1
|
Lim MX, VanSaders B, Jaeger HM. Acoustic manipulation of multi-body structures and dynamics. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2024; 87:064601. [PMID: 38670083 DOI: 10.1088/1361-6633/ad43f9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 04/26/2024] [Indexed: 04/28/2024]
Abstract
Sound can exert forces on objects of any material and shape. This has made the contactless manipulation of objects by intense ultrasound a fascinating area of research with wide-ranging applications. While much is understood for acoustic forcing of individual objects, sound-mediated interactions among multiple objects at close range gives rise to a rich set of structures and dynamics that are less explored and have been emerging as a frontier for research. We introduce the basic mechanisms giving rise to sound-mediated interactions among rigid as well as deformable particles, focusing on the regime where the particles' size and spacing are much smaller than the sound wavelength. The interplay of secondary acoustic scattering, Bjerknes forces, and micro-streaming is discussed and the role of particle shape is highlighted. Furthermore, we present recent advances in characterizing non-conservative and non-pairwise additive contributions to the particle interactions, along with instabilities and active fluctuations. These excitations emerge at sufficiently strong sound energy density and can act as an effective temperature in otherwise athermal systems.
Collapse
Affiliation(s)
- Melody X Lim
- James Franck Institute, The University of Chicago, Chicago, IL 60637, United States of America
- Department of Physics, The University of Chicago, Chicago, IL 60637, United States of America
| | - Bryan VanSaders
- James Franck Institute, The University of Chicago, Chicago, IL 60637, United States of America
| | - Heinrich M Jaeger
- James Franck Institute, The University of Chicago, Chicago, IL 60637, United States of America
- Department of Physics, The University of Chicago, Chicago, IL 60637, United States of America
| |
Collapse
|
2
|
Li X, Cao Y, Ng J. Non-Hermitian non-equipartition theory for trapped particles. Nat Commun 2024; 15:1963. [PMID: 38438361 PMCID: PMC10912716 DOI: 10.1038/s41467-024-46058-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 02/13/2024] [Indexed: 03/06/2024] Open
Abstract
The equipartition theorem is an elegant cornerstone theory of thermal and statistical physics. However, it fails to address some contemporary problems, such as those associated with optical and acoustic trapping, due to the non-Hermitian nature of the external wave-induced force. We use stochastic calculus to solve the Langevin equation and thereby analytically generalize the equipartition theorem to a theory that we denote the non-Hermitian non-equipartition theory. We use the non-Hermitian non-equipartition theory to calculate the relevant statistics, which reveal that the averaged kinetic and potential energies are no longer equal to kBT/2 and are not equipartitioned. As examples, we apply non-Hermitian non-equipartition theory to derive the connection between the non-Hermitian trapping force and particle statistics, whereby measurement of the latter can determine the former. Furthermore, we apply a non-Hermitian force to convert a saddle potential into a stable potential, leading to a different type of stable state.
Collapse
Affiliation(s)
- Xiao Li
- Department of Physics, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
- Department of Physics, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Yongyin Cao
- Institute of Advanced Photonics, School of Physics, Harbin Institute of Technology, Harbin, 150001, China
| | - Jack Ng
- Department of Physics, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China.
