1
|
Yadav SK, Dhuri K, Gamiotea-Turro D, Cormier MK, Patel V, Yadawa AK, Pathuri M, Bahal R, Verma R. Exploring the therapeutic potential of sγPNA-141: Pharmacodynamics and mechanistic insights during ischemic stroke recovery. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102355. [PMID: 39507400 PMCID: PMC11539414 DOI: 10.1016/j.omtn.2024.102355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 10/02/2024] [Indexed: 11/08/2024]
Abstract
MicroRNA-141-3p plays a detrimental role in the pathology of ischemic stroke, presenting a new target for stroke treatment. This study introduces and validates a novel class of peptide nucleic acid (PNA)-based miR-141-3p inhibitors known as serine gamma PNA-141 (sγPNA-141) for ischemic stroke treatment. After synthesis, physicochemical characterization, and nanoparticle encapsulation of sγPNA-141, we compared its safety and efficacy with traditional phosphorothioate- and regular PNA-based anti-miR-141-3p (PNA-141) in vitro, followed by detailed in vivo and ex vivo efficacy testing of sγPNA-141 for treating ischemic stroke using a mouse model. sγPNA-141 demonstrated higher affinity and specificity toward miR-141-3p, and when applied post-stroke, demonstrated decreased brain damage, enhanced neuroprotective proteins, reduced tissue atrophy, swift improvement in functional deficits, and improvement in learning and memory during long-term recovery. Overall, our data show sγPNA-141 has neuroprotective and neuro-rehabilitative effects during stroke recovery. Furthermore, we demonstrated sγPNA-141's effects are mediated by the TGF-β-SMAD2/3 pathway. In summary, the present findings suggest that sγPNA-141 could be a potentially novel and effective therapeutic modality for the treatment of ischemic stroke.
Collapse
Affiliation(s)
| | - Karishma Dhuri
- School of Pharmacy, University of Connecticut, Storrs, CT 06269, USA
| | | | | | - Vraj Patel
- Department of Neuroscience, UConn Health, Farmington, CT 06032, USA
| | | | - Mounika Pathuri
- School of Pharmacy, University of Connecticut, Storrs, CT 06269, USA
| | - Raman Bahal
- School of Pharmacy, University of Connecticut, Storrs, CT 06269, USA
| | - Rajkumar Verma
- Department of Neuroscience, UConn Health, Farmington, CT 06032, USA
| |
Collapse
|
2
|
He L, Xiang Y. Interrogating the Presence of RNA Phosphorothioate in Nature by a Highly Selective and Sensitive Fluorescence Method. Anal Chem 2024. [PMID: 39138966 DOI: 10.1021/acs.analchem.4c01597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
In nature, DNA phosphorothioate (PT) is found in the genomic materials of some prokaryotes. In contrast, whether there is natural RNA PT is still a question under debate. A groundbreaking study reported the discovery of RNA PT in cellular RNA samples from both prokaryotes and eukaryotes at contents of >100 PT per million nucleotides (PPM-nt) according to liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) analysis. However, this finding was challenged by a later work showing that other RNA modifications, such as 2'-O-methylation, could give almost the same LC-MS/MS signal patterns as RNA PT. As the LC-MS/MS technique led to contradicting conclusions, another independent method is thus needed to interrogate the presence of RNA PT in nature. In this work, we have developed a highly selective and sensitive fluorescence method for RNA PT quantification based on a new RNA PT-specific conversion reaction. It can detect as low as 2.8 PPM-nt in RNA without interference from RNA thiobases or protein cysteines. We measured the total RNA samples from some bacteria and human cells using this method. None of these samples gave any RNA PT signal above the detection limit (2.8 PPM-nt), suggesting that the widespread presence of natural RNA PT at the 100 PPM-nt level or above is highly unlikely. Nevertheless, due to the limited number of cell species tested in this work, the possible existence of natural RNA PT cannot be excluded. The fluorescence method reported here is simple and low-cost; therefore, it should be an ideal assay for broadly screening various types of cells to search for the clue of RNA PT in nature.
