1
|
Marqueño T, Kuzovnikov MA, Osmond I, Dalladay-Simpson P, Hermann A, Howie RT, Peña-Alvarez M. High pressure study of sodium trihydride. Front Chem 2024; 11:1306495. [PMID: 38264124 PMCID: PMC10803492 DOI: 10.3389/fchem.2023.1306495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 12/19/2023] [Indexed: 01/25/2024] Open
Abstract
The reactivity between NaH and H2 has been investigated through a series of high-temperature experiments up to pressures of 78 GPa in diamond anvil cells combined with first principles calculations. Powder X-ray diffraction measurements show that heating NaH in an excess of H2 to temperatures around 2000 K above 27 GPa yields sodium trihydride (NaH3), which adopts an orthorhombic structure (space group Cmcm). Raman spectroscopy measurements indicate that NaH3 hosts quasi-molecular hydrogen (H 2 δ - ) within a NaH lattice, with the H 2 δ - stretching mode downshifted compared to pure H2 (Δν ∼-120 cm-1 at 50 GPa). NaH3 is stable under room temperature compression to at least 78 GPa, and exhibits remarkable P-T stability, decomposing at pressures below 18 GPa. Contrary to previous experimental and theoretical studies, heating NaH (or NaH3) in excess H2 between 27 and 75 GPa does not promote further hydrogenation to form sodium polyhydrides other than NaH3.
Collapse
Affiliation(s)
- Tomas Marqueño
- Centre for Science at Extreme Conditions (CSEC), The School of Physics and Astronomy, The University of Edinburgh, Edinburgh, United Kingdom
| | - Mikhail A. Kuzovnikov
- Centre for Science at Extreme Conditions (CSEC), The School of Physics and Astronomy, The University of Edinburgh, Edinburgh, United Kingdom
| | - Israel Osmond
- Centre for Science at Extreme Conditions (CSEC), The School of Physics and Astronomy, The University of Edinburgh, Edinburgh, United Kingdom
| | | | - Andreas Hermann
- Centre for Science at Extreme Conditions (CSEC), The School of Physics and Astronomy, The University of Edinburgh, Edinburgh, United Kingdom
| | - Ross T. Howie
- Centre for Science at Extreme Conditions (CSEC), The School of Physics and Astronomy, The University of Edinburgh, Edinburgh, United Kingdom
- Center for High Pressure Science and Technology Advanced Research, Shanghai, China
| | - Miriam Peña-Alvarez
- Centre for Science at Extreme Conditions (CSEC), The School of Physics and Astronomy, The University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
2
|
Li L, Vozniuk O, Cao Z, Losch P, Felderhoff M, Schüth F. Hydrogenation of different carbon substrates into light hydrocarbons by ball milling. Nat Commun 2023; 14:5257. [PMID: 37644018 PMCID: PMC10465506 DOI: 10.1038/s41467-023-40915-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 08/15/2023] [Indexed: 08/31/2023] Open
Abstract
The conversion of carbon-based solids, like non-recyclable plastics, biomass, and coal, into small molecules appears attractive from different points of view. However, the strong carbon-carbon bonds in these substances pose a severe obstacle, and thus-if such reactions are possible at all-high temperatures are required1-5. The Bergius process for coal conversion to hydrocarbons requires temperatures above 450 °C6, pyrolysis of different polymers to pyrolysis oil is also typically carried out at similar temperatures7,8. We have now discovered that efficient hydrogenation of different solid substrates with the carbon-based backbone to light hydrocarbons can be achieved at room temperature by ball milling. This mechanocatalytic method is surprisingly effective for a broad range of different carbon substrates, including even diamond. The reaction is found to proceed via a radical mechanism, as demonstrated by reactions in the presence of radical scavengers. This finding also adds to the currently limited knowledge in understanding mechanisms of reactions induced by ball milling. The results, guided by the insight into the mechanism, could induce more extended exploration to broaden the application scope and help to address the problem of plastic waste by a mechanocatalytic approach.
Collapse
Affiliation(s)
- Linfeng Li
- Department of Heterogeneous Catalysis, Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470, Mülheim an der Ruhr, Germany
| | - Olena Vozniuk
- Department of Heterogeneous Catalysis, Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470, Mülheim an der Ruhr, Germany.
| | - Zhengwen Cao
- Department of Heterogeneous Catalysis, Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470, Mülheim an der Ruhr, Germany
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao Key Laboratory of Functional Membrane Material and Membrane Technology, No.189 Songling Road, 266101, Qingdao, China
| | - Pit Losch
- Department of Heterogeneous Catalysis, Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470, Mülheim an der Ruhr, Germany
| | - Michael Felderhoff
- Department of Heterogeneous Catalysis, Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470, Mülheim an der Ruhr, Germany
| | - Ferdi Schüth
- Department of Heterogeneous Catalysis, Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470, Mülheim an der Ruhr, Germany.
