1
|
Kwon T, Kwon S, Sung BJ. The effects of asymmetry in active noises on the efficiency of single colloidal Stirling engines with active noises. SOFT MATTER 2024; 20:2600-2609. [PMID: 38426540 DOI: 10.1039/d3sm01386c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Molecular machines, which operate in highly fluctuating environments far from equilibrium, may benefit from their non-equilibrium environments. It is, however, a topic of controversy how the efficiency of the microscopic engines can be enhanced. Recent experiments showed that microscopic Stirling engines in bacterial reservoirs could show high performance beyond the equilibrium thermodynamics. In this work, we perform overdamped Langevin dynamics simulations for microscopic Stirling heat engines in bacterial reservoirs and show that the temperature dependence of the magnitude of active noises should be responsible for such high efficiency. Only when we introduce temperature-dependent active noises, the efficiency of the microscopic Stirling engines is enhanced significantly as in experiments.
Collapse
Affiliation(s)
- Taejin Kwon
- Department of Chemistry and Cosmetics, Jeju National University, Jeju 63243, Republic of Korea
| | - Seulki Kwon
- The Center for the Development of Therapeutics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Bong June Sung
- Department of Chemistry, Sogang University, Seoul 04107, Republic of Korea.
| |
Collapse
|
2
|
Lahiri S, Gupta S. Efficiency of a microscopic heat engine subjected to stochastic resetting. Phys Rev E 2024; 109:014129. [PMID: 38366425 DOI: 10.1103/physreve.109.014129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 12/15/2023] [Indexed: 02/18/2024]
Abstract
We explore the thermodynamics of stochastic heat engines in the presence of stochastic resetting. The setup comprises an engine whose working substance is a Brownian particle undergoing overdamped Langevin dynamics in a harmonic potential with a time-dependent stiffness, with the dynamics interrupted at random times with a resetting to a fixed location. The effect of resetting to the potential minimum is shown to enhance the efficiency of the engine, while the output work is shown to have a nonmonotonic dependence on the rate of resetting. The resetting events are found to drive the system out of the linear response regime, even for small differences in the bath temperatures. Shifting the reset point from the potential minimum is observed to reduce the engine efficiency. The experimental setup for the realization of such an engine is briefly discussed.
Collapse
Affiliation(s)
- Sourabh Lahiri
- Department of Physics, Birla Institute of Technology, Mesra, Ranchi, Jharkhand 835215, India
| | - Shamik Gupta
- Department of Theoretical Physics, Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400005, India
| |
Collapse
|
3
|
Roy N, Sood AK, Ganapathy R. Harnessing Viscoelasticity to Suppress Irreversibility Buildup in a Colloidal Stirling Engine. PHYSICAL REVIEW LETTERS 2023; 131:238201. [PMID: 38134791 DOI: 10.1103/physrevlett.131.238201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/18/2023] [Accepted: 11/08/2023] [Indexed: 12/24/2023]
Abstract
Typically, the rate at which a heat engine can produce useful work is constrained by the buildup of irreversibility with increasing operating speed. Here, using a recently developed reservoir engineering technique, we designed and quantified the performance of a colloidal Stirling engine operating in a viscoelastic bath. While the bath acts like a viscous fluid in the quasistatic limit, and the engine's performance agrees with equilibrium predictions, on reducing the cycle time to the bath's structural relaxation time, the increasingly elastic response of the bath aids suppress the buildup of irreversibility. We show that the elastic energy stored during the isothermal compression step of the Stirling cycle facilitates quick equilibration in the isothermal expansion step. This results in equilibriumlike efficiencies even for cycle times shorter than the equilibration time of the colloidal particle.
