1
|
Boyd CM, Subramanian S, Dunham DT, Parent KN, Seed KD. A Vibrio cholerae viral satellite maximizes its spread and inhibits phage by remodeling hijacked phage coat proteins into small capsids. eLife 2024; 12:RP87611. [PMID: 38206122 PMCID: PMC10945586 DOI: 10.7554/elife.87611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024] Open
Abstract
Phage satellites commonly remodel capsids they hijack from the phages they parasitize, but only a few mechanisms regulating the change in capsid size have been reported. Here, we investigated how a satellite from Vibrio cholerae, phage-inducible chromosomal island-like element (PLE), remodels the capsid it has been predicted to steal from the phage ICP1 (Netter et al., 2021). We identified that a PLE-encoded protein, TcaP, is both necessary and sufficient to form small capsids during ICP1 infection. Interestingly, we found that PLE is dependent on small capsids for efficient transduction of its genome, making it the first satellite to have this requirement. ICP1 isolates that escaped TcaP-mediated remodeling acquired substitutions in the coat protein, suggesting an interaction between these two proteins. With a procapsid-like particle (PLP) assembly platform in Escherichia coli, we demonstrated that TcaP is a bona fide scaffold that regulates the assembly of small capsids. Further, we studied the structure of PLE PLPs using cryogenic electron microscopy and found that TcaP is an external scaffold that is functionally and somewhat structurally similar to the external scaffold, Sid, encoded by the unrelated satellite P4 (Kizziah et al., 2020). Finally, we showed that TcaP is largely conserved across PLEs. Together, these data support a model in which TcaP directs the assembly of small capsids comprised of ICP1 coat proteins, which inhibits the complete packaging of the ICP1 genome and permits more efficient packaging of replicated PLE genomes.
Collapse
Affiliation(s)
- Caroline M Boyd
- Department of Plant and Microbial Biology, Seed Lab, University of California, BerkeleyBerkeleyUnited States
| | - Sundharraman Subramanian
- Department of Biochemistry and Molecular Biology, Parent Lab, Michigan State UniversityEast LansingUnited States
| | - Drew T Dunham
- Department of Plant and Microbial Biology, Seed Lab, University of California, BerkeleyBerkeleyUnited States
| | - Kristin N Parent
- Department of Biochemistry and Molecular Biology, Parent Lab, Michigan State UniversityEast LansingUnited States
| | - Kimberley D Seed
- Department of Plant and Microbial Biology, Seed Lab, University of California, BerkeleyBerkeleyUnited States
| |
Collapse
|
2
|
Rūmnieks J, Füzik T, Tārs K. Structure of the Borrelia Bacteriophage φBB1 Procapsid. J Mol Biol 2023; 435:168323. [PMID: 37866476 DOI: 10.1016/j.jmb.2023.168323] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 10/12/2023] [Accepted: 10/17/2023] [Indexed: 10/24/2023]
Abstract
Bacteriophages of Borrelia burgdorferi are a biologically important but under-investigated feature of the Lyme disease-causing spirochete. No virulent borrelial viruses have been identified, but all B. burgdorferi isolates carry a prophage φBB1 as resident circular plasmids. Like its host, the φBB1 phage is quite distinctive and shares little sequence similarity with other known bacteriophages. We expressed φBB1 head morphogenesis proteins in Escherichia coli which resulted in assembly of homogeneous prolate procapsid structures and used cryo-electron microscopy to determine the three-dimensional structure of these particles. The φBB1 procapsids consist of 415 copies of the major capsid protein and an equal combined number of three homologous capsid decoration proteins that form trimeric knobs on the outside of the particle. One of the end vertices of the particle is occupied by a portal assembled from twelve copies of the portal protein. The φBB1 scaffolding protein is entirely α-helical and has an elongated shape with a small globular domain in the middle. Within the tubular section of the procapsid, the internal scaffold is built of stacked rings, each composed of 32 scaffolding protein molecules, which run in opposite directions from both caps with a heterogeneous part in the middle. Inside the portal-containing cap, the scaffold is organized asymmetrically with ten scaffolding protein molecules bound to the portal. The φBB1 procapsid structure provides better insight into the vast structural diversity of bacteriophages and presents clues of how elongated bacteriophage particles might be assembled.
