1
|
Wu Y, Xin Y, Yang X, Song K, Zhang Q, Zhao H, Li C, Jin Y, Guo Y, Tan Y, Song Y, Tian H, Qi Z, Yang R, Cui Y. Hotspots of genetic change in Yersinia pestis. Nat Commun 2025; 16:388. [PMID: 39755708 DOI: 10.1038/s41467-024-55581-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 12/10/2024] [Indexed: 01/06/2025] Open
Abstract
The relative contributions of mutation rate variation, selection, and recombination in shaping genomic variation in bacterial populations remain poorly understood. Here we analyze 3318 Yersinia pestis genomes, spanning nearly a century and including 2336 newly sequenced strains, to shed light on the patterns of genetic diversity and variation distribution at the population level. We identify 45 genomic regions ("hot regions", HRs) that, although comprising a minor fraction of the genome, are hotbeds of genetic variation. These HRs are distributed non-randomly across Y. pestis phylogenetic lineages and are primarily linked to regulatory genes, underscoring their potential functional significance. We explore various factors contributing to the shaping and maintenance of HRs, including genomic context, homologous recombination, mutation rate variation and natural selection. Our findings suggest that positive selection is likely the primary driver behind the emergence of HRs, but not the sole force, as evidenced by the pronounced trend of variation purging within these regions.
Collapse
Affiliation(s)
- Yarong Wu
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, China
| | - Youquan Xin
- Key Laboratory of National Health Commission on Plague Control and Prevention, Key Laboratory for Plague Prevention and Control of Qinghai Province, Qinghai Institute for Endemic Disease Prevention and Control, Xining, China
| | - Xiaoyan Yang
- Key Laboratory of National Health Commission on Plague Control and Prevention, Key Laboratory for Plague Prevention and Control of Qinghai Province, Qinghai Institute for Endemic Disease Prevention and Control, Xining, China
| | - Kai Song
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, China
| | - Qingwen Zhang
- Key Laboratory of National Health Commission on Plague Control and Prevention, Key Laboratory for Plague Prevention and Control of Qinghai Province, Qinghai Institute for Endemic Disease Prevention and Control, Xining, China
| | - Haihong Zhao
- Key Laboratory of National Health Commission on Plague Control and Prevention, Key Laboratory for Plague Prevention and Control of Qinghai Province, Qinghai Institute for Endemic Disease Prevention and Control, Xining, China
| | - Cunxiang Li
- Key Laboratory of National Health Commission on Plague Control and Prevention, Key Laboratory for Plague Prevention and Control of Qinghai Province, Qinghai Institute for Endemic Disease Prevention and Control, Xining, China
| | - Yong Jin
- Key Laboratory of National Health Commission on Plague Control and Prevention, Key Laboratory for Plague Prevention and Control of Qinghai Province, Qinghai Institute for Endemic Disease Prevention and Control, Xining, China
| | - Yan Guo
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, China
| | - Yafang Tan
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, China
| | - Yajun Song
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, China
| | - Huaiyu Tian
- State Key Laboratory of Remote Sensing Science, Center for Global Change and Public Health, Beijing Normal University, Beijing, China
| | - Zhizhen Qi
- Key Laboratory of National Health Commission on Plague Control and Prevention, Key Laboratory for Plague Prevention and Control of Qinghai Province, Qinghai Institute for Endemic Disease Prevention and Control, Xining, China.
| | - Ruifu Yang
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, China.
| | - Yujun Cui
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, China.
