1
|
Peralta Gavensky L, Sachdev S, Goldman N. Connecting the Many-Body Chern Number to Luttinger's Theorem through Středa's Formula. PHYSICAL REVIEW LETTERS 2023; 131:236601. [PMID: 38134771 DOI: 10.1103/physrevlett.131.236601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 11/02/2023] [Indexed: 12/24/2023]
Abstract
Relating the quantized Hall response of correlated insulators to many-body topological invariants is a key challenge in topological quantum matter. Here, we use Středa's formula to derive an expression for the many-body Chern number in terms of the single-particle interacting Green's function and its derivative with respect to a magnetic field. In this approach, we find that this many-body topological invariant can be decomposed in terms of two contributions, N_{3}[G]+ΔN_{3}[G], where N_{3}[G] is known as the Ishikawa-Matsuyama invariant and where the second term involves derivatives of Green's function and the self-energy with respect to the magnetic perturbation. As a by-product, the invariant N_{3}[G] is shown to stem from the derivative of Luttinger's theorem with respect to the probe magnetic field. These results reveal under which conditions the quantized Hall conductivity of correlated topological insulators is solely dictated by the invariant N_{3}[G], providing new insight on the origin of fractionalization in strongly correlated topological phases.
Collapse
Affiliation(s)
- Lucila Peralta Gavensky
- Center for Nonlinear Phenomena and Complex Systems, Université Libre de Bruxelles, CP 231, Campus Plaine, B-1050 Brussels, Belgium
| | - Subir Sachdev
- Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Nathan Goldman
- Center for Nonlinear Phenomena and Complex Systems, Université Libre de Bruxelles, CP 231, Campus Plaine, B-1050 Brussels, Belgium
| |
Collapse
|
2
|
Gao Y, Vlaic S, Gorni T, De' Medici L, Clair S, Roditchev D, Pons S. Manipulation of the Magnetic State of a Porphyrin-Based Molecule on Gold: From Kondo to Quantum Nanomagnet via the Charge Fluctuation Regime. ACS NANO 2023; 17:9082-9089. [PMID: 37162317 DOI: 10.1021/acsnano.2c12223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
By moving individual Fe-porphyrin-based molecules with the tip of a scanning tunneling microscope in the vicinity of the elbow of the herringbone-reconstructed Au(111) containing a Br atom, we reversibly and continuously control their magnetic state. Several regimes are obtained experimentally and explored theoretically: from the integer spin limit, through intermediate magnetic states with renormalized magnetic anisotropy, until the Kondo-screened regime, corresponding to a progressive increase of charge fluctuations and mixed valency due to an increase in the interaction of the molecular Fe states with the substrate Fermi sea. Our study demonstrates the potential of utilizing charge fluctuations to generate and tune quantum magnetic states in molecule-surface hybrids.
Collapse
Affiliation(s)
- Yingzheng Gao
- Laboratoire de Physique et d'Étude des Matériaux (LPEM), ESPCI Paris, PSL Research University, CNRS UMR8213, Sorbonne Université, 75005 Paris, France
| | - Sergio Vlaic
- Laboratoire de Physique et d'Étude des Matériaux (LPEM), ESPCI Paris, PSL Research University, CNRS UMR8213, Sorbonne Université, 75005 Paris, France
| | - Tommaso Gorni
- Laboratoire de Physique et d'Étude des Matériaux (LPEM), ESPCI Paris, PSL Research University, CNRS UMR8213, Sorbonne Université, 75005 Paris, France
| | - Luca De' Medici
- Laboratoire de Physique et d'Étude des Matériaux (LPEM), ESPCI Paris, PSL Research University, CNRS UMR8213, Sorbonne Université, 75005 Paris, France
| | - Sylvain Clair
- Aix Marseille University, CNRS, IM2NP, 13397 Marseille, France
| | - Dimitri Roditchev
- Laboratoire de Physique et d'Étude des Matériaux (LPEM), ESPCI Paris, PSL Research University, CNRS UMR8213, Sorbonne Université, 75005 Paris, France
- Institut des Nanosciences de Paris, Sorbonne Université, CNRS UMR7588, 75005 Paris, France
| | - Stéphane Pons
- Laboratoire de Physique et d'Étude des Matériaux (LPEM), ESPCI Paris, PSL Research University, CNRS UMR8213, Sorbonne Université, 75005 Paris, France