| |
Collapse
|
3
|
Zhang L, Zhang L, Tang M, Wang X, Tao R, Xu C, Bader T. Massive abiotic methane production in eclogite during cold subduction. Natl Sci Rev 2022; 10:nwac207. [PMID: 36654916 PMCID: PMC9840456 DOI: 10.1093/nsr/nwac207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 09/22/2022] [Accepted: 09/28/2022] [Indexed: 01/21/2023] Open
Abstract
Methane (CH4) is a critical but overlooked component in the study of the deep carbon cycle. Abiotic CH4 produced by serpentinization of ultramafic rocks has received extensive attention, but its formation and flux in mafic rocks during subduction remain poorly understood. Here, we report massive CH4-rich fluid inclusions in well-zoned garnet from eclogites in Western Tianshan, China. Petrological characteristics and carbon-hydrogen isotopic compositions confirm the abiotic origin of this CH4. Reconstructed P-T-fO2-fluid trajectories and Deep Earth Water modeling imply that massive abiotic CH4 was generated during cold subduction at depths of 50-120 km, whereas CO2 was produced during exhumation. The massive production of abiotic CH4 in eclogites may result from multiple mechanisms during prograde high pressure-ultrahigh pressure metamorphism. Our flux calculation proposes that abiotic CH4 that has been formed in HP-UHP eclogites in cold subduction zones may represent one of the largest, yet overlooked, sources of abiotic CH4 on Earth.
Collapse
Affiliation(s)
- Lijuan Zhang
- Ministry of Education Key Laboratory of Orogenic Belts and Crustal Evolution, School of Earth and Space Sciences, Peking University, Beijing 100871, China
| | | | - Ming Tang
- Ministry of Education Key Laboratory of Orogenic Belts and Crustal Evolution, School of Earth and Space Sciences, Peking University, Beijing 100871, China
| | - Xiao Wang
- Ministry of Education Key Laboratory of Orogenic Belts and Crustal Evolution, School of Earth and Space Sciences, Peking University, Beijing 100871, China
| | - Renbiao Tao
- Ministry of Education Key Laboratory of Orogenic Belts and Crustal Evolution, School of Earth and Space Sciences, Peking University, Beijing 100871, China
| | - Cheng Xu
- Ministry of Education Key Laboratory of Orogenic Belts and Crustal Evolution, School of Earth and Space Sciences, Peking University, Beijing 100871, China
| | - Thomas Bader
- Ministry of Education Key Laboratory of Orogenic Belts and Crustal Evolution, School of Earth and Space Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
4
|
Ranieri U, Conway LJ, Donnelly ME, Hu H, Wang M, Dalladay-Simpson P, Peña-Alvarez M, Gregoryanz E, Hermann A, Howie RT. Formation and Stability of Dense Methane-Hydrogen Compounds. PHYSICAL REVIEW LETTERS 2022; 128:215702. [PMID: 35687440 DOI: 10.1103/physrevlett.128.215702] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 02/02/2022] [Accepted: 04/20/2022] [Indexed: 06/15/2023]
Abstract
Through a series of x-ray diffraction, optical spectroscopy diamond anvil cell experiments, combined with density functional theory calculations, we explore the dense CH_{4}-H_{2} system. We find that pressures as low as 4.8 GPa can stabilize CH_{4}(H_{2})_{2} and (CH_{4})_{2}H_{2}, with the latter exhibiting extreme hardening of the intramolecular vibrational mode of H_{2} units within the structure. On further compression, a unique structural composition, (CH_{4})_{3}(H_{2})_{25}, emerges. This novel structure holds a vast amount of molecular hydrogen and represents the first compound to surpass 50 wt % H_{2}. These compounds, stabilized by nuclear quantum effects, persist over a broad pressure regime, exceeding 160 GPa.
Collapse
Affiliation(s)
- Umbertoluca Ranieri
- Center for High Pressure Science and Technology Advanced Research, 1690 Cailun Road, Shanghai, 201203, China
- Dipartimento di Fisica, Università di Roma La Sapienza, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Lewis J Conway
- Centre for Science at Extreme Conditions and The School of Physics and Astronomy, The University of Edinburgh, Peter Guthrie Tait Road, Edinburgh, United Kingdom
| | - Mary-Ellen Donnelly
- Center for High Pressure Science and Technology Advanced Research, 1690 Cailun Road, Shanghai, 201203, China
| | - Huixin Hu
- Center for High Pressure Science and Technology Advanced Research, 1690 Cailun Road, Shanghai, 201203, China
| | - Mengnan Wang
- Center for High Pressure Science and Technology Advanced Research, 1690 Cailun Road, Shanghai, 201203, China
| | - Philip Dalladay-Simpson
- Center for High Pressure Science and Technology Advanced Research, 1690 Cailun Road, Shanghai, 201203, China
| | - Miriam Peña-Alvarez
- Centre for Science at Extreme Conditions and The School of Physics and Astronomy, The University of Edinburgh, Peter Guthrie Tait Road, Edinburgh, United Kingdom
| | - Eugene Gregoryanz
- Center for High Pressure Science and Technology Advanced Research, 1690 Cailun Road, Shanghai, 201203, China
- Centre for Science at Extreme Conditions and The School of Physics and Astronomy, The University of Edinburgh, Peter Guthrie Tait Road, Edinburgh, United Kingdom
- Key Laboratory of Materials Physics, Institute of Solid State Physics, CAS, Hefei, China
| | - Andreas Hermann
- Centre for Science at Extreme Conditions and The School of Physics and Astronomy, The University of Edinburgh, Peter Guthrie Tait Road, Edinburgh, United Kingdom
| | - Ross T Howie
- Center for High Pressure Science and Technology Advanced Research, 1690 Cailun Road, Shanghai, 201203, China
- Centre for Science at Extreme Conditions and The School of Physics and Astronomy, The University of Edinburgh, Peter Guthrie Tait Road, Edinburgh, United Kingdom
| |
Collapse
|