| |
Collapse
|
3
|
Cui X, Zhang RY, Wang X, Wang W, Ma G, Chan CT. Experimental Realization of Stable Exceptional Chains Protected by Non-Hermitian Latent Symmetries Unique to Mechanical Systems. PHYSICAL REVIEW LETTERS 2023; 131:237201. [PMID: 38134766 DOI: 10.1103/physrevlett.131.237201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 08/20/2023] [Accepted: 11/08/2023] [Indexed: 12/24/2023]
Abstract
Lines of exceptional points are robust in the three-dimensional non-Hermitian parameter space without requiring any symmetry. However, when more elaborate exceptional structures are considered, the role of symmetry becomes critical. One such case is the exceptional chain (EC), which is formed by the intersection or osculation of multiple exceptional lines (ELs). In this Letter, we investigate a non-Hermitian classical mechanical system and reveal that a symmetry intrinsic to second-order dynamical equations, in combination with the source-free principle of ELs, guarantees the emergence of ECs. This symmetry can be understood as a non-Hermitian generalized latent symmetry, which is absent in prevailing formalisms rooted in first-order Schrödinger-like equations and has largely been overlooked so far. We experimentally confirm and characterize the ECs using an active mechanical oscillator system. Moreover, by measuring eigenvalue braiding around the ELs meeting at a chain point, we demonstrate the source-free principle of directed ELs that underlies the mechanism for EC formation. Our Letter not only enriches the diversity of non-Hermitian exceptional point configurations, but also highlights the new potential for non-Hermitian physics in second-order dynamical systems.
Collapse
Affiliation(s)
- Xiaohan Cui
- Department of Physics, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Ruo-Yang Zhang
- Department of Physics, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Xulong Wang
- Department of Physics, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| | - Wei Wang
- Department of Physics, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| | - Guancong Ma
- Department of Physics, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| | - C T Chan
- Department of Physics, The Hong Kong University of Science and Technology, Hong Kong, China
| |
Collapse
|
4
|
Zhang C, Cheng Y, Wang S. Enhanced optical forces on coupled chiral particles at arbitrary order exceptional points. OPTICS EXPRESS 2023; 31:28929-28938. [PMID: 37710701 DOI: 10.1364/oe.497693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 07/26/2023] [Indexed: 09/16/2023]
Abstract
Exceptional points (EPs)-non-Hermitian degeneracies at which eigenvalues and eigenvectors coalesce-can give rise to many intriguing phenomena in optical systems. Here, we report a study of the optical forces on chiral particles in a non-Hermitian system at EPs. The EPs are achieved by employing the unidirectional coupling of the chiral particles sitting on a dielectric waveguide under the excitation of a linearly polarized plane wave. Using full-wave numerical simulations, we demonstrate that the structure can give rise to enhanced optical forces at the EPs. Higher order EPs in general can induce stronger optical forces. In addition, the optical forces exhibit an intriguing "skin effect": the force approaches the maximum for the chiral particle at one end of the lattice. The results contribute to the understanding of optical forces in non-Hermitian systems and can find applications in designing novel optical tweezers for on-chip manipulations of chiral particles.
Collapse
|
5
|
Observation of high-order imaginary Poynting momentum optomechanics in structured light. Proc Natl Acad Sci U S A 2022; 119:e2209721119. [PMID: 36279457 PMCID: PMC9636969 DOI: 10.1073/pnas.2209721119] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Optical forces on small particles are conventionally produced from the intensity or phase gradient of light. Harnessing the imaginary Poynting momentum (IPM) of light to generate nontrivial forces would unlock the full potential of optical manipulation techniques, but so far, it is demonstrated only for dipolar magnetoelectric particles. Here, we show that the IPM can be coupled to the force via the interplay of multipoles higher than dipoles, giving rise to high-order IPM forces that can be exerted on a large variety of Mie particles. The high-order concept and theory can be extended to the well-known optical gradient force and radiation pressure, and may inspire new insights for studying the interaction of matter with other classic waves, such as acoustics. The imaginary Poynting momentum (IPM) of light has been captivated as an unusual origin of optical forces. However, the IPM force is predicted only for dipolar magnetoelectric particles that are hardly used in optical manipulation experiments. Here, we report a whole family of high-order IPM forces for not only magnetoelectric but also generic Mie particles, assisted with their excited higher multipoles within. Such optomechanical manifestations derive from a nonlocal contribution of the IPM to the optical force, which can be remarkable even when the incident IPM is small. We observe the high-order optomechanics in a structured light beam, which, despite carrying no angular momentum, is able to set normal microparticles into continuous rotation. Our results provide unambiguous evidence of the ponderomotive nature of the IPM, expand the classification of optical forces, and open new possibilities for levitated optomechanics and micromanipulations.