| |
Collapse
|
3
|
Zhou WH, Zhang J, Nan N, Li W, He ZD, Zhu ZW, Wu YP, Xiong YC. Correlation anisotropy driven Kosterlitz-Thouless-type quantum phase transition in a Kondo simulator. Phys Chem Chem Phys 2022; 24:20040-20049. [PMID: 35833449 DOI: 10.1039/d2cp01668k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The precise manipulation of the quantum states of individual atoms/molecules adsorbed on metal surfaces is one of the most exciting frontiers in nanophysics, enabling us to realize novel single molecular logic devices and quantum information processing. Herein, by modeling an iron phthalocyanine molecule adsorbed on the Au(111) surface with a two-impurity Anderson model, we demonstrate that the quantum states of such a system could be adjusted by the uniaxial magnetic anisotropy Dz. For negative Dz, the ground state is dominated by a parallel configuration of the z component of local spins, whereas it turns to be an antiparallel one when Dz becomes positive. Interestingly, we found that these two phases are separated by a Kosterlitz-Thouless-type quantum phase transition, which is confirmed by the critical behaviors of the transmission coefficient and the local magnetic moment. Both phases are associated with spin correlation anisotropy, thus move against the Kondo effect. When the external magnetic field is applied, it first plays a role in compensating for the effect of Dz, and then it contributes significantly to the Zeeman effect for positive Dz, accompanied by the reappearance and the splitting of the Kondo peak, respectively. For fixed negative Dz, only the Zeeman behavior is revealed. Our results provide deep insights into the manipulation of the quantum phase within a single molecular junction.
Collapse
Affiliation(s)
- Wang-Huai Zhou
- School of Mathematics, Physics and Optoelectronic Engineering, and Collaborative Innovation Center for Optoelectronic Technology, Hubei University of Automotive Technology, Shiyan, Hubei, P. R. China. .,Shiyan Industrial Technology Research Institute of Chinese Academy of Engineering, Shiyan 442002, People's Republic of China
| | - Jun Zhang
- School of Mathematics, Physics and Optoelectronic Engineering, and Collaborative Innovation Center for Optoelectronic Technology, Hubei University of Automotive Technology, Shiyan, Hubei, P. R. China. .,Shiyan Industrial Technology Research Institute of Chinese Academy of Engineering, Shiyan 442002, People's Republic of China
| | - Nan Nan
- School of Mathematics, Physics and Optoelectronic Engineering, and Collaborative Innovation Center for Optoelectronic Technology, Hubei University of Automotive Technology, Shiyan, Hubei, P. R. China. .,Shiyan Industrial Technology Research Institute of Chinese Academy of Engineering, Shiyan 442002, People's Republic of China
| | - Wei Li
- School of Mathematics, Physics and Optoelectronic Engineering, and Collaborative Innovation Center for Optoelectronic Technology, Hubei University of Automotive Technology, Shiyan, Hubei, P. R. China. .,Shiyan Industrial Technology Research Institute of Chinese Academy of Engineering, Shiyan 442002, People's Republic of China
| | - Ze-Dong He
- School of Mathematics, Physics and Optoelectronic Engineering, and Collaborative Innovation Center for Optoelectronic Technology, Hubei University of Automotive Technology, Shiyan, Hubei, P. R. China.
| | - Zhan-Wu Zhu
- School of Mathematics, Physics and Optoelectronic Engineering, and Collaborative Innovation Center for Optoelectronic Technology, Hubei University of Automotive Technology, Shiyan, Hubei, P. R. China.
| | - Yun-Pei Wu
- School of Mathematics, Physics and Optoelectronic Engineering, and Collaborative Innovation Center for Optoelectronic Technology, Hubei University of Automotive Technology, Shiyan, Hubei, P. R. China.
| | - Yong-Chen Xiong
- School of Mathematics, Physics and Optoelectronic Engineering, and Collaborative Innovation Center for Optoelectronic Technology, Hubei University of Automotive Technology, Shiyan, Hubei, P. R. China. .,Shiyan Industrial Technology Research Institute of Chinese Academy of Engineering, Shiyan 442002, People's Republic of China
| |
Collapse
|