Collapse
Affiliation(s)
- Jānis Rūmnieks
- Latvian Biomedical Research and Study Center, Rātsupītes 1, 1067 Riga, Latvia.
| | - Tibor Füzik
- Structural Virology, Central European Institute of Technology, Masaryk University, Kamenice 753/5, 62500 Brno, Czech Republic
| | - Kaspars Tārs
- Latvian Biomedical Research and Study Center, Rātsupītes 1, 1067 Riga, Latvia; Faculty of Biology, University of Latvia, Jelgavas 1, 1004 Riga, Latvia
| |
Collapse
|
3
|
deCarvalho T, Mascolo E, Caruso SM, López-Pérez J, Weston-Hafer K, Shaffer C, Erill I. Simultaneous entry as an adaptation to virulence in a novel satellite-helper system infecting Streptomyces species. THE ISME JOURNAL 2023; 17:2381-2388. [PMID: 37907733 PMCID: PMC10690885 DOI: 10.1038/s41396-023-01548-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 10/11/2023] [Accepted: 10/16/2023] [Indexed: 11/02/2023]
Abstract
Satellites are mobile genetic elements that are dependent upon the replication machinery of their helper viruses. Bacteriophages have provided many examples of satellite nucleic acids that utilize their helper morphogenic genes for propagation. Here we describe two novel satellite-helper phage systems, Mulch and Flayer, that infect Streptomyces species. The satellites in these systems encode for encapsidation machinery but have an absence of key replication genes, thus providing the first example of bacteriophage satellite viruses. We also show that codon usage of the satellites matches the tRNA gene content of the helpers. The satellite in one of these systems, Flayer, does not appear to integrate into the host genome, which represents the first example of a virulent satellite phage. The Flayer satellite has a unique tail adaptation that allows it to attach to its helper for simultaneous co-infection. These findings demonstrate an ever-increasing array of satellite strategies for genetic dependence on their helpers in the evolutionary arms race between satellite and helper phages.
Collapse
Affiliation(s)
- Tagide deCarvalho
- Keith R. Porter Imaging Facility, College of Natural and Mathematical Sciences, University of Maryland Baltimore County, Baltimore, MD, USA
| | - Elia Mascolo
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, MD, USA
| | - Steven M Caruso
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, MD, USA
| | - Júlia López-Pérez
- Departament de Genètica i Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | | | - Christopher Shaffer
- Department of Biology, Washington University in St. Louis, St. Louis, MO, USA
| | - Ivan Erill
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, MD, USA.
- Departament d'Enginyeria de la Informació i de les Comunicacions, Universitat Autònoma de Barcelona, Bellaterra, Spain.
| |
Collapse
|
4
|
Podgorski JM, Freeman K, Gosselin S, Huet A, Conway JF, Bird M, Grecco J, Patel S, Jacobs-Sera D, Hatfull G, Gogarten JP, Ravantti J, White SJ. A structural dendrogram of the actinobacteriophage major capsid proteins provides important structural insights into the evolution of capsid stability. Structure 2023; 31:282-294.e5. [PMID: 36649709 PMCID: PMC10071307 DOI: 10.1016/j.str.2022.12.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/31/2022] [Accepted: 12/19/2022] [Indexed: 01/19/2023]
Abstract
Many double-stranded DNA viruses, including tailed bacteriophages (phages) and herpesviruses, use the HK97-fold in their major capsid protein to make the capsomers of the icosahedral viral capsid. After the genome packaging at near-crystalline densities, the capsid is subjected to a major expansion and stabilization step that allows it to withstand environmental stresses and internal high pressure. Several different mechanisms for stabilizing the capsid have been structurally characterized, but how these mechanisms have evolved is still not understood. Using cryo-EM structure determination of 10 capsids, structural comparisons, phylogenetic analyses, and Alphafold predictions, we have constructed a detailed structural dendrogram describing the evolution of capsid structural stability within the actinobacteriophages. We show that the actinobacteriophage major capsid proteins can be classified into 15 groups based upon their HK97-fold.
