1
|
Moyo B, Brown LBC, Khondaker II, Bao G. Engineering adeno-associated viral vectors for CRISPR/Cas based in vivo therapeutic genome editing. Biomaterials 2025; 321:123314. [PMID: 40203649 DOI: 10.1016/j.biomaterials.2025.123314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 03/30/2025] [Accepted: 04/01/2025] [Indexed: 04/11/2025]
Abstract
The recent approval of the first gene editing therapy for sickle cell disease and transfusion-dependent beta-thalassemia by the U.S. Food and Drug Administration (FDA) demonstrates the immense potential of CRISPR (clustered regularly interspaced short palindromic repeats) technologies to treat patients with genetic disorders that were previously considered incurable. While significant advancements have been made with ex vivo gene editing approaches, the development of in vivo CRISPR/Cas gene editing therapies has not progressed as rapidly due to significant challenges in achieving highly efficient and specific in vivo delivery. Adeno-associated viral (AAV) vectors have shown great promise in clinical trials as vehicles for delivering therapeutic transgenes and other cargos but currently face multiple limitations for effective delivery of gene editing machineries. This review elucidates these challenges and highlights the latest engineering strategies aimed at improving the efficiency, specificity, and safety profiles of AAV-packaged CRISPR/Cas systems (AAV-CRISPR) to enhance their clinical utility.
Collapse
Affiliation(s)
- Buhle Moyo
- Department of Bioengineering, Rice University, Houston, TX, 77030, USA
| | - Lucas B C Brown
- Department of Bioengineering, Rice University, Houston, TX, 77030, USA; Graduate Program in Systems, Synthetic, and Physical Biology, Rice University, Houston, TX, 77030, USA
| | - Ishika I Khondaker
- Department of Bioengineering, Rice University, Houston, TX, 77030, USA; Medical Scientist Training Program, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Gang Bao
- Department of Bioengineering, Rice University, Houston, TX, 77030, USA.
| |
Collapse
|
2
|
Bengtsson NE, Tasfaout H, Chamberlain JS. The road toward AAV-mediated gene therapy of Duchenne muscular dystrophy. Mol Ther 2025; 33:2035-2051. [PMID: 40181545 DOI: 10.1016/j.ymthe.2025.03.065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Revised: 03/31/2025] [Accepted: 03/31/2025] [Indexed: 04/05/2025] Open
Abstract
Forty years after the dystrophin gene was cloned, significant progress has been made in developing gene therapy approaches for Duchenne muscular dystrophy (DMD). The disorder has presented numerous challenges, including the enormous size of the gene (2.2 MB), the need to target muscles body wide, and immunogenic issues against both vectors and dystrophin. Among human genetic disorders, DMD is relatively common, and the genetics are complicated since one-third of all cases arise from a spontaneous new mutation, resulting in thousands of independent lesions throughout the locus. Many approaches have been pursued in the goal of finding an effective therapy, including exon skipping, nonsense codon suppression, upregulation of surrogate genes, gene replacement, and gene editing. Here, we focus specifically on methods using AAV vectors, as these approaches have been tested in numerous clinical trials and are able to target muscles systemically. We discuss early advances to understand the structure of dystrophin, which are crucial for the design of effective DMD gene therapies. Included is a summary of efforts to deliver micro-, mini-, and full-length dystrophins to muscles. Finally, we review current approaches to adapt gene editing to the enormous DMD gene with prospects for improved therapies using all these methods.
Collapse
Affiliation(s)
- Niclas E Bengtsson
- Department of Neurology, University of Washington School of Medicine, Seattle, WA 98109, USA; Senator Paul D. Wellstone Muscular Dystrophy Specialized Research Center, University of Washington School of Medicine, Seattle, WA 98109, USA.
| | - Hichem Tasfaout
- Department of Neurology, University of Washington School of Medicine, Seattle, WA 98109, USA; Senator Paul D. Wellstone Muscular Dystrophy Specialized Research Center, University of Washington School of Medicine, Seattle, WA 98109, USA.
| | - Jeffrey S Chamberlain
- Department of Neurology, University of Washington School of Medicine, Seattle, WA 98109, USA; Senator Paul D. Wellstone Muscular Dystrophy Specialized Research Center, University of Washington School of Medicine, Seattle, WA 98109, USA; Department of Medicine, University of Washington School of Medicine, Seattle, WA 98109, USA; Department of Biochemistry, University of Washington School of Medicine, Seattle, WA 98109, USA.
| |
Collapse
|
3
|
Fatehi S, Rok MJ, Marks RM, Huynh E, Kozman N, Truong HA, Chi L, Yan B, Khazeeva E, Delgado-Olguin P, Ivakine EA, Cohn RD. Template-assisted sequence knockin rescues skeletal and cardiac muscle function in a deletion model of Duchenne muscular dystrophy. Mol Ther 2025:S1525-0016(25)00375-2. [PMID: 40340246 DOI: 10.1016/j.ymthe.2025.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2025] [Revised: 04/15/2025] [Accepted: 05/02/2025] [Indexed: 05/10/2025] Open
Abstract
Duchenne muscular dystrophy (DMD) poses challenges in therapy design due to dystrophin's complex role in maintaining muscle function since the restoration of truncated protein products has failed to completely address the disease's pathophysiology in clinical trials. As ∼70% of patients harbor deletions, strategies enabling targeted DNA insertion to restore full-length dystrophin protein are essential. Here, we present template-assisted sequence knockin (TASK), a strategy that we employed to specifically correct the Dmd Δ52-54 mutation in a murine model. By co-delivering a repair template and the Cas9 nuclease using AAV9s, the splice-competent sequence for Dmd exons 52-54 was integrated into the residual intron 54 locus, resulting in the systemic restoration of full-length dystrophin at therapeutically relevant levels in the heart and across all skeletal muscles, leading to significant functional improvements. TASK demonstrates the highest efficiency of exogenous DNA knockin reported to date, achieving rescue of key dystrophic hallmarks in a deletion model of DMD.
Collapse
Affiliation(s)
- Sina Fatehi
- Program in Genetics and Genome Biology, Peter Gilgan Centre for Research and Learning, Toronto, ON M5G 0A4, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A1, Canada
| | - Matthew J Rok
- Program in Genetics and Genome Biology, Peter Gilgan Centre for Research and Learning, Toronto, ON M5G 0A4, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A1, Canada
| | - Ryan M Marks
- Program in Genetics and Genome Biology, Peter Gilgan Centre for Research and Learning, Toronto, ON M5G 0A4, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A1, Canada
| | - Emily Huynh
- Program in Genetics and Genome Biology, Peter Gilgan Centre for Research and Learning, Toronto, ON M5G 0A4, Canada
| | - Natalie Kozman
- Program in Genetics and Genome Biology, Peter Gilgan Centre for Research and Learning, Toronto, ON M5G 0A4, Canada
| | - Hong Anh Truong
- Program in Genetics and Genome Biology, Peter Gilgan Centre for Research and Learning, Toronto, ON M5G 0A4, Canada
| | - Lijun Chi
- Program in Translational Medicine, Peter Gilgan Centre for Research and Learning, Toronto, ON M5G 0A4, Canada
| | - Bei Yan
- Program in Translational Medicine, Peter Gilgan Centre for Research and Learning, Toronto, ON M5G 0A4, Canada
| | - Enzhe Khazeeva
- Program in Genetics and Genome Biology, Peter Gilgan Centre for Research and Learning, Toronto, ON M5G 0A4, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A1, Canada
| | - Paul Delgado-Olguin
- Program in Translational Medicine, Peter Gilgan Centre for Research and Learning, Toronto, ON M5G 0A4, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A1, Canada
| | - Evgueni A Ivakine
- Program in Genetics and Genome Biology, Peter Gilgan Centre for Research and Learning, Toronto, ON M5G 0A4, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A1, Canada; Department of Physiology, University of Toronto, Toronto, ON M5S 1A1, Canada.