| |
Collapse
|
2
|
Song Z, Liu C, He W, Pei S, Liu D, Cao X, Wang Y, He P, Zhao B, Ou X, Xia H, Wang S, Zhao Y. Insight into the drug-resistant characteristics and genetic diversity of multidrug-resistant Mycobacterium tuberculosis in China. Microbiol Spectr 2023; 11:e0132423. [PMID: 37732780 PMCID: PMC10581218 DOI: 10.1128/spectrum.01324-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 07/16/2023] [Indexed: 09/22/2023] Open
Abstract
Multidrug-resistant tuberculosis (MDR-TB) has a severe impact on public health. To investigate the drug-resistant profile, compensatory mutations and genetic variations among MDR-TB isolates, a total of 546 MDR-TB isolates from China underwent drug-susceptibility testing and whole genome sequencing for further analysis. The results showed that our isolates have a high rate of fluoroquinolone resistance (45.60%, 249/546) and a low proportion of conferring resistance to bedaquiline, clofazimine, linezolid, and delamanid. The majority of MDR-TB isolates (77.66%, 424/546) belong to Lineage 2.2.1, followed by Lineage 4.5 (6.41%, 35/546), and the Lineage 2 isolates have a strong association with pre-XDR/XDR-TB (P < 0.05) in our study. Epidemic success analysis using time-scaled haplotypic density (THD) showed that clustered isolates outperformed non-clustered isolates. Compensatory mutations happened in rpoA, rpoC, and non-RRDR of rpoB genes, which were found more frequently in clusters and were associated with the increase of THD index, suggesting that increased bacterial fitness was associated with MDR-TB transmission. In addition, the variants in resistance associated genes in MDR isolates are mainly focused on single nucleotide polymorphism mutations, and only a few genes have indel variants, such as katG, ethA. We also found some genes underwent indel variation correlated with the lineage and sub-lineage of isolates, suggesting the selective evolution of different lineage isolates. Thus, this analysis of the characterization and genetic diversity of MDR isolates would be helpful in developing effective strategies for treatment regimens and tailoring public interventions. IMPORTANCE Multidrug-resistant tuberculosis (MDR-TB) is a serious obstacle to tuberculosis prevention and control in China. This study provides insight into the drug-resistant characteristics of MDR combined with phenotypic drug-susceptibility testing and whole genome sequencing. The compensatory mutations and epidemic success analysis were analyzed by time-scaled haplotypic density (THD) method, suggesting clustered isolates and compensatory mutations are associated with MDR-TB transmission. In addition, the insertion and deletion variants happened in some genes, which are associated with the lineage and sub-lineage of isolates, such as the mpt64 gene. This study offered a valuable reference and increased understanding of MDR-TB in China, which could be crucial for achieving the objective of precision medicine in the prevention and treatment of MDR-TB.
Collapse
Affiliation(s)
- Zexuan Song
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- National Tuberculosis Reference Laboratory, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Chunfa Liu
- National Tuberculosis Reference Laboratory, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Wencong He
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- National Tuberculosis Reference Laboratory, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Shaojun Pei
- School of Public Health, Peking University, Beijing, China
| | - Dongxin Liu
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Xiaolong Cao
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- National Tuberculosis Reference Laboratory, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yiting Wang
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- National Tuberculosis Reference Laboratory, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Ping He
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- National Tuberculosis Reference Laboratory, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Bing Zhao
- National Tuberculosis Reference Laboratory, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Xichao Ou
- National Tuberculosis Reference Laboratory, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Hui Xia
- National Tuberculosis Reference Laboratory, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Shengfen Wang
- National Tuberculosis Reference Laboratory, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yanlin Zhao
- National Tuberculosis Reference Laboratory, Chinese Center for Disease Control and Prevention, Beijing, China
| |
Collapse
|
3
|
Vargas R, Luna MJ, Freschi L, Marin M, Froom R, Murphy KC, Campbell EA, Ioerger TR, Sassetti CM, Farhat MR. Phase variation as a major mechanism of adaptation in Mycobacterium tuberculosis complex. Proc Natl Acad Sci U S A 2023; 120:e2301394120. [PMID: 37399390 PMCID: PMC10334774 DOI: 10.1073/pnas.2301394120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 05/03/2023] [Indexed: 07/05/2023] Open
Abstract
Phase variation induced by insertions and deletions (INDELs) in genomic homopolymeric tracts (HT) can silence and regulate genes in pathogenic bacteria, but this process is not characterized in MTBC (Mycobacterium tuberculosis complex) adaptation. We leverage 31,428 diverse clinical isolates to identify genomic regions including phase-variants under positive selection. Of 87,651 INDEL events that emerge repeatedly across the phylogeny, 12.4% are phase-variants within HTs (0.02% of the genome by length). We estimated the in-vitro frameshift rate in a neutral HT at 100× the neutral substitution rate at [Formula: see text] frameshifts/HT/year. Using neutral evolution simulations, we identified 4,098 substitutions and 45 phase-variants to be putatively adaptive to MTBC (P < 0.002). We experimentally confirm that a putatively adaptive phase-variant alters the expression of espA, a critical mediator of ESX-1-dependent virulence. Our evidence supports the hypothesis that phase variation in the ESX-1 system of MTBC can act as a toggle between antigenicity and survival in the host.