Collapse
|
6
|
Rahman M, Islam KR, Islam MR, Islam MJ, Kaysir MR, Akter M, Rahman MA, Alam SMM. A Critical Review on the Sensing, Control, and Manipulation of Single Molecules on Optofluidic Devices. MICROMACHINES 2022; 13:968. [PMID: 35744582 PMCID: PMC9229244 DOI: 10.3390/mi13060968] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 05/19/2022] [Accepted: 05/23/2022] [Indexed: 02/06/2023]
Abstract
Single-molecule techniques have shifted the paradigm of biological measurements from ensemble measurements to probing individual molecules and propelled a rapid revolution in related fields. Compared to ensemble measurements of biomolecules, single-molecule techniques provide a breadth of information with a high spatial and temporal resolution at the molecular level. Usually, optical and electrical methods are two commonly employed methods for probing single molecules, and some platforms even offer the integration of these two methods such as optofluidics. The recent spark in technological advancement and the tremendous leap in fabrication techniques, microfluidics, and integrated optofluidics are paving the way toward low cost, chip-scale, portable, and point-of-care diagnostic and single-molecule analysis tools. This review provides the fundamentals and overview of commonly employed single-molecule methods including optical methods, electrical methods, force-based methods, combinatorial integrated methods, etc. In most single-molecule experiments, the ability to manipulate and exercise precise control over individual molecules plays a vital role, which sometimes defines the capabilities and limits of the operation. This review discusses different manipulation techniques including sorting and trapping individual particles. An insight into the control of single molecules is provided that mainly discusses the recent development of electrical control over single molecules. Overall, this review is designed to provide the fundamentals and recent advancements in different single-molecule techniques and their applications, with a special focus on the detection, manipulation, and control of single molecules on chip-scale devices.
Collapse
Affiliation(s)
- Mahmudur Rahman
- Department of Electrical and Electronic Engineering, Dhaka University of Engineering & Technology, Gazipur 1707, Bangladesh; (M.R.); (K.R.I.); (M.R.I.); (M.A.); (M.A.R.)
| | - Kazi Rafiqul Islam
- Department of Electrical and Electronic Engineering, Dhaka University of Engineering & Technology, Gazipur 1707, Bangladesh; (M.R.); (K.R.I.); (M.R.I.); (M.A.); (M.A.R.)
| | - Md. Rashedul Islam
- Department of Electrical and Electronic Engineering, Dhaka University of Engineering & Technology, Gazipur 1707, Bangladesh; (M.R.); (K.R.I.); (M.R.I.); (M.A.); (M.A.R.)
| | - Md. Jahirul Islam
- Department of Electrical and Electronic Engineering, Khulna University of Engineering & Technology, Khulna 9203, Bangladesh;
| | - Md. Rejvi Kaysir
- Department of Electrical and Computer Engineering, University of Waterloo, 200 University Ave. W, Waterloo, ON N2L 3G1, Canada;
- Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Ave. W, Waterloo, ON N2L 3G1, Canada
| | - Masuma Akter
- Department of Electrical and Electronic Engineering, Dhaka University of Engineering & Technology, Gazipur 1707, Bangladesh; (M.R.); (K.R.I.); (M.R.I.); (M.A.); (M.A.R.)
| | - Md. Arifur Rahman
- Department of Electrical and Electronic Engineering, Dhaka University of Engineering & Technology, Gazipur 1707, Bangladesh; (M.R.); (K.R.I.); (M.R.I.); (M.A.); (M.A.R.)
| | - S. M. Mahfuz Alam
- Department of Electrical and Electronic Engineering, Dhaka University of Engineering & Technology, Gazipur 1707, Bangladesh; (M.R.); (K.R.I.); (M.R.I.); (M.A.); (M.A.R.)