| | - Ronald D Cohn
- Program in Genetics and Genome Biology, Peter Gilgan Centre for Research and Learning, Toronto, ON M5G 0A4, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A1, Canada; Department of Pediatrics, The Hospital for Sick Children, Toronto, ON M5G 1E8, Canada
| |
Collapse
|
4
|
Herzog RW, Kaczmarek R, High KA. Gene therapy for hemophilia - From basic science to first approvals of "one-and-done" therapies. Mol Ther 2025; 33:2015-2034. [PMID: 40156189 DOI: 10.1016/j.ymthe.2025.03.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2025] [Revised: 03/21/2025] [Accepted: 03/24/2025] [Indexed: 04/01/2025] Open
Abstract
Realistic paths to gene therapy for the X-linked bleeding disorder hemophilia started to materialize in the mid 1990s, resulting in disease correction in small and large animal models. Out of a diversity of approaches, in vivo adeno-associated viral (AAV) gene transfer to hepatocytes emerged as the most promising strategy, eventually forming the basis for multiple advanced clinical trials and regulatory approval of two products for the treatment of hemophilia B (coagulation factor IX deficiency) and one for hemophilia A (factor VIII deficiency). Ideally, gene therapy is effective with a single administration, thus providing therapeutic factor levels over a period of years, without the need for frequent injections. Overcoming multiple obstacles, some not predicted by preclinical studies, sustained partial to complete correction of coagulation for several years to an entire decade has now been documented in patients, with observation ongoing. A hyperactive form of FIX improved efficacy in hemophilia B, and superior engineered variants of FVIII are emerging. Nonetheless, challenges remain, including pre-existing immunity to AAV capsids, toxicities, inter-patient variability in response to treatment, and difficulty in obtaining durable therapeutic expression of FVIII. In alternative approaches, in vivo gene editing and ex vivo gene therapies targeting hemopoietic cells are in development.
Collapse
Affiliation(s)
- Roland W Herzog
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA.
| | - Radoslaw Kaczmarek
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Katherine A High
- Laboratory of Blood and Vascular Biology, Rockefeller University, New York, NY, USA.
| |
Collapse
|
5
|
Bai R, Guo W, Zhang T, Ren S, Liu J, Xiao P, Zhang J, Sun W, Yang J, Ma Y, Liu S, Zhou C, Li S, Wang H, Zhang S, Ji W, Wu S, Chen Y. Single-cut gene therapy in a one-step generated rhesus monkey model of Duchenne muscular dystrophy. Cell Rep Med 2025; 6:102037. [PMID: 40147446 PMCID: PMC12047476 DOI: 10.1016/j.xcrm.2025.102037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 09/16/2024] [Accepted: 03/03/2025] [Indexed: 03/29/2025]
Abstract
Progress in Duchenne muscular dystrophy (DMD) treatment is hindered by the lack of animal models that closely replicate human pathology and enable the evaluation of therapy efficacy and safety based on these models. To address this need, we optimize the generation of nonhuman primate DMD models, reducing the development time from 6 to 7 years to under 1 year, enabling the rapid generation of DMD monkey models. These models closely mimic human DMD pathology and motor dysfunction, making them suitable for testing gene therapies. Using these models, we develop a single-cut gene therapy strategy that can be directly applied to humans. This treatment restores dystrophin expression, improves pathological features, and enhances motor abilities in DMD monkeys, with effects lasting at least 1.5 years. In conclusion, we achieve the rapid generation of DMD monkey models and demonstrate that our gene therapy approach is effective and holds significant potential for clinical application.
Collapse
Affiliation(s)
- Raoxian Bai
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming 650500, China; Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China; Yunnan Key Laboratory of Primate Biomedical Research, Kunming 650500, China
| | - Wenting Guo
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming 650500, China; Yunnan Key Laboratory of Primate Biomedical Research, Kunming 650500, China
| | - Ting Zhang
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming 650500, China; Yunnan Key Laboratory of Primate Biomedical Research, Kunming 650500, China
| | - Shuaiwei Ren
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming 650500, China
| | - Jie Liu
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming 650500, China; Yunnan Key Laboratory of Primate Biomedical Research, Kunming 650500, China
| | - Puhao Xiao
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming 650500, China; Southwest United Graduate School, Kunming 650092, China
| | - Junyu Zhang
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming 650500, China; Southwest United Graduate School, Kunming 650092, China
| | - Wenjie Sun
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming 650500, China; Yunnan Key Laboratory of Primate Biomedical Research, Kunming 650500, China
| | - Jiao Yang
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming 650500, China
| | - Yue Ma
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming 650500, China
| | - Siyu Liu
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming 650500, China
| | - Chaoran Zhou
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming 650500, China; Southwest United Graduate School, Kunming 650092, China
| | - Shangang Li
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming 650500, China; Yunnan Key Laboratory of Primate Biomedical Research, Kunming 650500, China
| | - Hong Wang
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming 650500, China; Yunnan Key Laboratory of Primate Biomedical Research, Kunming 650500, China
| | - Shu Zhang
- Department of Neurology, First Medical Center of Chinese PLA General Hospital, Beijing 100853, China
| | - Weizhi Ji
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming 650500, China; Yunnan Key Laboratory of Primate Biomedical Research, Kunming 650500, China.
| | - Shiwen Wu
- Department of Neurology, First Medical Center of Chinese PLA General Hospital, Beijing 100853, China.
| | - Yongchang Chen
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming 650500, China; Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China; Yunnan Key Laboratory of Primate Biomedical Research, Kunming 650500, China; Southwest United Graduate School, Kunming 650092, China.
| |
Collapse
|
6
|
Tang A, Yokota T. Is Duchenne gene therapy a suitable treatment despite its immunogenic class effect? Expert Opin Drug Saf 2025; 24:395-411. [PMID: 39720847 DOI: 10.1080/14740338.2024.2447072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 11/22/2024] [Accepted: 12/22/2024] [Indexed: 12/26/2024]
Abstract
INTRODUCTION Duchenne muscular dystrophy (DMD) is a severe X-linked disorder characterized by progressive muscle weakness and eventual death due to cardiomyopathy or respiratory complications. Currently, there is no cure for DMD, with standard treatments primarily focusing on symptom management. Using immunosuppressive measures and optimized vector designs allows for gene therapies to better address the genetic cause of the disease. AREAS COVERED This review evaluates the efficacy and safety of emerging DMD gene therapies as of 2024. It also discusses the potential of utrophin upregulation, gene editing, and truncated dystrophin as therapeutic strategies. It highlights safety concerns associated with these therapies, including adverse events and patient deaths. A comprehensive overview of developments covers topics such as CRISPR-Cas9 therapies, micro-dystrophin, and the potential delivery of full-length dystrophin. EXPERT OPINION The FDA's recent approval of delandistrogene moxeparvovec (Elevidys) underscores the promise of gene replacement therapies for DMD patients. Understanding the mechanisms behind the adverse effects and excluding patients with specific pathogenic variants may enhance the safety profiles of these therapies. CRISPR/Cas9 therapies, while promising, face significant regulatory and safety challenges that hinder their clinical application. Optimal DMD therapies should target both skeletal and cardiac muscles to be effective.