Collapse
Affiliation(s)
- Roger Vargas
- Center for Computational Biomedicine, Harvard Medical School, Boston, MA02115
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA02115
| | - Michael J. Luna
- Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, MA01655
| | - Luca Freschi
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA02115
| | - Maximillian Marin
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA02115
| | - Ruby Froom
- Laboratory of Molecular Biophysics, The Rockefeller University, New York, NY10065
- Laboratory of Host-Pathogen Biology, The Rockefeller University, New York, NY10065
| | - Kenan C. Murphy
- Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, MA01655
| | | | - Thomas R. Ioerger
- Department of Computer Science and Engineering, Texas A&M University, College Station, TX77843
| | - Christopher M. Sassetti
- Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, MA01655
| | - Maha Reda Farhat
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA02115
- Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Boston, MA02114
| |
Collapse
|
4
|
Baena A, Cabarcas F, Ocampo JC, Barrera LF, Alzate JF. Large genomic deletions delineate Mycobacterium tuberculosis L4 sublineages in South American countries. PLoS One 2023; 18:e0285417. [PMID: 37205685 PMCID: PMC10198500 DOI: 10.1371/journal.pone.0285417] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 04/24/2023] [Indexed: 05/21/2023] Open
Abstract
Mycobacterium tuberculosis (Mtb) is still one of the primary pathogens of humans causing tuberculosis (TB) disease. Mtb embraces nine well-defined phylogenetic lineages with biological and geographical disparities. The lineage L4 is the most globally widespread of all lineages and was introduced to America with European colonization. Taking advantage of many genome projects available in public repositories, we undertake an evolutionary and comparative genomic analysis of 522 L4 Latin American Mtb genomes. Initially, we performed careful quality control of public read datasets and applied several thresholds to filter out low-quality data. Using a genome de novo assembly strategy and phylogenomic methods, we spotted novel south American clades that have not been revealed yet. Additionally, we describe genomic deletion profiles of these strains from an evolutionary perspective and report Mycobacterium tuberculosis L4 sublineages signature-like gene deletions, some of the novel. One is a specific deletion of 6.5 kbp that is only present in sublineage 4.1.2.1. This deletion affects a complex group of 10 genes with putative products annotated, among others, as a lipoprotein, transmembrane protein, and toxin/antitoxin system proteins. The second novel deletion spans for 4.9 kbp and specific of a particular clade of the 4.8 sublineage and affects 7 genes. The last novel deletion affects 4 genes, extends for 4.8 kbp., and is specific to some strains within the 4.1.2.1 sublineage that are present in Colombia, Peru and Brasil.
Collapse
Affiliation(s)
- Andres Baena
- Grupo de Inmunología Celular e Inmunogenética (GICIG), Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia
- Sede de Investigación Universitaria-SIU, Universidad de Antioquia, Medellín, Colombia
| | - Felipe Cabarcas
- Centro Nacional de Secuenciación Genómica—CNSG, Universidad de Antioquia, Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia
| | - Juan C. Ocampo
- Grupo de Inmunología Celular e Inmunogenética (GICIG), Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia
- Sede de Investigación Universitaria-SIU, Universidad de Antioquia, Medellín, Colombia
| | - Luis F. Barrera
- Grupo de Inmunología Celular e Inmunogenética (GICIG), Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia
- Sede de Investigación Universitaria-SIU, Universidad de Antioquia, Medellín, Colombia
- Instituto de Investigaciones médicas, Universidad de Antioquia, Medellín, Colombia
| | - Juan F. Alzate
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia
- Sede de Investigación Universitaria-SIU, Universidad de Antioquia, Medellín, Colombia
- Centro Nacional de Secuenciación Genómica—CNSG, Universidad de Antioquia, Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia
| |
Collapse
|
5
|
Dupuy P, Ghosh S, Fay A, Adefisayo O, Gupta R, Shuman S, Glickman MS. Roles for mycobacterial DinB2 in frameshift and substitution mutagenesis. eLife 2023; 12:e83094. [PMID: 37141254 PMCID: PMC10159617 DOI: 10.7554/elife.83094] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 04/18/2023] [Indexed: 05/05/2023] Open
Abstract
Translesion synthesis by translesion polymerases is a conserved mechanism of DNA damage tolerance. In bacteria, DinB enzymes are the widely distributed promutagenic translesion polymerases. The role of DinBs in mycobacterial mutagenesis was unclear until recent studies revealed a role for mycobacterial DinB1 in substitution and frameshift mutagenesis, overlapping with that of translesion polymerase DnaE2. Mycobacterium smegmatis encodes two additional DinBs (DinB2 and DinB3) and Mycobacterium tuberculosis encodes DinB2, but the roles of these polymerases in mycobacterial damage tolerance and mutagenesis is unknown. The biochemical properties of DinB2, including facile utilization of ribonucleotides and 8-oxo-guanine, suggest that DinB2 could be a promutagenic polymerase. Here, we examine the effects of DinB2 and DinB3 overexpression in mycobacterial cells. We demonstrate that DinB2 can drive diverse substitution mutations conferring antibiotic resistance. DinB2 induces frameshift mutations in homopolymeric sequences, both in vitro and in vivo. DinB2 switches from less to more mutagenic in the presence of manganese in vitro. This study indicates that DinB2 may contribute to mycobacterial mutagenesis and antibiotic resistance acquisition in combination with DinB1 and DnaE2.