Collapse
Affiliation(s)
- Luo He
- Department of Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Ministry of Education, Tsinghua University, Beijing 100084, China
| | - Yu Xiang
- Department of Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Ministry of Education, Tsinghua University, Beijing 100084, China
| |
Collapse
|
3
|
Yuan Y, DeMott MS, Byrne SR, Flores K, Poyet M, Groussin M, Microbiome Conservancy G, Berdy B, Comstock L, Alm EJ, Dedon PC. Phosphorothioate DNA modification by BREX Type 4 systems in the human gut microbiome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.03.597175. [PMID: 38895356 PMCID: PMC11185695 DOI: 10.1101/2024.06.03.597175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Among dozens of microbial DNA modifications regulating gene expression and host defense, phosphorothioation (PT) is the only known backbone modification, with sulfur inserted at a non-bridging oxygen by dnd and ssp gene families. Here we explored the distribution of PT genes in 13,663 human gut microbiome genomes, finding that 6.3% possessed dnd or ssp genes predominantly in Bacillota, Bacteroidota, and Pseudomonadota. This analysis uncovered several putative new PT synthesis systems, including Type 4 Bacteriophage Exclusion (BREX) brx genes, which were genetically validated in Bacteroides salyersiae. Mass spectrometric analysis of DNA from 226 gut microbiome isolates possessing dnd, ssp, and brx genes revealed 8 PT dinucleotide settings confirmed in 6 consensus sequences by PT-specific DNA sequencing. Genomic analysis showed PT enrichment in rRNA genes and depletion at gene boundaries. These results illustrate the power of the microbiome for discovering prokaryotic epigenetics and the widespread distribution of oxidation-sensitive PTs in gut microbes.
Collapse
Affiliation(s)
- Yifeng Yuan
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Michael S. DeMott
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Center for Environmental Health Science, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Shane R. Byrne
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Katia Flores
- Department of Microbiology, Duchossois Family Institute, University of Chicago, Chicago, IL, USA
| | - Mathilde Poyet
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Institute of Experimental Medicine, Kiel University, Germany
- Global Microbiome Conservancy (https://microbiomeconservancy.org/), Kiel University, Germany
| | - Mathieu Groussin
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Institute of Clinical and Molecular Biology, Kiel University, Germany
- Global Microbiome Conservancy (https://microbiomeconservancy.org/), Kiel University, Germany
| | - Global Microbiome Conservancy
- Global Microbiome Conservancy (https://microbiomeconservancy.org/), Kiel University, Germany
- Center for Microbiome Informatics and Therapeutics, Massachusetts Institute of Technology, Cambridge, MA
| | - Brittany Berdy
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Laurie Comstock
- Department of Microbiology, Duchossois Family Institute, University of Chicago, Chicago, IL, USA
| | - Eric J. Alm
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Center for Microbiome Informatics and Therapeutics, Massachusetts Institute of Technology, Cambridge, MA
- Singapore-MIT Alliance for Research and Technology, Singapore
| | - Peter C. Dedon
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Center for Environmental Health Science, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Singapore-MIT Alliance for Research and Technology, Singapore
| |
Collapse
|
4
|
Rakesh S, Aravind L, Krishnan A. Reappraisal of the DNA phosphorothioate modification machinery: uncovering neglected functional modalities and identification of new counter-invader defense systems. Nucleic Acids Res 2024; 52:1005-1026. [PMID: 38163645 PMCID: PMC10853773 DOI: 10.1093/nar/gkad1213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 12/03/2023] [Accepted: 12/10/2023] [Indexed: 01/03/2024] Open
Abstract
The DndABCDE systems catalysing the unusual phosphorothioate (PT) DNA backbone modification, and the DndFGH systems, which restrict invasive DNA, have enigmatic and paradoxical features. Using comparative genomics and sequence-structure analyses, we show that the DndABCDE module is commonly functionally decoupled from the DndFGH module. However, the modification gene-neighborhoods encode other nucleases, potentially acting as the actual restriction components or suicide effectors limiting propagation of the selfish elements. The modification module's core consists of a coevolving gene-pair encoding the DNA-scanning apparatus - a DndD/CxC-clade ABC ATPase and DndE with two ribbon-helix-helix (MetJ/Arc) DNA-binding domains. Diversification of DndE's DNA-binding interface suggests a multiplicity of target specificities. Additionally, many systems feature DNA cytosine methylase genes instead of PT modification, indicating the DndDE core can recruit other nucleobase modifications. We show that DndFGH is a distinct counter-invader system with several previously uncharacterized domains, including a nucleotide kinase. These likely trigger its restriction endonuclease domain in response to multiple stimuli, like nucleotides, while blocking protective modifications by invader methylases. Remarkably, different DndH variants contain a HerA/FtsK ATPase domain acquired from multiple sources, including cellular genome-segregation systems and mobile elements. Thus, we uncovered novel HerA/FtsK-dependent defense systems that might intercept invasive DNA during replication, conjugation, or packaging.