Collapse
Affiliation(s)
- Jennifer M Podgorski
- Biology/Physics Building, Department of Molecular and Cell Biology, University of Connecticut, 91 North Eagleville Road, Unit-3125, Storrs, CT 06269-3125, USA
| | - Krista Freeman
- Clapp Hall, Department of Biological Sciences, University of Pittsburgh, 4249 Fifth Avenue, Pittsburgh, PA 15260, USA
| | - Sophia Gosselin
- Biology/Physics Building, Department of Molecular and Cell Biology, University of Connecticut, 91 North Eagleville Road, Unit-3125, Storrs, CT 06269-3125, USA
| | - Alexis Huet
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - James F Conway
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Mary Bird
- Biology/Physics Building, Department of Molecular and Cell Biology, University of Connecticut, 91 North Eagleville Road, Unit-3125, Storrs, CT 06269-3125, USA
| | - John Grecco
- Biology/Physics Building, Department of Molecular and Cell Biology, University of Connecticut, 91 North Eagleville Road, Unit-3125, Storrs, CT 06269-3125, USA
| | - Shreya Patel
- Biology/Physics Building, Department of Molecular and Cell Biology, University of Connecticut, 91 North Eagleville Road, Unit-3125, Storrs, CT 06269-3125, USA
| | - Deborah Jacobs-Sera
- Clapp Hall, Department of Biological Sciences, University of Pittsburgh, 4249 Fifth Avenue, Pittsburgh, PA 15260, USA
| | - Graham Hatfull
- Clapp Hall, Department of Biological Sciences, University of Pittsburgh, 4249 Fifth Avenue, Pittsburgh, PA 15260, USA
| | - Johann Peter Gogarten
- Biology/Physics Building, Department of Molecular and Cell Biology, University of Connecticut, 91 North Eagleville Road, Unit-3125, Storrs, CT 06269-3125, USA; Institute for Systems Genomics, University of Connecticut, Storrs, CT 06268-3125, USA
| | - Janne Ravantti
- University of Helsinki, Molecular and Integrative Biosciences Research Programme, Helsinki, Finland
| | - Simon J White
- Biology/Physics Building, Department of Molecular and Cell Biology, University of Connecticut, 91 North Eagleville Road, Unit-3125, Storrs, CT 06269-3125, USA.
| |
Collapse
|
5
|
Horne T, Orr VT, Hall JP. How do interactions between mobile genetic elements affect horizontal gene transfer? Curr Opin Microbiol 2023; 73:102282. [PMID: 36863168 DOI: 10.1016/j.mib.2023.102282] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/20/2023] [Accepted: 01/24/2023] [Indexed: 03/03/2023]
Abstract
Horizontal gene transfer is central to bacterial adaptation and is facilitated by mobile genetic elements (MGEs). Increasingly, MGEs are being studied as agents with their own interests and adaptations, and the interactions MGEs have with one another are recognised as having a powerful effect on the flow of traits between microbes. Collaborations and conflicts between MGEs are nuanced and can both promote and inhibit the acquisition of new genetic material, shaping the maintenance of newly acquired genes and the dissemination of important adaptive traits through microbiomes. We review recent studies that shed light on this dynamic and oftentimes interlaced interplay, highlighting the importance of genome defence systems in mediating MGE-MGE conflicts, and outlining the consequences for evolutionary change, that resonate from the molecular to microbiome and ecosystem levels.