Collapse
Affiliation(s)
- Pierre Dupuy
- Immunology Program, Sloan Kettering InstituteNew YorkUnited States
| | - Shreya Ghosh
- Molecular Biology Program, Sloan Kettering InstituteNew YorkUnited States
| | - Allison Fay
- Immunology Program, Sloan Kettering InstituteNew YorkUnited States
| | - Oyindamola Adefisayo
- Immunology Program, Sloan Kettering InstituteNew YorkUnited States
- Immunology and Microbial Pathogenesis Graduate Program, Weill Cornell Graduate SchoolNew YorkUnited States
| | - Richa Gupta
- Immunology Program, Sloan Kettering InstituteNew YorkUnited States
| | - Stewart Shuman
- Molecular Biology Program, Sloan Kettering InstituteNew YorkUnited States
| | - Michael S Glickman
- Immunology Program, Sloan Kettering InstituteNew YorkUnited States
- Immunology and Microbial Pathogenesis Graduate Program, Weill Cornell Graduate SchoolNew YorkUnited States
| |
Collapse
|
6
|
Charles C, Conde C, Vorimore F, Cochard T, Michelet L, Boschiroli ML, Biet F. Features of Mycobacterium bovis Complete Genomes Belonging to 5 Different Lineages. Microorganisms 2023; 11:177. [PMID: 36677470 PMCID: PMC9865570 DOI: 10.3390/microorganisms11010177] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/06/2023] [Accepted: 01/07/2023] [Indexed: 01/12/2023] Open
Abstract
Mammalian tuberculosis (TB) is a zoonotic disease mainly due to Mycobacterium bovis (M. bovis). A current challenge for its eradication is understanding its transmission within multi-host systems. Improvements in long-read sequencing technologies have made it possible to obtain complete bacterial genomes that provide a comprehensive view of species-specific genomic features. In the context of TB, new genomic references based on complete genomes genetically close to field strains are also essential to perform precise field molecular epidemiological studies. A total of 10 M. bovis strains representing each genetic lineage identified in France and in other countries were selected for performing complete assembly of their genomes. Pangenome analysis revealed a "closed" pangenome composed of 3900 core genes and only 96 accessory genes. Whole genomes-based alignment using progressive Mauve showed remarkable conservation of the genomic synteny except that the genomes have a variable number of copies of IS6110. Characteristic genomic traits of each lineage were identified through the discovery of specific indels. Altogether, these results provide new genetic features that improve the description of M. bovis lineages. The availability of new complete representative genomes of M. bovis will be useful to epidemiological studies and better understand the transmission of this clonal-evolving pathogen.
Collapse
Affiliation(s)
- Ciriac Charles
- Animal Health Laboratory, National Reference Laboratory for Tuberculosis, Paris-Est University, French Agency for Food, Environmental and Occupational Health and Safety (ANSES), CEDEX, 94701 Maisons-Alfort, France
- Infectiologie et Santé Publique (ISP), Institut National de Recherche pour L’agriculture, L’alimentation et L’environnement (INRAE), Université de Tours, UMR 1282, 37380 Nouzilly, France
| | - Cyril Conde
- Infectiologie et Santé Publique (ISP), Institut National de Recherche pour L’agriculture, L’alimentation et L’environnement (INRAE), Université de Tours, UMR 1282, 37380 Nouzilly, France
| | - Fabien Vorimore
- Laboratory for Food Safety, Unit of ‘Pathogenic E. coli’ (COLiPATH) & Genomics Platform ‘IdentyPath’ (IDPA), ANSES, 94701 Maisons-Alfort, France
| | - Thierry Cochard
- Infectiologie et Santé Publique (ISP), Institut National de Recherche pour L’agriculture, L’alimentation et L’environnement (INRAE), Université de Tours, UMR 1282, 37380 Nouzilly, France
| | - Lorraine Michelet
- Animal Health Laboratory, National Reference Laboratory for Tuberculosis, Paris-Est University, French Agency for Food, Environmental and Occupational Health and Safety (ANSES), CEDEX, 94701 Maisons-Alfort, France
| | - Maria Laura Boschiroli
- Animal Health Laboratory, National Reference Laboratory for Tuberculosis, Paris-Est University, French Agency for Food, Environmental and Occupational Health and Safety (ANSES), CEDEX, 94701 Maisons-Alfort, France
| | - Franck Biet
- Infectiologie et Santé Publique (ISP), Institut National de Recherche pour L’agriculture, L’alimentation et L’environnement (INRAE), Université de Tours, UMR 1282, 37380 Nouzilly, France
| |
Collapse
|
7
|
Thakur Z, Vaid RK, Anand T, Tripathi BN. Comparative Genome Analysis of 19 Trueperella pyogenes Strains Originating from Different Animal Species Reveal a Genetically Diverse Open Pan-Genome. Antibiotics (Basel) 2022; 12:antibiotics12010024. [PMID: 36671226 PMCID: PMC9854608 DOI: 10.3390/antibiotics12010024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/14/2022] [Accepted: 12/16/2022] [Indexed: 12/28/2022] Open