Collapse
Affiliation(s)
- Siuli Rakesh
- Department of Biological Sciences, Indian Institute of Science Education and Research Berhampur (IISER Berhampur), Berhampur 760010, India
| | - L Aravind
- National Center for Biotechnology Information (NCBI), National Library of Medicine (NLM), National Institutes of Health (NIH), Bethesda, MD 20894, USA
| | - Arunkumar Krishnan
- Department of Biological Sciences, Indian Institute of Science Education and Research Berhampur (IISER Berhampur), Berhampur 760010, India
| |
Collapse
|
5
|
Tan X, Zhang M, Liu S, Xiao X, Zhang Y, Jian H. Prophage enhances the ability of deep-sea bacterium Shewanella psychrophila WP2 to utilize D-amino acid. Microbiol Spectr 2024; 12:e0326323. [PMID: 38170979 PMCID: PMC10845958 DOI: 10.1128/spectrum.03263-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 11/24/2023] [Indexed: 01/05/2024] Open
Abstract
Prophages are prevalent in the marine bacterial genomes and reshape the physiology and metabolism of their hosts. However, whether and how prophages influence the microbial degradation of D-amino acids (D-AAs), which is one of the widely distributed recalcitrant dissolved organic matters (RDOMs) in the ocean, remain to be explored. In this study, we addressed this issue in a representative marine bacterium, Shewanella psychrophila WP2 (WP2), and its integrated prophage SP1. Notably, compared to the WP2 wild-type strain, the SP1 deletion mutant of WP2 (WP2ΔSP1) exhibited a significantly lower D-glutamate (D-Glu) consumption rate and longer lag phase when D-Glu was used as the sole nitrogen source. The subsequent transcriptome analysis identified 1,523 differentially expressed genes involved in diverse cellular processes, especially that multiple genes related to inorganic nitrogen metabolism were highly upregulated. In addition, the dynamic profiles of ammonium, nitrate, and nitrite were distinct between the culture media of WP2 and WP2ΔSP1. Finally, we provide evidence that SP1 conferred a competitive advantage to WP2 when D-Glu was used as the sole nitrogen source and SP1-like phages may be widely distributed in the global ocean. Taken together, these findings offer novel insight into the influences of prophages on host metabolism and RDOM cycling in marine environments.IMPORTANCEThis work represents the first exploration of the impact of prophages on the D-amino acid (D-AA) metabolism of deep-sea bacteria. By using S. psychrophila WP2 and its integrated prophage SP1 as a representative system, we found that SP1 can significantly increase the catabolism rate of WP2 to D-glutamate and produce higher concentrations of ammonium, resulting in faster growth and competitive advantages. Our findings not only deepen our understanding of the interaction between deep-sea prophages and hosts but also provide new insights into the ecological role of prophages in refractory dissolved organic matter and the nitrogen cycle in deep oceans.
Collapse
Affiliation(s)
- Xiaoli Tan
- School of Oceanography, Shanghai Jiao Tong University, Shanghai, China
| | - Mujie Zhang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Development Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
- Yazhou Bay Institute of Deepsea Sci-Tech, Shanghai Jiao Tong University, Sanya, China
| | - Shunzhang Liu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Development Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Xiang Xiao
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Development Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
- Yazhou Bay Institute of Deepsea Sci-Tech, Shanghai Jiao Tong University, Sanya, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
| | - Yu Zhang
- School of Oceanography, Shanghai Jiao Tong University, Shanghai, China
| | - Huahua Jian
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Development Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
- Yazhou Bay Institute of Deepsea Sci-Tech, Shanghai Jiao Tong University, Sanya, China
| |
Collapse
|
6
|
Li J, Luo S, Ouyang X, Wu G, Deng Z, He X, Zhao YL. Understanding base and backbone contributions of phosphorothioate DNA for molecular recognition with SBD proteins. Phys Chem Chem Phys 2023; 25:29289-29302. [PMID: 37876253 DOI: 10.1039/d3cp02820h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2023]
Abstract
Bacterial DNA phosphorothioate (PT) modification provides a specific anchoring site for sulfur-binding proteins (SBDs). Besides, their recognition patterns include phosphate links and bases neighboring the PT-modified site, thereby bringing about genome sequence-dependent properties in PT-related epigenetics. Here, we analyze the contributions of the DNA backbone (phosphates and deoxyribose) and bases bound with two SBD proteins in Streptomyces pristinaespiralis and coelicolor (SBDSco and SBDSpr). The chalcogen-hydrophobic interactions remained constantly at the anchoring site while the adjacent bases formed conditional and distinctive non-covalent interactions. More importantly, SBD/PT-DNA interactions were not limited within the traditional "4-bp core" range from 5'-I to 3'-III but extended to upstream 5'-II and 5'-III bases and even 5''-I to 5''-III at the non-PT-modified complementary strand. From the epigenetic viewpoint, bases 3'-II, 5''-I, and 5''-III of SBDSpr and 3'-II, 5''-II, and 5''-III of SBDSco present remarkable differentiations in the molecular recognitions. From the protein viewpoint, H102 in SBDSpr and R191 in SBDSco contribute significantly while proline residues at the PT-bound site are strictly conserved for the PT-chalcogen bond. The mutual and make-up mutations are proposed to alter the SBD/PT-DNA recognition pattern, besides additional chiral phosphorothioate modifications on phosphates 5'-II, 5'-II, 3'-I, and 3'-II.