Collapse
Affiliation(s)
- Annie Tang
- Medical Genetics, University of Alberta, Edmonton, Alberta, Canada
| | - Toshifumi Yokota
- Medical Genetics, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
7
|
Padmaswari MH, Agrawal S, Nelson CE. Preclinical development of genome editing to treat Duchenne muscular dystrophy by exon skipping. J Neuromuscul Dis 2025:22143602251326993. [PMID: 40105473 DOI: 10.1177/22143602251326993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
Duchenne muscular dystrophy (DMD) is caused by loss-of-function mutations to the gene encoding dystrophin. Restoring the reading frame of dystrophin by removing internal out-of-frame exons may address symptoms of DMD. Therefore, the principle of exon skipping has been at the center stage in drug development for Duchenne muscular dystrophy (DMD) over the past two decades. Antisense oligonucleotides (AONs) have proven effective in modulating splicing sites for exon skipping, resulting in the FDA approval of several drugs using this technique in recent years. However, due to the temporary nature of AON, researchers are actively exploring genome editing as a potential long-term, single-administration treatment. The advancements in genome-editing technology over the last decade have boosted this transition. While no clinical trials for exon skipping in DMD via genome editing have been conducted as of this writing, preclinical studies show encouraging results. This review describes the preclinical landscape of genome editing for exon skipping in DMD treatment. Along with highlighting the adaptability of genome editing in exon skipping, this review also describes delivery challenges and outlines future research directions that could set a new stage for enhanced therapeutic development in DMD.
Collapse
Affiliation(s)
- Made Harumi Padmaswari
- Biomedical Engineering, University of Arkansas, Fayetteville, AR, USA
- Cell and Molecular Biology, University of Arkansas, Fayetteville, AR, USA
| | - Shilpi Agrawal
- Biomedical Engineering, University of Arkansas, Fayetteville, AR, USA
| | - Christopher E Nelson
- Biomedical Engineering, University of Arkansas, Fayetteville, AR, USA
- Cell and Molecular Biology, University of Arkansas, Fayetteville, AR, USA
| |
Collapse
|
8
|
Pérez-López DO, Burke MJ, Hakim CH, Teixeira JA, Han J, Yue Y, Ren Z, Sun J, Chen SJ, Herzog RW, Yao G, Duan D. Circulatory CCL2 distinguishes Duchenne muscular dystrophy dogs. Dis Model Mech 2025; 18:dmm052137. [PMID: 40084478 DOI: 10.1242/dmm.052137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 01/28/2025] [Indexed: 03/16/2025] Open
Abstract
To establish a minimally invasive approach to studying body-wide muscle inflammation in the canine Duchenne muscular dystrophy (DMD) model, we evaluated 13 cytokines/chemokines in frozen sera from 90 affected (239 sera) and 73 normal (189 sera) dogs (0.00 to 45.2 months of age). Linear mixed-effects model analysis suggested that ten cytokines/chemokines were significantly elevated in affected dogs, including interleukin (IL)-2, IL-6, IL-7, IL-8, IL-10, IL-15, IL-18, C-C motif chemokine ligand 2 (CCL2), C-X-C motif chemokine ligand 1 (CXCL1) and granulocyte-macrophage colony-stimulating factor (GM-CSF). Further, cytokine/chemokine elevation coincided with the onset of muscle disease. Importantly, only CCL2 showed consistent changes at all ages, with the most pronounced increase occurring between 3 and 9 months. To study the effects of sample storage and type, we compared fresh versus frozen, and serum versus plasma, samples from the same dog. Similar readings were often obtained in fresh and frozen sera. Although plasma readings were significantly lower for many cytokines/chemokines, this did not compromise the robustness of CCL2 as a biomarker. Our study establishes a baseline for using circulatory cytokines/chemokines as biomarkers in canine DMD studies.
Collapse
Affiliation(s)
- Dennis O Pérez-López
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO 65212, USA
| | - Matthew J Burke
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO 65212, USA
| | - Chady H Hakim
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO 65212, USA
| | - James A Teixeira
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO 65212, USA
| | - Jin Han
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO 65212, USA
| | - Yongping Yue
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO 65212, USA
| | - Zewei Ren
- Department of Statistics, University of Missouri, Columbia, MO 65212, USA
| | - Jianguo Sun
- Department of Statistics, University of Missouri, Columbia, MO 65212, USA
| | - Shi-Jie Chen
- Department of Physics and Astronomy, University of Missouri, Columbia, MO 65211, USA
- Department of Biochemistry, University of Missouri, Columbia, MO 65211, USA
- MU Institute for Data Science and Informatics, University of Missouri, Columbia, MO 65211, USA
| | - Roland W Herzog
- Herman B Wells Center for Pediatric Research, Indiana University, Indianapolis, IN 46202, USA
| | - Gang Yao
- Department of Chemical and Biomedical Engineering, College of Engineering, University of Missouri, Columbia, MO 65212, USA
| | - Dongsheng Duan
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO 65212, USA
- Department of Chemical and Biomedical Engineering, College of Engineering, University of Missouri, Columbia, MO 65212, USA
- Department of Neurology, School of Medicine, University of Missouri, Columbia, MO 65212, USA
- Department of Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO 65212, USA
| |
Collapse
|
9
|
Xiao Y, Lian X, Sun Y, Sung YC, Vaidya A, Chen Z, Gupta A, Chatterjee S, Zheng L, Guerrero E, Wang X, Farbiak L, Yang Y, Diamond MI, Leal C, McDonald JG, Siegwart DJ. High-density brush-shaped polymer lipids reduce anti-PEG antibody binding for repeated administration of mRNA therapeutics. NATURE MATERIALS 2025:10.1038/s41563-024-02116-3. [PMID: 40021827 DOI: 10.1038/s41563-024-02116-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 12/20/2024] [Indexed: 03/03/2025]
Abstract
Messenger RNA lipid-nanoparticle-based therapies represent an emerging class of medicines for a variety of applications. However, anti-poly(ethylene glycol) (anti-PEG) antibodies generated by widely used PEGylated medicines and lipid nanoparticles hinder therapeutic efficacy upon repeated dosing. Here we report the chemical design, synthesis and optimization of high-density brush-shaped polymer lipids that reduce anti-PEG antibody binding to improve protein production consistency in repeated dosing. Brush-shaped polymer lipid parameters, including side chain length, degree of polymerization, anchor alkyl length and surface regimes on lipid nanoparticles modulate anti-PEG antibody binding affinity and control their blood circulation pharmacokinetics. Compared to widely used 1,2-dimyristoyl-rac-glycero-3-methoxypolyethylene glycol-2000, lipid nanoparticles containing brush-shaped polymer lipids generate superior therapeutic outcomes in protein replacement therapy and genome editing models, reformulating structure-activity guidelines for the design of PEG lipid substitutes. Overall, these findings contribute to the general effort in the development of lipid nanoparticles with low immunogenicity to overcome current roadblocks to nucleic acid medicines.