Abstract
Trueperella pyogenes is a Gram-positive opportunistic pathogen that causes severe cases of mastitis, metritis, and pneumonia in a wide range of animals, resulting in significant economic losses. Although little is known about the virulence factors involved in the disease pathogenesis, a comprehensive comparative genome analysis of T. pyogenes genomes has not been performed till date. Hence, present investigation was carried out to characterize and compare 19 T. pyogenes genomes originating in different geographical origins including the draftgenome of the first Indian origin strain T. pyogenes Bu5. Additionally, candidate virulence determinants that could be crucial for their pathogenesis were also detected and analyzed by using various bioinformatics tools. The pan-genome calculations revealed an open pan-genome of T. pyogenes. In addition, an inventory of virulence related genes, 190 genomic islands, 31 prophage sequences, and 40 antibiotic resistance genes that could play a significant role in organism's pathogenicity were detected. The core-genome based phylogeny of T. pyogenes demonstrates a polyphyletic, host-associated group with a high degree of genomic diversity. The identified core-genome can be further used for screening of drug and vaccine targets. The investigation has provided unique insights into pan-genome, virulome, mobiliome, and resistome of T. pyogenes genomes and laid the foundation for future investigations.
Collapse
Affiliation(s)
- Zoozeal Thakur
- Bacteriology Laboratory, National Centre for Veterinary Type Cultures, ICAR-National Research Centre on Equines, Hisar 125001, India
| | - Rajesh Kumar Vaid
- Bacteriology Laboratory, National Centre for Veterinary Type Cultures, ICAR-National Research Centre on Equines, Hisar 125001, India
- Correspondence:
| | - Taruna Anand
- Bacteriology Laboratory, National Centre for Veterinary Type Cultures, ICAR-National Research Centre on Equines, Hisar 125001, India
| | - Bhupendra Nath Tripathi
- Bacteriology Laboratory, National Centre for Veterinary Type Cultures, ICAR-National Research Centre on Equines, Hisar 125001, India
- Division of Animal Science, Krishi Bhavan, New Delhi 110001, India
| |
Collapse
|
8
|
Soler-Camargo NC, Silva-Pereira TT, Zimpel CK, Camacho MF, Zelanis A, Aono AH, Patané JS, Dos Santos AP, Guimarães AMS. The rate and role of pseudogenes of the Mycobacterium tuberculosis complex. Microb Genom 2022; 8. [PMID: 36250787 DOI: 10.1099/mgen.0.000876] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Whole-genome sequence analyses have significantly contributed to the understanding of virulence and evolution of the Mycobacterium tuberculosis complex (MTBC), the causative pathogens of tuberculosis. Most MTBC evolutionary studies are focused on single nucleotide polymorphisms and deletions, but rare studies have evaluated gene content, whereas none has comprehensively evaluated pseudogenes. Accordingly, we describe an extensive study focused on quantifying and predicting possible functions of MTBC and Mycobacterium canettii pseudogenes. Using NCBI's PGAP-detected pseudogenes, we analysed 25 837 pseudogenes from 158 MTBC and M. canetii strains and combined transcriptomics and proteomics of M. tuberculosis H37Rv to gain insights about pseudogenes' expression. Our results indicate significant variability concerning rate and conservancy of in silico predicted pseudogenes among different ecotypes and lineages of tuberculous mycobacteria and pseudogenization of important virulence factors and genes of the metabolism and antimicrobial resistance/tolerance. We show that in silico predicted pseudogenes contribute considerably to MTBC genetic diversity at the population level. Moreover, the transcription machinery of M. tuberculosis can fully transcribe most pseudogenes, indicating intact promoters and recent pseudogene evolutionary emergence. Proteomics of M. tuberculosis and close evaluation of mutational lesions driving pseudogenization suggest that few in silico predicted pseudogenes are likely capable of neofunctionalization, nonsense mutation reversal, or phase variation, contradicting the classical definition of pseudogenes. Such findings indicate that genome annotation should be accompanied by proteomics and protein function assays to improve its accuracy. While indels and insertion sequences are the main drivers of the observed mutational lesions in these species, population bottlenecks and genetic drift are likely the evolutionary processes acting on pseudogenes' emergence over time. Our findings unveil a new perspective on MTBC's evolution and genetic diversity.