Collapse
Affiliation(s)
- Jiayi Li
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Shenggan Luo
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Xingyu Ouyang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Geng Wu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Zixin Deng
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Xinyi He
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Yi-Lei Zhao
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
7
|
Yi Y, Liu S, Hao Y, Sun Q, Lei X, Wang Y, Wang J, Zhang M, Tang S, Tang Q, Zhang Y, Liu X, Wang Y, Xiao X, Jian H. A systematic analysis of marine lysogens and proviruses. Nat Commun 2023; 14:6013. [PMID: 37758717 PMCID: PMC10533544 DOI: 10.1038/s41467-023-41699-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
Viruses are ubiquitous in the oceans, exhibiting high abundance and diversity. Here, we systematically analyze existing genomic sequences of marine prokaryotes to compile a Marine Prokaryotic Genome Dataset (MPGD, consisting of over 12,000 bacterial and archaeal genomes) and a Marine Temperate Viral Genome Dataset (MTVGD). At least 40% of the MPGD genomes contain one or more proviral sequences, indicating that they are lysogens. The MTVGD includes over 12,900 viral contigs or putative proviruses, clustered into 10,897 viral genera. We show that lysogens and proviruses are abundant in marine ecosystems, particularly in the deep sea, and marine lysogens differ from non-lysogens in multiple genomic features and growth properties. We reveal several virus-host interaction networks of potential ecological relevance, and identify proviruses that appear to be able to infect (or to be transferred between) different bacterial classes and phyla. Auxiliary metabolic genes in the MTVGD are enriched in functions related to carbohydrate metabolism. Finally, we experimentally demonstrate the impact of a prophage on the transcriptome of a representative marine Shewanella bacterium. Our work contributes to a better understanding of the ecology of marine prokaryotes and their viruses.
Collapse
Affiliation(s)
- Yi Yi
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Development Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Shunzhang Liu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Development Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Yali Hao
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Development Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
- Yazhou Bay Institute of Deepsea Sci-Tech, Shanghai Jiao Tong University, Sanya, China
| | - Qingyang Sun
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Development Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Xinjuan Lei
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Development Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
- Yazhou Bay Institute of Deepsea Sci-Tech, Shanghai Jiao Tong University, Sanya, China
| | - Yecheng Wang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Development Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Jiahua Wang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Development Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Mujie Zhang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Development Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
- Yazhou Bay Institute of Deepsea Sci-Tech, Shanghai Jiao Tong University, Sanya, China
| | - Shan Tang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Development Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
- Yazhou Bay Institute of Deepsea Sci-Tech, Shanghai Jiao Tong University, Sanya, China
| | - Qingxue Tang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Development Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Yue Zhang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Development Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Xipeng Liu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Development Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
- Yazhou Bay Institute of Deepsea Sci-Tech, Shanghai Jiao Tong University, Sanya, China
| | - Yinzhao Wang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Development Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
- Yazhou Bay Institute of Deepsea Sci-Tech, Shanghai Jiao Tong University, Sanya, China
| | - Xiang Xiao
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Development Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
- Yazhou Bay Institute of Deepsea Sci-Tech, Shanghai Jiao Tong University, Sanya, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
| | - Huahua Jian
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Development Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China.