| |
Collapse
|
7
|
Davenport DJ, Kleckner D. Formation of colloidal chains and driven clusters with optical binding. SOFT MATTER 2022; 18:4464-4474. [PMID: 35666534 DOI: 10.1039/d2sm00393g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
We study the effects of the optical binding force on wavelength sized colloidal particles free to move in a counter-propagating beam. This work is motivated by the concept of using optical binding to direct the assembly of large numbers of colloidal particles; previous work has used small numbers of particles and/or 1D or 2D restricted geometries. Utilizing a novel experimental scheme, we describe the general static and dynamic self-organization behaviors for 20-100 particles free to move in 3-dimensional space. We observe the self-organization of the colloids into large optically bound structures along with the formation of driven particle clusters. Furthermore we show that the structure and behavior of these optically bound systems can be tuned using the refractive index of the particles and properties of the binding light. In particular, we show that the driven behavior originates from N-body interactions, which has significant implications for future work on optically bound clusters of more than 2 particles.
Collapse
|
8
|
Shi Y, Zhou LM, Liu AQ, Nieto-Vesperinas M, Zhu T, Hassanfiroozi A, Liu J, Zhang H, Tsai DP, Li H, Ding W, Zhu W, Yu YF, Mazzulla A, Cipparrone G, Wu PC, Chan CT, Qiu CW. Superhybrid Mode-Enhanced Optical Torques on Mie-Resonant Particles. NANO LETTERS 2022; 22:1769-1777. [PMID: 35156826 DOI: 10.1021/acs.nanolett.2c00050] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Circularly polarized light carries spin angular momentum, so it can exert an optical torque on the polarization-anisotropic particle by the spin momentum transfer. Here, we show that giant positive and negative optical torques on Mie-resonant (gain) particles arise from the emergence of superhybrid modes with magnetic multipoles and electric toroidal moments, excited by linearly polarized beams. Anomalous positive and negative torques on particles (doped with judicious amount of dye molecules) are over 800 and 200 times larger than the ordinary lossy counterparts, respectively. Meanwhile, a rotational motor can be configured by switching the s- and p-polarized beams, exhibiting opposite optical torques. These giant and reversed optical torques are unveiled for the first time in the scattering spectrum, paving another avenue toward exploring unprecedented physics of hybrid and superhybrid multipoles in metaoptics and optical manipulations.
Collapse
Affiliation(s)
- Yuzhi Shi
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Department of Micro/Nano Electronics, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Lei-Ming Zhou
- Department of Optical Engineering, School of Physics, Hefei University of Technology, Hefei 230601, China
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583
| | - Ai Qun Liu
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798
| | - Manuel Nieto-Vesperinas
- Instituto de Ciencia de Materiales de Madrid, Consejo Superior de Investigaciones Científicas, Campus de Cantoblanco, Madrid 28049, Spain
| | - Tongtong Zhu
- School of Optoelectronic Engineering and Instrumentation Science, Dalian University of Technology, Dalian 116024, China
| | - Amir Hassanfiroozi
- Department of Photonics, National Cheng Kung University, Tainan 70101, Taiwan
| | - Jingquan Liu
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Department of Micro/Nano Electronics, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hui Zhang
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798
| | - Din Ping Tsai
- Department of Electrical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Hang Li
- School of Physics, Harbin Institute of Technology, Harbin 150001, China
| | - Weiqiang Ding
- School of Physics, Harbin Institute of Technology, Harbin 150001, China
| | - Weiming Zhu
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Ye Feng Yu
- School of Electronic and Optical Engineering, Nanjing University of Science and Technology, Jiangsu 210094, China
| | - Alfredo Mazzulla
- CNR Nanotec─Institute of Nanotechnology, S.S. Cosenza, Rende, CS 87036, Italy
| | - Gabriella Cipparrone
- Department of Physics, University of Calabria, Ponte P. Bucci 31C, Rende, CS 87036, Italy
| | - Pin Chieh Wu
- Department of Photonics, National Cheng Kung University, Tainan 70101, Taiwan
| | - C T Chan
- Department of Physics, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Cheng-Wei Qiu
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583
| |
Collapse
|