Collapse
Affiliation(s)
- Naila Cristina Soler-Camargo
- Laboratory of Applied Research in Mycobacteria, Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil.,Department of Preventive Veterinary Medicine and Animal Health, College of Veterinary Medicine, University of São Paulo, São Paulo, SP, Brazil
| | - Taiana Tainá Silva-Pereira
- Laboratory of Applied Research in Mycobacteria, Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Cristina Kraemer Zimpel
- Laboratory of Applied Research in Mycobacteria, Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil.,Department of Preventive Veterinary Medicine and Animal Health, College of Veterinary Medicine, University of São Paulo, São Paulo, SP, Brazil
| | - Maurício F Camacho
- Functional Proteomics Laboratory, Federal University of São Paulo (UNIFESP), São José dos Campos, SP, Brazil
| | - André Zelanis
- Functional Proteomics Laboratory, Federal University of São Paulo (UNIFESP), São José dos Campos, SP, Brazil
| | - Alexandre H Aono
- Center of Molecular Biology and Genetic Engineering, University of Campinas, Campinas, SP, Brazil.,Institute of Science and Technology, Federal University of São Paulo (UNIFESP), São José dos Campos, SP, Brazil
| | | | | | - Ana Marcia Sá Guimarães
- Laboratory of Applied Research in Mycobacteria, Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil.,Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University
| |
Collapse
|
9
|
Dupuy P, Ghosh S, Adefisayo O, Buglino J, Shuman S, Glickman MS. Distinctive roles of translesion polymerases DinB1 and DnaE2 in diversification of the mycobacterial genome through substitution and frameshift mutagenesis. Nat Commun 2022; 13:4493. [PMID: 35918328 PMCID: PMC9346131 DOI: 10.1038/s41467-022-32022-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 07/12/2022] [Indexed: 12/15/2022] Open
Abstract
Antibiotic resistance of Mycobacterium tuberculosis is exclusively a consequence of chromosomal mutations. Translesion synthesis (TLS) is a widely conserved mechanism of DNA damage tolerance and mutagenesis, executed by translesion polymerases such as DinBs. In mycobacteria, DnaE2 is the only known agent of TLS and the role of DinB polymerases is unknown. Here we demonstrate that, when overexpressed, DinB1 promotes missense mutations conferring resistance to rifampicin, with a mutational signature distinct from that of DnaE2, and abets insertion and deletion frameshift mutagenesis in homo-oligonucleotide runs. DinB1 is the primary mediator of spontaneous −1 frameshift mutations in homo-oligonucleotide runs whereas DnaE2 and DinBs are redundant in DNA damage-induced −1 frameshift mutagenesis. These results highlight DinB1 and DnaE2 as drivers of mycobacterial genome diversification with relevance to antimicrobial resistance and host adaptation. This manuscript elucidates new mechanisms of mutagenesis in mycobacteria by implicating two translesion DNA polymerases in genome diversification, including creating the mutations that underlie all antibiotic resistance in these global pathogens.
Collapse
Affiliation(s)
- Pierre Dupuy
- Immunology Program, Sloan Kettering Institute, New York, NY, 10065, USA
| | - Shreya Ghosh
- Molecular Biology Program, Sloan-Kettering Institute, New York, NY, 10065, USA
| | - Oyindamola Adefisayo
- Immunology Program, Sloan Kettering Institute, New York, NY, 10065, USA.,Immunology and Microbial Pathogenesis Graduate Program, Weill Cornell Graduate School, 1300 York Avenue, New York, NY, 10065, USA
| | - John Buglino
- Immunology Program, Sloan Kettering Institute, New York, NY, 10065, USA
| | - Stewart Shuman
- Molecular Biology Program, Sloan-Kettering Institute, New York, NY, 10065, USA
| | - Michael S Glickman
- Immunology Program, Sloan Kettering Institute, New York, NY, 10065, USA. .,Immunology and Microbial Pathogenesis Graduate Program, Weill Cornell Graduate School, 1300 York Avenue, New York, NY, 10065, USA.