- Yazhou Bay Institute of Deepsea Sci-Tech, Shanghai Jiao Tong University, Sanya, China.
| |
Collapse
|
8
|
Jiang S, Chen K, Wang Y, Zhang Y, Tang Y, Huang W, Xiong X, Chen S, Chen C, Wang L. A DNA phosphorothioation-based Dnd defense system provides resistance against various phages and is compatible with the Ssp defense system. mBio 2023; 14:e0093323. [PMID: 37260233 PMCID: PMC10470545 DOI: 10.1128/mbio.00933-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 04/27/2023] [Indexed: 06/02/2023] Open
Abstract
DndABCDE-catalyzed DNA phosphorothioation (PT), in which the nonbridging oxygen is swapped with a sulfur atom, was first identified in the bacterial genome. Usually, this modification gene cluster is paired with a restriction module consisting of DndF, DndG, and DndH. Although the mechanisms for the antiphage activity conferred by this Dnd-related restriction and modification (R-M) system have been well characterized, several features remain unclear, including the antiphage spectrum and potential interference with DNA methylation. Recently, a novel PT-related R-M system, composed of the modification module SspABCD paired with a single restriction enzyme, SspE, was revealed to be widespread in the bacterial kingdom, which aroused our interest in the interaction between Dnd- and Ssp-based R-M systems. In this study, we discussed the action of Dnd-related R-M systems against phages and demonstrated that the host could benefit from the protection provided by Dnd-related R-M systems against infection by various lytic phages as well as temperate phages. However, this defense barrier would fail against lysogenic phages. Interestingly, DNA methylation, even in the consensus sequence recognized by the Dnd system, could not weaken the restriction efficiency. Finally, we explored the interaction between Dnd- and Ssp-based R-M systems and found that these two systems were compatible. This study not only expands our knowledge of Dnd-associated R-M systems but also reveals a complex interaction between different defense barriers that coexist in the cell. IMPORTANCE Recently, we decoded the mechanism of Dnd-related R-M systems against genetic parasites. In the presence of exogenous DNA that lacks PT, the macromolecular machine consisting of DndF, DndG, and DndH undergoes conformational changes to perform DNA binding, translocation, and DNA nicking activities and scavenge the foreign DNA. However, several questions remain unanswered, including questions regarding the antiphage spectrum, potential interference by DNA methylation, and interplay with other PT-dependent R-M systems. Here, we revealed that the host could benefit from Dnd-related R-M systems for a broad range of antiphage activities, regardless of the presence of DNA methylation. Furthermore, we demonstrated that the convergence of Dnd- and Ssp-related R-M systems could confer to the host a stronger antiphage ability through the additive suppression of phage replication. This study not only deepens our understanding of PT-related defense barriers but also expands our knowledge of the arms race between bacteria and their predators.
Collapse
Affiliation(s)
- Susu Jiang
- Department of Gastroenterology, Ministry of Education Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Disease, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, Hubei, China
- Department of Respiratory Diseases, The Research and Application Center of Precision Medicine, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
| | - Ke Chen
- Department of Gastroenterology, Ministry of Education Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Disease, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, Hubei, China
- Department of Respiratory Diseases, The Research and Application Center of Precision Medicine, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
| | - Yingying Wang
- Department of Gastroenterology, Ministry of Education Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Disease, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, Hubei, China
| | - Yueying Zhang
- Department of Gastroenterology, Ministry of Education Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Disease, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, Hubei, China
| | - Yaru Tang
- Department of Gastroenterology, Ministry of Education Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Disease, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, Hubei, China
| | - Wanqiu Huang
- Department of Gastroenterology, Ministry of Education Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Disease, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, Hubei, China
- Department of Burn and Plastic Surgery, Shenzhen Institute of Translational Medicine, Health Science Center, Shenzhen Second People’s Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, China
| | - Xiaolin Xiong
- Department of Gastroenterology, Ministry of Education Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Disease, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, Hubei, China
| | - Shi Chen
- Department of Gastroenterology, Ministry of Education Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Disease, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, Hubei, China
- Department of Burn and Plastic Surgery, Shenzhen Institute of Translational Medicine, Health Science Center, Shenzhen Second People’s Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, China
| | - Chao Chen
- Department of Burn and Plastic Surgery, Shenzhen Institute of Translational Medicine, Health Science Center, Shenzhen Second People’s Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, China
| | - Lianrong Wang
- Department of Gastroenterology, Ministry of Education Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Disease, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, Hubei, China
- Department of Respiratory Diseases, The Research and Application Center of Precision Medicine, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
9
|
Zhang M, Hao Y, Yi Y, Liu S, Sun Q, Tan X, Tang S, Xiao X, Jian H. Unexplored diversity and ecological functions of transposable phages. THE ISME JOURNAL 2023; 17:1015-1028. [PMID: 37069234 PMCID: PMC10284936 DOI: 10.1038/s41396-023-01414-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 04/02/2023] [Accepted: 04/05/2023] [Indexed: 04/19/2023]