Collapse
Affiliation(s)
- Niloyendu Roy
- Chemistry and Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore-560064, India
| | - A K Sood
- Department of Physics, Indian Institute of Science, Bangalore-560012, India
- International Centre for Materials Science, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore-560064, India
| | - Rajesh Ganapathy
- International Centre for Materials Science, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore-560064, India
- School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore-560064, India
| |
Collapse
|
4
|
Krishnamurthy S, Ganapathy R, Sood AK. Overcoming power-efficiency tradeoff in a micro heat engine by engineered system-bath interactions. Nat Commun 2023; 14:6842. [PMID: 37891165 PMCID: PMC10611737 DOI: 10.1038/s41467-023-42350-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 10/09/2023] [Indexed: 10/29/2023] Open
Abstract
All real heat engines, be it conventional macro engines or colloidal and atomic micro engines, inevitably tradeoff efficiency in their pursuit to maximize power. This basic postulate of finite-time thermodynamics has been the bane of all engine design for over two centuries and all optimal protocols implemented hitherto could at best minimize only the loss in the efficiency. The absence of a protocol that allows engines to overcome this limitation has prompted theoretical studies to suggest universality of the postulate in both passive and active engines. Here, we experimentally overcome the power-efficiency tradeoff in a colloidal Stirling engine by selectively reducing relaxation times over only the isochoric processes using system bath interactions generated by electrophoretic noise. Our approach opens a window of cycle times where the tradeoff is reversed and enables the engine to surpass even their quasistatic efficiency. Our strategies finally cut loose engine design from fundamental restrictions and pave way for the development of more efficient and powerful engines and devices.
Collapse
Affiliation(s)
| | - Rajesh Ganapathy
- International Centre for Materials Science, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, 560064, India
- Sheikh Saqr Laboratory, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, 560064, India
| | - A K Sood
- Department of Physics, Indian Institute of Science, Bangalore, 560012, India.
- International Centre for Materials Science, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, 560064, India.
| |
Collapse
|
5
|
Saha TK, Ehrich J, Gavrilov M, Still S, Sivak DA, Bechhoefer J. Information Engine in a Nonequilibrium Bath. PHYSICAL REVIEW LETTERS 2023; 131:057101. [PMID: 37595211 DOI: 10.1103/physrevlett.131.057101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 06/29/2023] [Indexed: 08/20/2023]
Abstract
Information engines can convert thermal fluctuations of a bath at temperature T into work at rates of order k_{B}T per relaxation time of the system. We show experimentally that such engines, when in contact with a bath that is out of equilibrium, can extract much more work. We place a heavy, micron-scale bead in a harmonic potential that ratchets up to capture favorable fluctuations. Adding a fluctuating electric field increases work extraction up to ten times, limited only by the strength of the applied field. Our results connect Maxwell's demon with energy harvesting and demonstrate that information engines in nonequilibrium baths can greatly outperform conventional engines.
Collapse
Affiliation(s)
- Tushar K Saha
- Department of Physics, Simon Fraser University, Burnaby, British Columbia, V5A 1S6 Canada
| | - Jannik Ehrich
- Department of Physics, Simon Fraser University, Burnaby, British Columbia, V5A 1S6 Canada
- Department of Physics and Astronomy, University of Hawaii at Mānoa, Honolulu, Hawaii 96822, USA
| | - Momčilo Gavrilov
- Department of Physics, Simon Fraser University, Burnaby, British Columbia, V5A 1S6 Canada
| | - Susanne Still
- Department of Physics and Astronomy, University of Hawaii at Mānoa, Honolulu, Hawaii 96822, USA
| | - David A Sivak
- Department of Physics, Simon Fraser University, Burnaby, British Columbia, V5A 1S6 Canada
| | - John Bechhoefer
- Department of Physics, Simon Fraser University, Burnaby, British Columbia, V5A 1S6 Canada
| |
Collapse
|
6
|
Baule A, Sollich P. Exponential increase of transition rates in metastable systems driven by non-Gaussian noise. Sci Rep 2023; 13:3853. [PMID: 36890184 PMCID: PMC9995508 DOI: 10.1038/s41598-023-30577-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 02/27/2023] [Indexed: 03/10/2023] Open
Abstract
Noise-induced escape from metastable states governs a plethora of transition phenomena in physics, chemistry, and biology. While the escape problem in the presence of thermal Gaussian noise has been well understood since the seminal works of Arrhenius and Kramers, many systems, in particular living ones, are effectively driven by non-Gaussian noise for which the conventional theory does not apply. Here we present a theoretical framework based on path integrals that allows the calculation of both escape rates and optimal escape paths for a generic class of non-Gaussian noises. We find that non-Gaussian noise always leads to more efficient escape and can enhance escape rates by many orders of magnitude compared with thermal noise, highlighting that away from equilibrium escape rates cannot be reliably modelled based on the traditional Arrhenius-Kramers result. Our analysis also identifies a new universality class of non-Gaussian noises, for which escape paths are dominated by large jumps.