| |
Collapse
|
10
|
Savino S, Desmet T, Franceus J. Insertions and deletions in protein evolution and engineering. Biotechnol Adv 2022; 60:108010. [PMID: 35738511 DOI: 10.1016/j.biotechadv.2022.108010] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/15/2022] [Accepted: 06/16/2022] [Indexed: 11/17/2022]
Abstract
Protein evolution or engineering studies are traditionally focused on amino acid substitutions and the way these contribute to fitness. Meanwhile, the insertion and deletion of amino acids is often overlooked, despite being one of the most common sources of genetic variation. Recent methodological advances and successful engineering stories have demonstrated that the time is ripe for greater emphasis on these mutations and their understudied effects. This review highlights the evolutionary importance and biotechnological relevance of insertions and deletions (indels). We provide a comprehensive overview of approaches that can be employed to include indels in random, (semi)-rational or computational protein engineering pipelines. Furthermore, we discuss the tolerance to indels at the structural level, address how domain indels can link the function of unrelated proteins, and feature studies that illustrate the surprising and intriguing potential of frameshift mutations.
Collapse
Affiliation(s)
- Simone Savino
- Centre for Synthetic Biology (CSB), Department of Biotechnology, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Tom Desmet
- Centre for Synthetic Biology (CSB), Department of Biotechnology, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Jorick Franceus
- Centre for Synthetic Biology (CSB), Department of Biotechnology, Ghent University, Coupure Links 653, 9000 Ghent, Belgium..
| |
Collapse
|
11
|
Ceres KM, Stanhope MJ, Gröhn YT. A critical evaluation of Mycobacterium bovis pangenomics, with reference to its utility in outbreak investigation. Microb Genom 2022; 8:mgen000839. [PMID: 35763423 PMCID: PMC9455707 DOI: 10.1099/mgen.0.000839] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 04/29/2022] [Indexed: 11/18/2022] Open
Abstract
The increased accessibility of next generation sequencing has allowed enough genomes from a given bacterial species to be sequenced to describe the distribution of genes in the pangenome, without limiting analyses to genes present in reference strains. Although some taxa have thousands of whole genome sequences available on public databases, most genomes were sequenced with short read technology, resulting in incomplete assemblies. Studying pangenomes could lead to important insights into adaptation, pathogenicity, or molecular epidemiology, however given the known information loss inherent in analyzing contig-level assemblies, these inferences may be biased or inaccurate. In this study we describe the pangenome of a clonally evolving pathogen, Mycobacterium bovis , and examine the utility of gene content variation in M. bovis outbreak investigation. We constructed the M. bovis pangenome using 1463 de novo assembled genomes. We tested the assumption of strict clonal evolution by studying evidence of recombination in core genes and analyzing the distribution of accessory genes among core monophyletic groups. To determine if gene content variation could be utilized in outbreak investigation, we carefully examined accessory genes detected in a well described M. bovis outbreak in Minnesota. We found significant errors in accessory gene classification. After accounting for these errors, we show that M. bovis has a much smaller accessory genome than previously described and provide evidence supporting ongoing clonal evolution and a closed pangenome, with little gene content variation generated over outbreaks. We also identified frameshift mutations in multiple genes, including a mutation in glpK , which has recently been associated with antibiotic tolerance in Mycobacterium tuberculosis . A pangenomic approach enables a more comprehensive analysis of genome dynamics than is possible with reference-based approaches; however, without critical evaluation of accessory gene content, inferences of transmission patterns employing these loci could be misguided.