Collapse
Affiliation(s)
- Yufen Xiao
- Department of Biomedical Engineering, Department of Biochemistry, Simmons Comprehensive Cancer Center, Program in Genetic Drug Engineering, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Xizhen Lian
- Department of Biomedical Engineering, Department of Biochemistry, Simmons Comprehensive Cancer Center, Program in Genetic Drug Engineering, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Yehui Sun
- Department of Biomedical Engineering, Department of Biochemistry, Simmons Comprehensive Cancer Center, Program in Genetic Drug Engineering, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Yun-Chieh Sung
- Department of Biomedical Engineering, Department of Biochemistry, Simmons Comprehensive Cancer Center, Program in Genetic Drug Engineering, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Amogh Vaidya
- Department of Biomedical Engineering, Department of Biochemistry, Simmons Comprehensive Cancer Center, Program in Genetic Drug Engineering, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Zexiang Chen
- Department of Biomedical Engineering, Department of Biochemistry, Simmons Comprehensive Cancer Center, Program in Genetic Drug Engineering, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Ankit Gupta
- Center for Alzheimer's and Neurodegenerative Diseases, Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Sumanta Chatterjee
- Department of Biomedical Engineering, Department of Biochemistry, Simmons Comprehensive Cancer Center, Program in Genetic Drug Engineering, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Lining Zheng
- Department of Materials Science and Engineering, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Erick Guerrero
- Department of Biomedical Engineering, Department of Biochemistry, Simmons Comprehensive Cancer Center, Program in Genetic Drug Engineering, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Xu Wang
- Department of Biomedical Engineering, Department of Biochemistry, Simmons Comprehensive Cancer Center, Program in Genetic Drug Engineering, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Lukas Farbiak
- Department of Biomedical Engineering, Department of Biochemistry, Simmons Comprehensive Cancer Center, Program in Genetic Drug Engineering, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Yangyang Yang
- Department of Biomedical Engineering, Department of Biochemistry, Simmons Comprehensive Cancer Center, Program in Genetic Drug Engineering, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Marc I Diamond
- Center for Alzheimer's and Neurodegenerative Diseases, Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Cecilia Leal
- Department of Materials Science and Engineering, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Jeffrey G McDonald
- Center for Human Nutrition, Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Daniel J Siegwart
- Department of Biomedical Engineering, Department of Biochemistry, Simmons Comprehensive Cancer Center, Program in Genetic Drug Engineering, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
10
|
Qie B, Tuo J, Chen F, Ding H, Lyu L. Gene therapy for genetic diseases: challenges and future directions. MedComm (Beijing) 2025; 6:e70091. [PMID: 39949979 PMCID: PMC11822459 DOI: 10.1002/mco2.70091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 01/08/2025] [Accepted: 01/09/2025] [Indexed: 02/16/2025] Open
Abstract
Genetic diseases constitute the majority of rare human diseases, resulting from abnormalities in an individual's genetic composition. Traditional treatments offer limited relief for these challenging conditions. In contrast, the rapid advancement of gene therapy presents significant advantages by directly addressing the underlying causes of genetic diseases, thereby providing the potential for precision treatment and the possibility of curing these disorders. This review aims to delineate the mechanisms and outcomes of current gene therapy approaches in clinical applications across various genetic diseases affecting different body systems. Additionally, genetic muscular disorders will be examined as a case study to investigate innovative strategies of novel therapeutic approaches, including gene replacement, gene suppression, gene supplementation, and gene editing, along with their associated advantages and limitations at both clinical and preclinical levels. Finally, this review emphasizes the existing challenges of gene therapy, such as vector packaging limitations, immunotoxicity, therapy specificity, and the subcellular localization and immunogenicity of therapeutic cargos, while discussing potential optimization directions for future research. Achieving delivery specificity, as well as long-term effectiveness and safety, will be crucial for the future development of gene therapies targeting genetic diseases.
Collapse
Affiliation(s)
- Beibei Qie
- Institute of Sports Medicine and Health, School of Sports Medicine and HealthChengdu Sport UniversityChengduChina
| | - Jianghua Tuo
- Institute of Sports Medicine and Health, School of Sports Medicine and HealthChengdu Sport UniversityChengduChina
| | - Feilong Chen
- Institute of Sports Medicine and Health, School of Sports Medicine and HealthChengdu Sport UniversityChengduChina
| | - Haili Ding
- Institute of Sports Medicine and Health, School of Sports Medicine and HealthChengdu Sport UniversityChengduChina
| | - Lei Lyu
- Institute of Sports Medicine and Health, School of Sports Medicine and HealthChengdu Sport UniversityChengduChina
| |
Collapse
|
11
|
Bravo DT, Vaidyanathan S, Baker J, Sinha V, Tsai E, Roozdar P, Kong WW, Atkinson PJ, Patel ZM, Hwang PH, Rao VK, Negrin RS, Wine JJ, Milla C, Sellers ZM, Desai TJ, Porteus MH, Nayak JV. Durable reconstitution of sinonasal epithelium by transplant of CFTR gene corrected airway stem cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.24.634776. [PMID: 39896581 PMCID: PMC11785248 DOI: 10.1101/2025.01.24.634776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Modulator agents that restore cystic fibrosis transmembrane conductance regulator (CFTR) function have revolutionized outcomes in cystic fibrosis, an incurable multisystem disease. Barriers exist to modulator use, making local CFTR gene and cell therapies attractive, especially in the respiratory tract. We used CRISPR to gene-correct CFTR in upper airway basal stem cells (UABCs) and show durable local engraftment into recipient murine respiratory epithelium. Interestingly, the human cells recapitulate the in vivo organization and differentiation of human sinus epithelium, with little expansion or contraction of the engrafted population over time, while retaining expression of the CFTR transgene. Our results indicate that human airway stem cell transplantation with locoregional restoration of CFTR function is a feasible approach for treating CF and potentially other diseases of the respiratory tract.
