasilyev
- Kurnakov Institute of General and Inorganic Chemistry, Leninsky avenue, 31, 119991, Moscow, Russia
| | - Nikolay Efimov
- Kurnakov Institute of General and Inorganic Chemistry, Leninsky avenue, 31, 119991, Moscow, Russia
| | - Stanislav Kubrin
- Institute of Physics, Southern Federal University, Stachki Ave., 194, 344090, Rostov-on-Don, Russia
| | - Andrey Starikov
- Institute of Physical and Organic Chemistry, Southern Federal University, Stachki Avenue, 194/2, 344090, Rostov-on-Don, Russia.
| | - Valery Vlasenko
- Institute of Physics, Southern Federal University, Stachki Ave., 194, 344090, Rostov-on-Don, Russia
| | - Alexander Piskunov
- Razuvaev Institute of Organometallic Chemistry, Russian Academy of Sciences, 49 Tropinina Str., GSP-445, 603950, Nizhny Novgorod, Russia
| | - Svetlana Shapovalova
- The Smart Materials Research Institute, Southern Federal University, Sladkova 178/24, 344090, Rostov-on-Don, Russia
| | - Alexander Guda
- The Smart Materials Research Institute, Southern Federal University, Sladkova 178/24, 344090, Rostov-on-Don, Russia
| | - Yury Rusalev
- The Smart Materials Research Institute, Southern Federal University, Sladkova 178/24, 344090, Rostov-on-Don, Russia
| | - Alexander Soldatov
- The Smart Materials Research Institute, Southern Federal University, Sladkova 178/24, 344090, Rostov-on-Don, Russia
| |
Collapse
|
19
|
Kumar B, Paul A, Mondal DJ, Paliwal P, Konar S. Spin-State Modulation in Fe II -Based Hofmann-Type Coordination Polymers: From Molecules to Materials. CHEM REC 2022; 22:e202200135. [PMID: 35815939 DOI: 10.1002/tcr.202200135] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/21/2022] [Indexed: 11/05/2022]
Abstract
Spin crossover complexes that reversibly interconvert between two stable states imitate a binary state of 0 and 1, delivering a promising possibility to address the data processing concept in smart materials. Thus, a comprehensive understanding of the modulation of magnetic transition between high spin and low spin and the factors responsible for stabilizing the spin states is an essential theme in modern materials design. In this context, the present review attempts to provide a concise outline of the design strategy employed at the molecular level for fine-tuning the spin-state switching in FeII -based Hofmann-type coordination polymers and their effects on the optical and magnetic response. In addition, development towards the nanoscale architectures of HCPs, i. e., in terms of nanoparticles and thin films, are emphasized to bridge the gap between the laboratory and reality.
Collapse
Affiliation(s)
- Bhart Kumar
- Molecular Magnetism Lab, Department of Chemistry, Indian Institute of Science Education and Research, Bhopal, Bhopal Bypass Road, Bhopal, Madhya Pradesh, 462066, India
| | - Abhik Paul
- Molecular Magnetism Lab, Department of Chemistry, Indian Institute of Science Education and Research, Bhopal, Bhopal Bypass Road, Bhopal, Madhya Pradesh, 462066, India
| | - Dibya Jyoti Mondal
- Molecular Magnetism Lab, Department of Chemistry, Indian Institute of Science Education and Research, Bhopal, Bhopal Bypass Road, Bhopal, Madhya Pradesh, 462066, India
| | - Piyush Paliwal
- Molecular Magnetism Lab, Department of Chemistry, Indian Institute of Science Education and Research, Bhopal, Bhopal Bypass Road, Bhopal, Madhya Pradesh, 462066, India
| | - Sanjit Konar
- Molecular Magnetism Lab, Department of Chemistry, Indian Institute of Science Education and Research, Bhopal, Bhopal Bypass Road, Bhopal, Madhya Pradesh, 462066, India
| |
Collapse
|
20
|
Sun XP, Tang Z, Li J, Ma P, Yao ZS, Wang J, Niu J, Tao J. Discovery of Kinetic Effect in a Valence Tautomeric Cobalt-Dioxolene Complex. Inorg Chem 2022; 61:4240-4245. [PMID: 35234459 DOI: 10.1021/acs.inorgchem.1c03898] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Two isostructural valence tautomeric (VT) complexes with different critical temperatures were prepared and fully investigated through a series of magnetic, structural, spectral, and differential scanning calorimetry evidence. The kinetic effect in the VT complex was observed for the first time through scan-rate-dependent studies and further validated by annealing tests.
Collapse
Affiliation(s)
- Xiao-Peng Sun
- Henan Key Laboratory of Polyoxometalate Chemistry, Institute of Molecular and Crystal Engineering, School of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China
| | - Zheng Tang
- Key Laboratory of Cluster Science of the Ministry of Education, School of Chemistry and Chemical Engineering, Liangxiang Campus, Beijing Institute of Technology, Beijing 102488, China
| | - Jiajia Li
- Henan Key Laboratory of Polyoxometalate Chemistry, Institute of Molecular and Crystal Engineering, School of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China
| | - Pengtao Ma
- Henan Key Laboratory of Polyoxometalate Chemistry, Institute of Molecular and Crystal Engineering, School of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China
| | - Zi-Shuo Yao
- Key Laboratory of Cluster Science of the Ministry of Education, School of Chemistry and Chemical Engineering, Liangxiang Campus, Beijing Institute of Technology, Beijing 102488, China
| | - Jingping Wang
- Henan Key Laboratory of Polyoxometalate Chemistry, Institute of Molecular and Crystal Engineering, School of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China
| | - Jingyang Niu
- Henan Key Laboratory of Polyoxometalate Chemistry, Institute of Molecular and Crystal Engineering, School of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China
| | - Jun Tao
- Key Laboratory of Cluster Science of the Ministry of Education, School of Chemistry and Chemical Engineering, Liangxiang Campus, Beijing Institute of Technology, Beijing 102488, China
| |
Collapse
|
21
|
Shahid N, Burrows KE, Pask CM, Cespedes O, Howard MJ, McGowan PC, Halcrow MA. Heteroleptic iron( ii) complexes of chiral 2,6-bis(oxazolin-2-yl)-pyridine (PyBox) and 2,6-bis(thiazolin-2-yl)pyridine ligands – the interplay of two different ligands on the metal ion spin sate. Dalton Trans 2022; 51:4262-4274. [DOI: 10.1039/d2dt00393g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The spin-crossover properties of [Fe(LR)L][ClO4]2 (LR = a chiral PyBox {L1R} or ThioPyBox {L2R} derivative) show subtle differences depending on the tridentate ‘L’ co-ligand.
Collapse
Affiliation(s)
- Namrah Shahid
- School of Chemistry, University of Leeds, Woodhouse Lane, Leeds, UK LS2 9JT
| | - Kay E. Burrows
- School of Chemistry, University of Leeds, Woodhouse Lane, Leeds, UK LS2 9JT
| | | | - Oscar Cespedes
- School of Physics and Astronomy, University of Leeds, WH Bragg Building, Leeds, UK LS2 9JT
| | - Mark J. Howard
- School of Chemistry, University of Leeds, Woodhouse Lane, Leeds, UK LS2 9JT
| | - Patrick C. McGowan
- School of Chemistry, University of Leeds, Woodhouse Lane, Leeds, UK LS2 9JT
| | - Malcolm A. Halcrow
- School of Chemistry, University of Leeds, Woodhouse Lane, Leeds, UK LS2 9JT
| |
Collapse
|