Collapse
Affiliation(s)
- Kristina M. Ceres
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
- Population and Ecosystem Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Michael J Stanhope
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
- Population and Ecosystem Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Yrjö T. Gröhn
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
- Population and Ecosystem Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| |
Collapse
|
12
|
Small Insertions and Deletions Drive Genomic Plasticity during Adaptive Evolution of Yersinia pestis. Microbiol Spectr 2022; 10:e0224221. [PMID: 35438532 PMCID: PMC9248902 DOI: 10.1128/spectrum.02242-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The life cycle of Yersinia pestis has changed a lot to adapt to flea-borne transmission since it evolved from an enteric pathogen, Yersinia pseudotuberculosis. Small insertions and deletions (indels), especially frameshift mutations, can have major effects on phenotypes and contribute to virulence and host adaptation through gene disruption and inactivation. Here, we analyzed 365 Y. pestis genomes and identified 2,092 genome-wide indels on the core genome. As recently reported in Mycobacterium tuberculosis, we also detected "indel pockets" in Y. pestis, with average complexity scores declining around indel positions, which we speculate might also exist in other prokaryotes. Phylogenic analysis showed that indel-based phylogenic tree could basically reflect the phylogenetic relationships of major phylogroups in Y. pestis, except some inconsistency around the Big Bang polytomy. We observed 83 indels arising in the trunk of the phylogeny, which played a role in accumulation of pseudogenes related to key metabolism and putatively pathogenicity. We also discovered 32 homoplasies at the level of phylogroups and 7 frameshift scars (i.e., disrupted reading frame being rescued by a second frameshift). Additionally, our analysis showed evidence of parallel evolution at the level of genes, with sspA, rpoS, rnd, and YPO0624, having enriched mutations in Brazilian isolates, which might be advantageous for Y. pestis to cope with fluctuating environments. The diversified selection signals observed here demonstrates that indels are important contributors to the adaptive evolution of Y. pestis. Meanwhile, we provide potential targets for further exploration, as some genes/pseudogenes with indels we focus on remain uncharacterized. IMPORTANCE Yersinia pestis, the causative agent of plague, is a highly pathogenic clone of Yersinia pseudotuberculosis. Previous genome-wide SNP analysis provided few adaptive signatures during its evolution. Here by investigating 365 public genomes of Y. pestis, we give a comprehensive overview of general features of genome-wide indels on the core genome and their roles in Y. pestis evolution. Detection of "indel pockets," with average complexity scores declining around indel positions, in both Mycobacterium tuberculosis and Y. pestis, gives us a clue that this phenomenon might appear in other bacterial genomes. Importantly, the identification of four different forms of selection signals in indels would improve our understanding on adaptive evolution of Y. pestis, and provide targets for further physiological mechanism researches of this pathogen. As evolutionary research based on genome-wide indels is still rare in bacteria, our study would be a helpful reference in deciphering the role of indels in other species.
Collapse
|
13
|
Goossens SN, Heupink TH, De Vos E, Dippenaar A, De Vos M, Warren R, Van Rie A. Detection of minor variants in Mycobacterium tuberculosis whole genome sequencing data. Brief Bioinform 2021; 23:6484510. [PMID: 34962257 PMCID: PMC8769888 DOI: 10.1093/bib/bbab541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 11/05/2021] [Accepted: 11/24/2021] [Indexed: 11/25/2022] Open
Abstract
The study of genetic minority variants is fundamental to the understanding of complex processes such as evolution, fitness, transmission, virulence, heteroresistance and drug tolerance in Mycobacterium tuberculosis (Mtb). We evaluated the performance of the variant calling tool LoFreq to detect de novo as well as drug resistance conferring minor variants in both in silico and clinical Mtb next generation sequencing (NGS) data. The in silico simulations demonstrated that LoFreq is a conservative variant caller with very high precision (≥96.7%) over the entire range of depth of coverage tested (30x to1000x), independent of the type and frequency of the minor variant. Sensitivity increased with increasing depth of coverage and increasing frequency of the variant, and was higher for calling insertion and deletion (indel) variants than for single nucleotide polymorphisms (SNP). The variant frequency limit of detection was 0.5% and 3% for indel and SNP minor variants, respectively. For serial isolates from a patient with DR-TB; LoFreq successfully identified all minor Mtb variants in the Rv0678 gene (allele frequency as low as 3.22% according to targeted deep sequencing) in whole genome sequencing data (median coverage of 62X). In conclusion, LoFreq can successfully detect minor variant populations in Mtb NGS data, thus limiting the need for filtering of possible false positive variants due to sequencing error. The observed performance statistics can be used to determine the limit of detection in existing whole genome sequencing Mtb data and guide the required depth of future studies that aim to investigate the presence of minor variants.
Collapse
Affiliation(s)
- Sander N Goossens
- Family Medicine and Population Health (FAMPOP), Faculty of Medicine and Health Sciences, University of Antwerp, Wilrijk, Belgium
| | - Tim H Heupink
- Family Medicine and Population Health (FAMPOP), Faculty of Medicine and Health Sciences, University of Antwerp, Wilrijk, Belgium
| | - Elise De Vos
- Family Medicine and Population Health (FAMPOP), Faculty of Medicine and Health Sciences, University of Antwerp, Wilrijk, Belgium
| | - Anzaan Dippenaar
- Family Medicine and Population Health (FAMPOP), Faculty of Medicine and Health Sciences, University of Antwerp, Wilrijk, Belgium
| | | | - Rob Warren
- Department of Science and Innovation-National Research Foundation Centre for Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa
| | - Annelies Van Rie
- Family Medicine and Population Health (FAMPOP), Faculty of Medicine and Health Sciences, University of Antwerp, Wilrijk, Belgium
| |
Collapse
|