Collapse
Affiliation(s)
- Dawn T. Bravo
- Division of Rhinology, Department of Otolaryngology, Stanford University School of Medicine, Stanford CA
| | - Sriram Vaidyanathan
- Center for Gene Therapy, Institute at Nationwide Children’s Hospital, Columbus, OH
| | - Jeannette Baker
- Division of Hematology-Oncology, Department of Medicine, Stanford University School of Medicine, Stanford CA
| | - Vrishti Sinha
- Department of Pediatrics, Stanford University School of Medicine, Stanford CA
| | - Esmond Tsai
- Division of Rhinology, Department of Otolaryngology, Stanford University School of Medicine, Stanford CA
| | - Pooya Roozdar
- Division of Rhinology, Department of Otolaryngology, Stanford University School of Medicine, Stanford CA
| | - William W. Kong
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford CA
| | - Patrick J Atkinson
- Division of Rhinology, Department of Otolaryngology, Stanford University School of Medicine, Stanford CA
| | - Zara M. Patel
- Division of Rhinology, Department of Otolaryngology, Stanford University School of Medicine, Stanford CA
| | - Peter H. Hwang
- Division of Rhinology, Department of Otolaryngology, Stanford University School of Medicine, Stanford CA
| | - Vidya K. Rao
- Division of Cardiac Anesthesia, Department of Anesthesiology, Stanford University School of Medicine, Stanford CA
| | - Robert S. Negrin
- Division of Hematology-Oncology, Department of Medicine, Stanford University School of Medicine, Stanford CA
| | - Jeffrey J. Wine
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford CA
| | - Carlos Milla
- Center for Excellence in Pulmonary Biology, Stanford University School of Medicine, Stanford CA
| | - Zachary M. Sellers
- Division of Pediatric Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, Stanford University School of Medicine, Stanford CA
| | - Tushar J. Desai
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford CA
- Division of Pulmonary, Allergy and Critical Care, Department of Medicine, Stanford University School of Medicine, Stanford CA
| | - Matthew H. Porteus
- Department of Pediatrics, Stanford University School of Medicine, Stanford CA
| | - Jayakar V. Nayak
- Division of Rhinology, Department of Otolaryngology, Stanford University School of Medicine, Stanford CA
- Department of Otolaryngology, VA Palo Alto Health Care System, Palo Alto, CA
| |
Collapse
|
12
|
Perillat L, McFadyen A, Furlong P, Anderson J. A conceptual model and practical guidance for the development, administration, and evaluation of individualized therapies. Front Med (Lausanne) 2025; 12:1493832. [PMID: 39981075 PMCID: PMC11841388 DOI: 10.3389/fmed.2025.1493832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 01/10/2025] [Indexed: 02/22/2025] Open
Abstract
Bespoke therapies represent a promising tool to address a diverse range of genetic and acquired conditions, offering new hope where conventional treatments have fallen short. With the rapid rise of bespoke therapies, profound ethical and regulatory challenges emerge, making it crucial to establish a comprehensive framework that ensures these treatments reach clinical settings and meet patients' needs as quickly as possible while protecting all parties involved. Although current guidelines are continually evolving to address the range of ethical tensions raised by these therapies, several gaps remain. A significant unresolved question is determining where personalized interventions fall on the research-care continuum and understanding the institutional, regulatory, and ethical implications when custom therapies are classified as research, care, or a mix of both. To address these questions, we introduce a conceptual model alongside practical guidance for the development, administration, and evaluation of individualized therapies, using CRISPR/Cas9-based interventions for Duchenne Muscular Dystrophy as a case study. We argue that the goals of an intervention should be as individualized as the bespoke product itself, tailored to the specifics of each case. Rather than attempting to pinpoint the exact location of an intervention on the continuum, which may be hard to operationalize and have limited utility, our approach focuses on the practical details of how such interventions are administered and the individual component parts of an intervention. It advocates for transparent discussions among all partners to anticipate and adjust various components/parameters along the process of administering individualized interventions. Our paper highlights the most critical of these parameters in (1) the planning and development of individualized therapies in laboratory settings, (2) their regulatory oversight, and (3) evaluation. By discussing these stages and parameters in detail, we aim to provide guidance on how to navigate the ethical complexities inherent to individualized interventions and offer a preliminary framework for balancing the interplay between research objectives and patient care needs. Acknowledging that the scientific rigor and adequacy of any new model must be evaluated, we also identify the types of evidence that are required to validate that our model effectively meets individual and societal needs.
Collapse
Affiliation(s)
- Lucie Perillat
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Andrew McFadyen
- Precision Child Health, The Hospital for Sick Children, Toronto, ON, Canada
- Division of Clinical Public Health, University of Toronto, Toronto, ON, Canada
- Department of Bioethics, The Hospital for Sick Children, Toronto, ON, Canada
| | - Patricia Furlong
- Parent Project Muscular Dystrophy, Washington, DC, United States
| | - James Anderson
- Department of Bioethics, The Hospital for Sick Children, Toronto, ON, Canada
- Institute of Health Policy, Management, and Evaluation, University of Toronto, Toronto, ON, Canada
- AI at SickKids, The Hospital for Sick Children, Toronto, ON, Canada
| |
Collapse
|
13
|
Wang Z, Wu J, Lv Z, Liang P, Li Q, Li Y, Guo Y. LMNA-related cardiomyopathy: From molecular pathology to cardiac gene therapy. J Adv Res 2025:S2090-1232(25)00001-3. [PMID: 39827909 DOI: 10.1016/j.jare.2025.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 12/29/2024] [Accepted: 01/01/2025] [Indexed: 01/22/2025] Open
Abstract
BACKGROUND The genetic variants of LMNA cause an array of diseases that often affect the heart. LMNA-related cardiomyopathy exhibits high-penetrance and early-onset phenotypes that lead to late-stage heart failure or lethal arrhythmia. As a subtype of dilated cardiomyopathy and arrhythmogenic cardiomyopathy, LMNA-related cardiac dysfunction is resistant to existing cardiac therapeutic strategies, leaving a major unmet clinical need in cardiomyopathy management. AIM OF REVIEW Here we comprehensively summarize current knowledge about the genetic basis, disease models and pathological mechanisms of LMNA-related cardiomyopathy. Recent translational studies were highlighted to indicate new therapeutic modalities such as gene supplementation, gene silencing and genome editing therapy, which offer potential opportunities to overcome the difficulties in the development of specific drugs for this disease. KEY SCIENTIFIC CONCEPTS OF REVIEW LMNA-related cardiomyopathy involves many diverse disease mechanisms that preclude small-molecule drugs that target only a small fraction of the mechanisms. Agreeing to this notion, the first-in-human clinical trial for this disease recently reported futility. By contrast, gene therapy offers the new hope to directly intervene LMNA variants and demonstrates a tremendous potential for breakthrough therapy for this disease. Concepts in this review are also applicable to studies of other genetic diseases that lack effective therapeutics.
Collapse
Affiliation(s)
- Ze Wang
- School of Basic Medical Sciences, Institute of Cardiovascular Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100191, China
| | - Jiahao Wu
- Ministry of Education Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu 610041, China
| | - Zhengyuan Lv
- School of Basic Medical Sciences, Institute of Cardiovascular Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100191, China
| | - Ping Liang
- Institute of Translational Medicine, Zhejiang University, Hangzhou 310029, China.
| | - Qirui Li
- Department of Cardiology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100045, China.
| | - Yifei Li
- Ministry of Education Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu 610041, China.
| | - Yuxuan Guo
- School of Basic Medical Sciences, Institute of Cardiovascular Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100191, China; Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing 100191, China.
| |
Collapse
|
14
|
Escobar H, Di Francescantonio S, Smirnova J, Graf R, Müthel S, Marg A, Zhogov A, Krishna S, Metzler E, Petkova M, Daumke O, Kühn R, Spuler S. Gene-editing in patient and humanized-mice primary muscle stem cells rescues dysferlin expression in dysferlin-deficient muscular dystrophy. Nat Commun 2025; 16:120. [PMID: 39747848 PMCID: PMC11695731 DOI: 10.1038/s41467-024-55086-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 11/29/2024] [Indexed: 01/04/2025] Open
Abstract
Dystrophy-associated fer-1-like protein (dysferlin) conducts plasma membrane repair. Mutations in the DYSF gene cause a panoply of genetic muscular dystrophies. We targeted a frequent loss-of-function, DYSF exon 44, founder frameshift mutation with mRNA-mediated delivery of SpCas9 in combination with a mutation-specific sgRNA to primary muscle stem cells from two homozygous patients. We observed a consistent >60% exon 44 re-framing, rescuing a full-length and functional dysferlin protein. A new mouse model harboring a humanized Dysf exon 44 with the founder mutation, hEx44mut, recapitulates the patients' phenotype and an identical re-framing outcome in primary muscle stem cells. Finally, gene-edited murine primary muscle stem-cells are able to regenerate muscle and rescue dysferlin when transplanted back into hEx44mut hosts. These findings are the first to show that a CRISPR-mediated therapy can ameliorate dysferlin deficiency. We suggest that gene-edited primary muscle stem cells could exhibit utility, not only in treating dysferlin deficiency syndromes, but also perhaps other forms of muscular dystrophy.