Collapse
Affiliation(s)
- Tanya Horne
- Department of Evolution, Ecology and Behaviour, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Crown Street, Liverpool L69 7ZB, United Kingdom
| | - Victoria T Orr
- Department of Evolution, Ecology and Behaviour, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Crown Street, Liverpool L69 7ZB, United Kingdom
| | - James Pj Hall
- Department of Evolution, Ecology and Behaviour, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Crown Street, Liverpool L69 7ZB, United Kingdom.
| |
Collapse
|
6
|
Alqurainy N, Miguel-Romero L, Moura de Sousa J, Chen J, Rocha EPC, Fillol-Salom A, Penadés JR. A widespread family of phage-inducible chromosomal islands only steals bacteriophage tails to spread in nature. Cell Host Microbe 2023; 31:69-82.e5. [PMID: 36596306 DOI: 10.1016/j.chom.2022.12.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 10/06/2022] [Accepted: 12/01/2022] [Indexed: 01/03/2023]
Abstract
Phage satellites are genetic elements that couple their life cycle to that of helper phages they parasitize, interfering with phage packaging through the production of small capsids, where only satellites are packaged. So far, in all analyzed systems, the satellite-sized capsids are composed of phage proteins. Here, we report that a family of phage-inducible chromosomal islands (PICIs), a type of satellites, encodes all the proteins required for both the production of small-sized capsids and the exclusive packaging of the PICIs into these capsids. Therefore, this new family, named capsid-forming PICIs (cf-PICIs), only requires phage tails to generate PICI particles. Remarkably, the representative cf-PICIs are produced with no cost from their helper phages, suggesting that the relationship between these elements is not parasitic. Finally, our phylogenomic studies indicate that cf-PICIs are present both in gram-positive and gram-negative bacteria and have evolved at least three times independently to spread in nature.
Collapse
Affiliation(s)
- Nasser Alqurainy
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, UK; Department of Basic Science, College of Science and Health Professions, King Saud bin Abdulaziz University for Health Sciences, Riyadh 11426, Saudi Arabia
| | - Laura Miguel-Romero
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, UK; Centre for Bacterial Resistance Biology, Imperial College London, London SW7 2AZ, UK
| | - Jorge Moura de Sousa
- Institut Pasteur, Université de Paris Cité, CNRS, UMR3525, Microbial Evolutionary Genomics, 75015 Paris, France
| | - John Chen
- Department of Microbiology and Immunology, Infectious Diseases Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Eduardo P C Rocha
- Institut Pasteur, Université de Paris Cité, CNRS, UMR3525, Microbial Evolutionary Genomics, 75015 Paris, France
| | - Alfred Fillol-Salom
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, UK; Centre for Bacterial Resistance Biology, Imperial College London, London SW7 2AZ, UK.
| | - José R Penadés
- Centre for Bacterial Resistance Biology, Imperial College London, London SW7 2AZ, UK; Universidad CEU Cardenal Herrera, CEU Universities, Valencia 46115, Spain.
| |
Collapse
|
7
|
Hawkins NC, Kizziah JL, Hatoum-Aslan A, Dokland T. Structure and host specificity of Staphylococcus epidermidis bacteriophage Andhra. SCIENCE ADVANCES 2022; 8:eade0459. [PMID: 36449623 PMCID: PMC9710869 DOI: 10.1126/sciadv.ade0459] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 10/14/2022] [Indexed: 05/28/2023]
Abstract
Staphylococcus epidermidis is an opportunistic pathogen of the human skin, often associated with infections of implanted medical devices. Staphylococcal picoviruses are a group of strictly lytic, short-tailed bacteriophages with compact genomes that are attractive candidates for therapeutic use. Here, we report the structure of the complete virion of S. epidermidis-infecting phage Andhra, determined using high-resolution cryo-electron microscopy, allowing atomic modeling of 11 capsid and tail proteins. The capsid is a T = 4 icosahedron containing a unique stabilizing capsid lining protein. The tail includes 12 trimers of a unique receptor binding protein (RBP), a lytic protein that also serves to anchor the RBPs to the tail stem, and a hexameric tail knob that acts as a gatekeeper for DNA ejection. Using structure prediction with AlphaFold, we identified the two proteins that comprise the tail tip heterooctamer. Our findings elucidate critical features for virion assembly, host recognition, and penetration.
Collapse
Affiliation(s)
- N’Toia C. Hawkins
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - James L. Kizziah
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Asma Hatoum-Aslan
- Department of Microbiology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Terje Dokland
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|