Abstract
Phages are prevalent in diverse environments and play major ecological roles attributed to their tremendous diversity and abundance. Among these viruses, transposable phages (TBPs) are exceptional in terms of their unique lifestyle, especially their replicative transposition. Although several TBPs have been isolated and the life cycle of the representative phage Mu has been extensively studied, the diversity distribution and ecological functions of TBPs on the global scale remain unknown. Here, by mining TBPs from enormous microbial genomes and viromes, we established a TBP genome dataset (TBPGD), that expands the number of accessible TBP genomes 384-fold. TBPs are prevalent in diverse biomes and show great genetic diversity. Based on taxonomic evaluations, we propose the categorization of TBPs into four viral groups, including 11 candidate subfamilies. TBPs infect multiple bacterial phyla, and seem to infect a wider range of hosts than non-TBPs. Diverse auxiliary metabolic genes (AMGs) are identified in the TBP genomes, and genes related to glycoside hydrolases and pyrimidine deoxyribonucleotide biosynthesis are highly enriched. Finally, the influences of TBPs on their hosts are experimentally examined by using the marine bacterium Shewanella psychrophila WP2 and its infecting transposable phage SP2. Collectively, our findings greatly expand the genetic diversity of TBPs, and comprehensively reveal their potential influences in various ecosystems.
Collapse
Affiliation(s)
- Mujie Zhang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Development Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Yali Hao
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Development Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Yi Yi
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Development Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Shunzhang Liu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Development Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Qingyang Sun
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Development Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaoli Tan
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Development Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Shan Tang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Development Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Xiang Xiao
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Development Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
- Yazhou Bay Institute of Deepsea Sci-Tech, Shanghai Jiao Tong University, Sanya, China
| | - Huahua Jian
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Development Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China.
- Yazhou Bay Institute of Deepsea Sci-Tech, Shanghai Jiao Tong University, Sanya, China.
| |
Collapse
|
10
|
Yuan X, Huang Z, Zhu Z, Zhang J, Wu Q, Xue L, Wang J, Ding Y. Recent advances in phage defense systems and potential overcoming strategies. Biotechnol Adv 2023; 65:108152. [PMID: 37037289 DOI: 10.1016/j.biotechadv.2023.108152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 04/05/2023] [Accepted: 04/06/2023] [Indexed: 04/12/2023]
Abstract
Bacteriophages are effective in the prevention and control of bacteria, and many phage products have been permitted and applied in the field. Because bacteriophages are expected to replace other antimicrobial agents like antibiotics, the antibacterial effect of bacteriophage has attracted widespread attention. Recently, the diversified defense systems discovered in the target host have become potential threats to the continued effective application of phages. Therefore, a systematic summary and in-depth illustration of the interaction between phages and bacteria is conducive to the development of this biological control approach. In this review, we introduce different defense systems in bacteria against phages and emphasize newly discovered defense mechanisms in recent years. Additionally, we draw attention to the striking resemblance between defense system genes and antibiotic resistance genes, which raises concerns about the potential transfer of phage defense systems within bacterial populations and its future impact on phage efficacy. Thus, attention should be given to the effects of phage defense genes in practical applications. This article is not exhaustive, but strategies to overcome phage defense systems are also discussed to further promote more efficient use of phages.
Collapse
Affiliation(s)
- Xiaoming Yuan
- State Key Laboratory of Applied Microbiology Southern China, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Microbial Safety and Health, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; Department of Food Science & Engineering, Jinan University, Guangzhou 510632, China
| | - Zhichao Huang
- State Key Laboratory of Applied Microbiology Southern China, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Microbial Safety and Health, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; Department of Food Science & Engineering, Jinan University, Guangzhou 510632, China
| | - Zhenjun Zhu
- Department of Food Science & Engineering, Jinan University, Guangzhou 510632, China
| | - Jumei Zhang
- State Key Laboratory of Applied Microbiology Southern China, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Microbial Safety and Health, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Qingping Wu
- State Key Laboratory of Applied Microbiology Southern China, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Microbial Safety and Health, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Liang Xue
- State Key Laboratory of Applied Microbiology Southern China, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Microbial Safety and Health, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Juan Wang
- State Key Laboratory of Applied Microbiology Southern China, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Microbial Safety and Health, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; College of Food Science, South China Agricultural University, Guangzhou 510432, China.