Collapse
Affiliation(s)
- Helena Escobar
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany.
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charité Campus Buch, Berlin, Germany.
- Muscle Research Unit, Experimental and Clinical Research Center (ECRC), a joint cooperation between the Charité-Universitätsmedizin Berlin and the Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany.
| | - Silvia Di Francescantonio
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charité Campus Buch, Berlin, Germany
- Muscle Research Unit, Experimental and Clinical Research Center (ECRC), a joint cooperation between the Charité-Universitätsmedizin Berlin and the Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Julia Smirnova
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Robin Graf
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charité Campus Buch, Berlin, Germany
- Muscle Research Unit, Experimental and Clinical Research Center (ECRC), a joint cooperation between the Charité-Universitätsmedizin Berlin and the Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Stefanie Müthel
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charité Campus Buch, Berlin, Germany
- Muscle Research Unit, Experimental and Clinical Research Center (ECRC), a joint cooperation between the Charité-Universitätsmedizin Berlin and the Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Andreas Marg
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charité Campus Buch, Berlin, Germany
- Muscle Research Unit, Experimental and Clinical Research Center (ECRC), a joint cooperation between the Charité-Universitätsmedizin Berlin and the Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Alexej Zhogov
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charité Campus Buch, Berlin, Germany
- Muscle Research Unit, Experimental and Clinical Research Center (ECRC), a joint cooperation between the Charité-Universitätsmedizin Berlin and the Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Supriya Krishna
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charité Campus Buch, Berlin, Germany
- Muscle Research Unit, Experimental and Clinical Research Center (ECRC), a joint cooperation between the Charité-Universitätsmedizin Berlin and the Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- Department of Biology, Chemistry, and Pharmacy, Freie Universität Berlin, Berlin, Germany
| | - Eric Metzler
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charité Campus Buch, Berlin, Germany
- Muscle Research Unit, Experimental and Clinical Research Center (ECRC), a joint cooperation between the Charité-Universitätsmedizin Berlin and the Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | | | - Oliver Daumke
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- Department of Biology, Chemistry, and Pharmacy, Freie Universität Berlin, Berlin, Germany
| | - Ralf Kühn
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Simone Spuler
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany.
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charité Campus Buch, Berlin, Germany.
- Muscle Research Unit, Experimental and Clinical Research Center (ECRC), a joint cooperation between the Charité-Universitätsmedizin Berlin and the Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany.
- Department of Biology, Chemistry, and Pharmacy, Freie Universität Berlin, Berlin, Germany.
| |
Collapse
|
15
|
Raghavan R, Friedrich MJ, King I, Chau-Duy-Tam Vo S, Strebinger D, Lash B, Kilian M, Platten M, Macrae RK, Song Y, Nivon L, Zhang F. Rational engineering of minimally immunogenic nucleases for gene therapy. Nat Commun 2025; 16:105. [PMID: 39747875 PMCID: PMC11696374 DOI: 10.1038/s41467-024-55522-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 12/16/2024] [Indexed: 01/04/2025] Open
Abstract
Genome editing using CRISPR-Cas systems is a promising avenue for the treatment of genetic diseases. However, cellular and humoral immunogenicity of genome editing tools, which originate from bacteria, complicates their clinical use. Here we report reduced immunogenicity (Red)(i)-variants of two clinically relevant nucleases, SaCas9 and AsCas12a. Through MHC-associated peptide proteomics (MAPPs) analysis, we identify putative immunogenic epitopes on each nuclease. Using computational modeling, we rationally design these proteins to evade the immune response. SaCas9 and AsCas12a Redi variants are substantially less recognized by adaptive immune components, including reduced binding affinity to MHC molecules and attenuated generation of cytotoxic T cell responses, yet maintain wild-type levels of activity and specificity. In vivo editing of PCSK9 with SaCas9.Redi.1 is comparable in efficiency to wild-type SaCas9, but significantly reduces undesired immune responses. This demonstrates the utility of this approach in engineering proteins to evade immune detection.
Collapse
Affiliation(s)
- Rumya Raghavan
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
- McGovern Institute for Brain Research at MIT, Cambridge, MA, 02139, USA
- Department of Brain and Cognitive Science, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Howard Hughes Medical Institute, Cambridge, MA, 02139, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Massachusetts, 02139, Cambridge, USA
| | - Mirco J Friedrich
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
- McGovern Institute for Brain Research at MIT, Cambridge, MA, 02139, USA
- Department of Brain and Cognitive Science, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Howard Hughes Medical Institute, Cambridge, MA, 02139, USA
| | - Indigo King
- Cyrus Biotechnology, Seattle, WA, 98121, USA
| | - Samuel Chau-Duy-Tam Vo
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
- McGovern Institute for Brain Research at MIT, Cambridge, MA, 02139, USA
- Department of Brain and Cognitive Science, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Howard Hughes Medical Institute, Cambridge, MA, 02139, USA
| | - Daniel Strebinger
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
- McGovern Institute for Brain Research at MIT, Cambridge, MA, 02139, USA
- Department of Brain and Cognitive Science, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Howard Hughes Medical Institute, Cambridge, MA, 02139, USA
| | - Blake Lash
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
- McGovern Institute for Brain Research at MIT, Cambridge, MA, 02139, USA
- Department of Brain and Cognitive Science, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Howard Hughes Medical Institute, Cambridge, MA, 02139, USA
| | - Michael Kilian
- Clinical Cooperation Unit Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center, DKFZ, Heidelberg, Germany
| | - Michael Platten
- Clinical Cooperation Unit Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center, DKFZ, Heidelberg, Germany
| | - Rhiannon K Macrae
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
- McGovern Institute for Brain Research at MIT, Cambridge, MA, 02139, USA
- Department of Brain and Cognitive Science, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Howard Hughes Medical Institute, Cambridge, MA, 02139, USA
| | - Yifan Song
- Cyrus Biotechnology, Seattle, WA, 98121, USA
| | - Lucas Nivon
- Cyrus Biotechnology, Seattle, WA, 98121, USA
| | - Feng Zhang
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA.
- McGovern Institute for Brain Research at MIT, Cambridge, MA, 02139, USA.
- Department of Brain and Cognitive Science, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
- Howard Hughes Medical Institute, Cambridge, MA, 02139, USA.
| |
Collapse
|
16
|
Tong M, Palmer N, Dailamy A, Kumar A, Khaliq H, Han S, Finburgh E, Wing M, Hong C, Xiang Y, Miyasaki K, Portell A, Rainaldi J, Suhardjo A, Nourreddine S, Chew WL, Kwon EJ, Mali P. Robust genome and cell engineering via in vitro and in situ circularized RNAs. Nat Biomed Eng 2025; 9:109-126. [PMID: 39187662 DOI: 10.1038/s41551-024-01245-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 07/24/2024] [Indexed: 08/28/2024]
Abstract
Circularization can improve RNA persistence, yet simple and scalable approaches to achieve this are lacking. Here we report two methods that facilitate the pursuit of circular RNAs (cRNAs): cRNAs developed via in vitro circularization using group II introns, and cRNAs developed via in-cell circularization by the ubiquitously expressed RtcB protein. We also report simple purification protocols that enable high cRNA yields (40-75%) while maintaining low immune responses. These methods and protocols facilitate a broad range of applications in stem cell engineering as well as robust genome and epigenome targeting via zinc finger proteins and CRISPR-Cas9. Notably, cRNAs bearing the encephalomyocarditis internal ribosome entry enabled robust expression and persistence compared with linear capped RNAs in cardiomyocytes and neurons, which highlights the utility of cRNAs in these non-dividing cells. We also describe genome targeting via deimmunized Cas9 delivered as cRNA and a long-range multiplexed protein engineering methodology for the combinatorial screening of deimmunized protein variants that enables compatibility between persistence of expression and immunogenicity in cRNA-delivered proteins. The cRNA toolset will aid research and the development of therapeutics.