Collapse
Affiliation(s)
- Adrian Baule
- School of Mathematical Sciences, Queen Mary University of London, London, E1 4NS, UK.
| | - Peter Sollich
- Institute for Theoretical Physics, Georg-August-University Göttingen, 37077, Göttingen, Germany
- Department of Mathematics, King's College London, London, WC2R 2LS, UK
| |
Collapse
|
7
|
Krishnamurthy S, Ganapathy R, Sood AK. Synergistic action in colloidal heat engines coupled by non-conservative flows. SOFT MATTER 2022; 18:7621-7630. [PMID: 36165997 DOI: 10.1039/d2sm00917j] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Colloidal heat engines are model systems to analyze mechanisms of transduction of heat to work at the mesoscale. While engines developed hitherto were realized using conservative potentials and operated in isolation, biological micromotors - their real counterparts - seldom perform under such simplifications. Here, we examine thermodynamics beyond such idealizations by constructing a pair of engines from two colloidal microspheres in optical traps at close separation. We demonstrate that at such proximity, non-conservative scattering forces that were hitherto neglected affect the particle motion. Hydrodynamics generated while dissipating these are hindered by the microsphere in the adjacent trap and energy that was otherwise rejected into the medium gets reused. Thus, despite being in contact with the same reservoir, the particles are driven out of equilibrium and can exchange energy, allowing cooperative behavior. Leveraging this in a manner analogous to microswimmers and active Brownian particles that utilize such flows to enhance propulsion, we construct two colloidal engines in close proximity. To estimate thermodynamic quantities, we develop a minimal model that is appropriate in the asymptotic limit and is similar to active Brownian particles. While complete theoretical frameworks to understand such scenarios remain to be developed, results based on our model demonstrate the intuitive idea that a pair of Stirling engines at close proximity outperform those that are well separated. Although these results explore the simplest case of two Stirling engines, the concepts unraveled could aid in designing larger collections akin to biological systems.
Collapse
Affiliation(s)
| | - Rajesh Ganapathy
- International Centre for Materials Science, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560064, India
- Sheikh Saqr Laboratory, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560064, India
| | - A K Sood
- Department of Physics, Indian Institute of Science, Bangalore 560012, India.
- International Centre for Materials Science, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560064, India
| |
Collapse
|
8
|
Lee JS, Park H. Effects of the non-Markovianity and non-Gaussianity of active environmental noises on engine performance. Phys Rev E 2022; 105:024130. [PMID: 35291119 DOI: 10.1103/physreve.105.024130] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 02/11/2022] [Indexed: 06/14/2023]
Abstract
An active environment is a reservoir containing active materials, such as bacteria and Janus particles. Given the self-propelled motion of these materials, powered by chemical energy, an active environment has unique, nonequilibrium environmental noise. Recently, studies on engines that harvest energy from active environments have attracted a great deal of attention because the theoretical and experimental findings indicate that these engines outperform conventional ones. Studies have explored the features of active environments essential for outperformance, such as the non-Gaussian or non-Markovian nature of the active noise. We systematically study the effects of the non-Gaussianity and non-Markovianity of active noise on engine performance. We show that non-Gaussianity is irrelevant to the performance of an engine driven by any linear force (including a harmonic trap) regardless of time dependency, whereas non-Markovianity is relevant. However, for a system driven by a general nonlinear force, both non-Gaussianity and non-Markovianity enhance engine performance. Also, the memory effect of an active reservoir should be considered when fabricating a cyclic engine.
Collapse
Affiliation(s)
- Jae Sung Lee
- School of Physics and Quantum Universe Center, Korea Institute for Advanced Study, Seoul 02455, Korea
| | - Hyunggyu Park
- School of Physics and Quantum Universe Center, Korea Institute for Advanced Study, Seoul 02455, Korea
| |
Collapse
|