| | - Yu Ding
- Department of Food Science & Engineering, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
11
|
Cobos M, Condori RC, Grandez MA, Estela SL, Del Aguila MT, Castro CG, Rodríguez HN, Vargas JA, Tresierra AB, Barriga LA, Marapara JL, Adrianzén PM, Ruiz R, Castro JC. Genomic analysis and biochemical profiling of an unaxenic strain of Synechococcus sp. isolated from the Peruvian Amazon Basin region. Front Genet 2022; 13:973324. [DOI: 10.3389/fgene.2022.973324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 10/18/2022] [Indexed: 11/10/2022] Open
Abstract
Cyanobacteria are diverse photosynthetic microorganisms able to produce a myriad of bioactive chemicals. To make possible the rational exploitation of these microorganisms, it is fundamental to know their metabolic capabilities and to have genomic resources. In this context, the main objective of this research was to determine the genome features and the biochemical profile of Synechococcus sp. UCP002. The cyanobacterium was isolated from the Peruvian Amazon Basin region and cultured in BG-11 medium. Growth parameters, genome features, and the biochemical profile of the cyanobacterium were determined using standardized methods. Synechococcus sp. UCP002 had a specific growth rate of 0.086 ± 0.008 μ and a doubling time of 8.08 ± 0.78 h. The complete genome of Synechococcus sp. UCP002 had a size of ∼3.53 Mb with a high coverage (∼200x), and its quality parameters were acceptable (completeness = 99.29%, complete and single-copy genes = 97.5%, and contamination = 0.35%). Additionally, the cyanobacterium had six plasmids ranging from 24 to 200 kbp. The annotated genome revealed ∼3,422 genes, ∼ 3,374 protein-coding genes (with ∼41.31% hypothetical protein-coding genes), two CRISPR Cas systems, and 61 non-coding RNAs. Both the genome and plasmids had the genes for prokaryotic defense systems. Additionally, the genome had genes coding the transcription factors of the metalloregulator ArsR/SmtB family, involved in sensing heavy metal pollution. The biochemical profile showed primary nutrients, essential amino acids, some essential fatty acids, pigments (e.g., all-trans-β-carotene, chlorophyll a, and phycocyanin), and phenolic compounds. In conclusion, Synechococcus sp. UCP002 shows biotechnological potential to produce human and animal nutrients and raw materials for biofuels and could be a new source of genes for synthetic biological applications.
Collapse
|
12
|
Yang W, Fomenkov A, Heiter D, Xu SY, Ettwiller L. High-throughput sequencing of EcoWI restriction fragments maps the genome-wide landscape of phosphorothioate modification at base resolution. PLoS Genet 2022; 18:e1010389. [PMID: 36121836 PMCID: PMC9521924 DOI: 10.1371/journal.pgen.1010389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 09/29/2022] [Accepted: 08/18/2022] [Indexed: 11/26/2022] Open
Abstract
Phosphorothioation (PT), in which a non-bridging oxygen is replaced by a sulfur, is one of the rare modifications discovered in bacteria and archaea that occurs on the sugar-phosphate backbone as opposed to the nucleobase moiety of DNA. While PT modification is widespread in the prokaryotic kingdom, how PT modifications are distributed in the genomes and their exact roles in the cell remain to be defined. In this study, we developed a simple and convenient technique called EcoWI-seq based on a modification-dependent restriction endonuclease to identify genomic positions of PT modifications. EcoWI-seq shows similar performance than other PT modification detection techniques and additionally, is easily scalable while requiring little starting material. As a proof of principle, we applied EcoWI-seq to map the PT modifications at base resolution in the genomes of both the Salmonella enterica cerro 87 and E. coli expressing the dnd+ gene cluster. Specifically, we address whether the partial establishment of modified PT positions is a stochastic or deterministic process. EcoWI-seq reveals a systematic usage of the same subset of target sites in clones for which the PT modification has been independently established. Large number of bacteria have modified their DNA mainly as part of a strategy to resist virus infection. Most of the modifications are chemical variations on the canonical bases A, T, C or G with phosphorothioate (PT) being a rare exception of a modification that happens on the backbone of the DNA. Interestingly, this PT modification was first chemically synthesized for specific biotechnological processes before scientists discovered that bacteria and archaea naturally perform this modification using their enzymes. The exact roles of phosphorothioation in bacteria and archaea is still under investigation. To enable further investigation of PT modifications, we designed EcoWI-seq, a method to identify the exact positions of these modifications in bacterial genomes. Notably, we applied the EcoWI-seq to several strains of E. coli for which PT modification has been induced by cloning into these strains, the necessary genes for making such modification. We found that these strains, despite being independently made, followed a precise pattern of PT modification with always the same sites being modified. This result indicates a deterministic process for the establishment of PT modification.