Collapse
Affiliation(s)
- Michael Tong
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | - Nathan Palmer
- Biological Sciences Graduate Program, University of California San Diego, La Jolla, CA, USA
| | - Amir Dailamy
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | - Aditya Kumar
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | - Hammza Khaliq
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | - Sangwoo Han
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | - Emma Finburgh
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | - Madeleine Wing
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA, USA
| | - Camilla Hong
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | - Yichen Xiang
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | - Katelyn Miyasaki
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | - Andrew Portell
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | - Joseph Rainaldi
- Biomedical Sciences Graduate Program, University of California San Diego, La Jolla, CA, USA
| | - Amanda Suhardjo
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | - Sami Nourreddine
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | - Wei Leong Chew
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
| | - Ester J Kwon
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | - Prashant Mali
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
17
|
Rashnonejad A, Farea M, Amini-Chermahini G, Coulis G, Taylor N, Fowler A, Villalta A, King OD, Harper SQ. Sustained efficacy of CRISPR-Cas13b gene therapy for FSHD is challenged by immune response to Cas13b. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.18.629250. [PMID: 39829765 PMCID: PMC11741234 DOI: 10.1101/2024.12.18.629250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Facioscapulohumeral muscular dystrophy (FSHD) is a potentially devastating muscle disease caused by de-repression of the toxic DUX4 gene in skeletal muscle. FSHD patients may benefit from DUX4 inhibition therapies, and although several experimental strategies to reduce DUX4 levels in skeletal muscle are being developed, no approved disease modifying therapies currently exist. We developed a CRISPR-Cas13b system that cleaves DUX4 mRNA and reduces DUX4 protein level, protects cells from DUX4-mediated death, and reduces FSHD-associated biomarkers in vitro . In vivo delivery of the CRISPR-Cas13b system with adeno-associated viral vectors reduced acute damage caused by high DUX4 levels in a mouse model of severe FSHD. However, protection was not sustained over time, with decreases in Cas13b and guide RNA levels between 8 weeks and 6 months after injection. In addition, wild-type mice injected with AAV6.Cas13b showed muscle inflammation with infiltrates containing Cas13b-responsive CD8+ cytotoxic T cells. Our RNA-seq data confirmed that several immune response pathways were significantly increased in human FSHD myoblasts transfected with Cas13b. Overall, our findings suggest that CRISPR-Cas13b is highly effective for DUX4 silencing but successful implementation of CRISPR/Cas13-based gene therapies may require strategies to mitigate immune responses.
Collapse
|
18
|
Fagan KJ, Chillon G, Carrell EM, Waxman EA, Davidson BL. Cas9 editing of ATXN1 in a spinocerebellar ataxia type 1 mice and human iPSC-derived neurons. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102317. [PMID: 39314800 PMCID: PMC11417534 DOI: 10.1016/j.omtn.2024.102317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 08/29/2024] [Indexed: 09/25/2024]
Abstract
Spinocerebellar ataxia type 1 (SCA1) is an adult-onset neurodegenerative disease caused by an expansion of the CAG repeat region of the ATXN1 gene. Currently there are no disease-modifying treatments; however, previous work has shown the potential of gene therapy, specifically RNAi, as a potential modality. Cas9 editing offers potential for these patients but has yet to be evaluated in SCA1 models. To test this, we first characterized the number of transgenes harbored in the common B05 mouse model of SCA1. Despite having five copies of the human mutant transgene, a 20% reduction of ATXN1 improved behavior deficits without increases in inflammatory markers. Importantly, the editing approach was confirmed in induced pluripotent stem cell (iPSC) neurons derived from patients with SCA1, promoting the translatability of the approach to patients.
Collapse
Affiliation(s)
- Kelly J. Fagan
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Cell and Molecular Biology Graduate Group, Biomedical Graduate Studies, University of Pennsylvania, Philadelphia, PA, USA
| | - Guillem Chillon
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Bioengineering Graduate Program, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, USA
| | - Ellie M. Carrell
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Elisa A. Waxman
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Center for Epilepsy and NeuroDevelopmental Disorders (ENDD), The Children’s Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Beverly L. Davidson
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pathology & Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Center for Epilepsy and NeuroDevelopmental Disorders (ENDD), The Children’s Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| |
Collapse
|
19
|
Padmaswari MH, Bulliard G, Agrawal S, Jia MS, Khadgi S, Murach KA, Nelson CE. Precision and efficacy of RNA-guided DNA integration in high-expressing muscle loci. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102320. [PMID: 39398225 PMCID: PMC11466678 DOI: 10.1016/j.omtn.2024.102320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 08/30/2024] [Indexed: 10/15/2024]
Abstract
Gene replacement therapies primarily rely on adeno-associated virus (AAV) vectors for transgene expression. However, episomal expression can decline over time due to vector loss or epigenetic silencing. CRISPR-based integration methods offer promise for long-term transgene insertion. While the development of transgene integration methods has made substantial progress, identifying optimal insertion loci remains challenging. Skeletal muscle is a promising tissue for gene replacement owing to low invasiveness of intramuscular injections, relative proportion of body mass, the multinucleated nature of muscle, and the potential for reduced adverse effects. Leveraging endogenous promoters in skeletal muscle, we evaluated two highly expressing loci using homology-independent targeted integration (HITI) to integrate reporter or therapeutic genes in mouse myoblasts and skeletal muscle tissue. We hijacked the muscle creatine kinase (Ckm) and myoglobin (Mb) promoters by co-delivering CRISPR-Cas9 and a donor plasmid with promoterless constructs encoding green fluorescent protein (GFP) or human Factor IX (hFIX). Additionally, we deeply profiled our genome and transcriptome outcomes from targeted integration and evaluated the safety of the proposed sites. This study introduces a proof-of-concept technology for achieving high-level therapeutic gene expression in skeletal muscle, with potential applications in targeted integration-based medicine and synthetic biology.