Collapse
Affiliation(s)
- Weiwei Yang
- New England Biolabs Inc., Ipswich, Massachusetts, United States of America
| | - Alexey Fomenkov
- New England Biolabs Inc., Ipswich, Massachusetts, United States of America
| | - Dan Heiter
- New England Biolabs Inc., Ipswich, Massachusetts, United States of America
| | - Shuang-yong Xu
- New England Biolabs Inc., Ipswich, Massachusetts, United States of America
- * E-mail: (SYX); (LE)
| | - Laurence Ettwiller
- New England Biolabs Inc., Ipswich, Massachusetts, United States of America
- * E-mail: (SYX); (LE)
| |
Collapse
|
13
|
Papaleo S, Alvaro A, Nodari R, Panelli S, Bitar I, Comandatore F. The red thread between methylation and mutation in bacterial antibiotic resistance: How third-generation sequencing can help to unravel this relationship. Front Microbiol 2022; 13:957901. [PMID: 36188005 PMCID: PMC9520237 DOI: 10.3389/fmicb.2022.957901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 07/26/2022] [Indexed: 11/13/2022] Open
Abstract
DNA methylation is an important mechanism involved in bacteria limiting foreign DNA acquisition, maintenance of mobile genetic elements, DNA mismatch repair, and gene expression. Changes in DNA methylation pattern are observed in bacteria under stress conditions, including exposure to antimicrobial compounds. These changes can result in transient and fast-appearing adaptive antibiotic resistance (AdR) phenotypes, e.g., strain overexpressing efflux pumps. DNA methylation can be related to DNA mutation rate, because it is involved in DNA mismatch repair systems and because methylated bases are well-known mutational hotspots. The AdR process can be the first important step in the selection of antibiotic-resistant strains, allowing the survival of the bacterial population until more efficient resistant mutants emerge. Epigenetic modifications can be investigated by third-generation sequencing platforms that allow us to simultaneously detect all the methylated bases along with the DNA sequencing. In this scenario, this sequencing technology enables the study of epigenetic modifications in link with antibiotic resistance and will help to investigate the relationship between methylation and mutation in the development of stable mechanisms of resistance.
Collapse
Affiliation(s)
- Stella Papaleo
- Romeo ed Enrica Invernizzi Pediatric Research Center, Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy
| | - Alessandro Alvaro
- Romeo ed Enrica Invernizzi Pediatric Research Center, Department of Bioscience, University of Milan, Milan, Italy
| | - Riccardo Nodari
- Romeo ed Enrica Invernizzi Pediatric Research Center, Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy
| | - Simona Panelli
- Romeo ed Enrica Invernizzi Pediatric Research Center, Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy
| | - Ibrahim Bitar
- Department of Microbiology, Faculty of Medicine and University Hospital in Pilsen, Charles University, Pilsen, Czechia
- Biomedical Center, Faculty of Medicine, Charles University, Pilsen, Czechia
| | - Francesco Comandatore
- Romeo ed Enrica Invernizzi Pediatric Research Center, Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy
- *Correspondence: Francesco Comandatore
| |
Collapse
|
14
|
Involvement of the DNA Phosphorothioation System in TorR Binding and Anaerobic TMAO Respiration in Salmonella enterica. mBio 2022; 13:e0069922. [PMID: 35420479 PMCID: PMC9239176 DOI: 10.1128/mbio.00699-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Although the phosphorothioate (PT) modification, in which the nonbridging oxygen in the DNA sugar-phosphate backbone is replaced by sulfur, has been reported to play versatile roles in multiple cellular processes, very little data have been obtained to define the role of PT in epigenetic regulation. In this study, we report that the PT system in Salmonella enterica serovar Cerro 87 is involved in the transcriptional regulation of the torCAD operon encoding the trimethylamine N-oxide (TMAO) respiration machinery that enables the use of TMAO as a terminal electron acceptor for respiration when oxygen is not available. In vitro, PT enhanced the binding of the transcriptional activator of the torCAD operon, namely, TorR, to its DNA substrate (tor boxes). However, in vivo, the PT modification protein complex DndCDE downregulated torCAD transcription through competing with the binding of TorR to the tor boxes. The altered expression of torCAD caused by PT modification proteins affected cell growth that relied on TMAO respiration. To our knowledge, this is the first report supporting that PT proteins participate in transcriptional regulation, showing a new function of PT systems.
Collapse
|