Collapse
Affiliation(s)
- Made Harumi Padmaswari
- Biomedical Engineering, University of Arkansas, Fayetteville, AR, USA
- Cellular and Molecular Biology, University of Arkansas, Fayetteville, AR, USA
| | | | - Shilpi Agrawal
- Biomedical Engineering, University of Arkansas, Fayetteville, AR, USA
| | - Mary S. Jia
- Biomedical Engineering, University of Arkansas, Fayetteville, AR, USA
| | - Sabin Khadgi
- Exercise Science Research Center, Molecular Muscle Mass Regulation Laboratory, Department of Health, Human Performance, and Recreation, University of Arkansas, Fayetteville, AR, USA
| | - Kevin A. Murach
- Cellular and Molecular Biology, University of Arkansas, Fayetteville, AR, USA
- Exercise Science Research Center, Molecular Muscle Mass Regulation Laboratory, Department of Health, Human Performance, and Recreation, University of Arkansas, Fayetteville, AR, USA
| | - Christopher E. Nelson
- Biomedical Engineering, University of Arkansas, Fayetteville, AR, USA
- Cellular and Molecular Biology, University of Arkansas, Fayetteville, AR, USA
| |
Collapse
|
20
|
Grisorio L, Bongianino R, Gianeselli M, Priori SG. Gene therapy for cardiac diseases: methods, challenges, and future directions. Cardiovasc Res 2024; 120:1664-1682. [PMID: 39302117 DOI: 10.1093/cvr/cvae207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/22/2024] [Accepted: 07/30/2024] [Indexed: 09/22/2024] Open
Abstract
Gene therapy is advancing at an unprecedented pace, and the recent success of clinical trials reinforces optimism and trust among the scientific community. Recently, the cardiac gene therapy pipeline, which had progressed more slowly than in other fields, has begun to advance, overcoming biological and technical challenges, particularly in treating genetic heart pathologies. The primary rationale behind the focus on monogenic cardiac diseases is the well-defined molecular mechanisms driving their phenotypes, directly linked to the pathogenicity of single genetic mutations. This aspect makes these conditions a remarkable example of 'genetically druggable' diseases. Unfortunately, current treatments for these life-threatening disorders are few and often poorly effective, underscoring the need to develop therapies to modulate or correct their molecular substrates. In this review we examine the latest advancements in cardiac gene therapy, discussing the pros and cons of different molecular approaches and delivery vectors, with a focus on their therapeutic application in cardiac inherited diseases. Additionally, we highlight the key factors that may enhance clinical translation, drawing insights from previous trials and the current prospects of cardiac gene therapy.
Collapse
Affiliation(s)
- Luca Grisorio
- Department of Internal Medicine, University of Pavia, Via Golgi 19, Pavia, 27100, Italy
| | - Rossana Bongianino
- Molecular Cardiology, IRCCS Istituti Clinici Scientifici Maugeri, Via Maugeri 10, Pavia, 27100, Italy
| | - Matteo Gianeselli
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1030, New York, NY 10029, USA
| | - Silvia Giuliana Priori
- Department of Internal Medicine, University of Pavia, Via Golgi 19, Pavia, 27100, Italy
- Molecular Cardiology, IRCCS Istituti Clinici Scientifici Maugeri, Via Maugeri 10, Pavia, 27100, Italy
- Molecular Cardiology, Centro Nacional de Investigaciones Cardiovasculares (CNIC), C/ Melchor Fernandez Almagro 3, Madrid, 28029, Spain
| |
Collapse
|
21
|
Sosnovtseva AO, Demidova NA, Klimova RR, Kovalev MA, Kushch AA, Starodubova ES, Latanova AA, Karpov DS. Control of HSV-1 Infection: Directions for the Development of CRISPR/Cas-Based Therapeutics and Diagnostics. Int J Mol Sci 2024; 25:12346. [PMID: 39596412 PMCID: PMC11595115 DOI: 10.3390/ijms252212346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 11/13/2024] [Accepted: 11/15/2024] [Indexed: 11/28/2024] Open
Abstract
It is estimated that nearly all individuals have been infected with herpesviruses, with herpes simplex virus type 1 (HSV-1) representing the most prevalent virus. In most cases, HSV-1 causes non-life-threatening skin damage in adults. However, in patients with compromised immune systems, it can cause serious diseases, including death. The situation is further complicated by the emergence of strains that are resistant to both traditional and novel antiviral drugs. It is, therefore, imperative that new methods of combating HSV-1 and other herpesviruses be developed without delay. CRISPR/Cas systems may prove an effective means of controlling herpesvirus infections. This review presents the current understanding of the underlying molecular mechanisms of HSV-1 infection and discusses four potential applications of CRISPR/Cas systems in the fight against HSV-1 infections. These include the search for viral and cellular genes that may serve as effective targets, the optimization of anti-HSV-1 activity of CRISPR/Cas systems in vivo, the development of CRISPR/Cas-based HSV-1 diagnostics, and the validation of HSV-1 drug resistance mutations.
Collapse
Affiliation(s)
- Anastasiia O. Sosnovtseva
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Str., 32, 119991 Moscow, Russia; (A.O.S.); (M.A.K.); (E.S.S.); (A.A.L.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Str., 32, 119991 Moscow, Russia
| | - Natalia A. Demidova
- N.F. Gamaleya National Research Centre for Epidemiology and Microbiology, Ministry of Health of the Russian Federation, Gamaleya Str., 18, 123098 Moscow, Russia; (N.A.D.); (R.R.K.); (A.A.K.)
| | - Regina R. Klimova
- N.F. Gamaleya National Research Centre for Epidemiology and Microbiology, Ministry of Health of the Russian Federation, Gamaleya Str., 18, 123098 Moscow, Russia; (N.A.D.); (R.R.K.); (A.A.K.)
| | - Maxim A. Kovalev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Str., 32, 119991 Moscow, Russia; (A.O.S.); (M.A.K.); (E.S.S.); (A.A.L.)
| | - Alla A. Kushch
- N.F. Gamaleya National Research Centre for Epidemiology and Microbiology, Ministry of Health of the Russian Federation, Gamaleya Str., 18, 123098 Moscow, Russia; (N.A.D.); (R.R.K.); (A.A.K.)
| | - Elizaveta S. Starodubova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Str., 32, 119991 Moscow, Russia; (A.O.S.); (M.A.K.); (E.S.S.); (A.A.L.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Str., 32, 119991 Moscow, Russia
| | - Anastasia A. Latanova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Str., 32, 119991 Moscow, Russia; (A.O.S.); (M.A.K.); (E.S.S.); (A.A.L.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Str., 32, 119991 Moscow, Russia
| | - Dmitry S. Karpov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Str., 32, 119991 Moscow, Russia; (A.O.S.); (M.A.K.); (E.S.S.); (A.A.L.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Str., 32, 119991 Moscow, Russia
| |
Collapse
|
22
|
Wang Y, Jiang H, Li M, Xu Z, Xu H, Chen Y, Chen K, Zheng W, Lin W, Liu Z, Lin Z, Zhang M. Delivery of CRISPR/Cas9 system by AAV as vectors for gene therapy. Gene 2024; 927:148733. [PMID: 38945310 DOI: 10.1016/j.gene.2024.148733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 06/14/2024] [Accepted: 06/25/2024] [Indexed: 07/02/2024]
Abstract
The adeno-associated virus (AAV) is a defective single-stranded DNA virus with the simplest structure reported to date. It constitutes a capsid protein and single-stranded DNA. With its high transduction efficiency, low immunogenicity, and tissue specificity, it is the most widely used and promising gene therapy vector. The clustered regularly interspaced short palindromic sequence (CRISPR)/CRISPR-associated protein 9 (Cas9) gene editing system is an emerging technology that utilizes cas9 nuclease to specifically recognize and cleave target genes under the guidance of small guide RNA and realizes gene editing through homologous directional repair and non-homologous recombination repair. In recent years, an increasing number of animal experiments and clinical studies have revealed the great potential of AAV as a vector to deliver the CRISPR/cas9 system for treating genetic diseases and viral infections. However, the immunogenicity, toxicity, low transmission efficiency in brain and ear tissues, packaging size limitations of AAV, and immunogenicity and off-target effects of Cas9 protein pose several clinical challenges. This research reviews the role, challenges, and countermeasures of the AAV-CRISPR/cas9 system in gene therapy.
Collapse
Affiliation(s)
- Yanan Wang
- Department of Neonatology, The Second School of Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Department of Anesthesiology, 1st Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Haibin Jiang
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Mopu Li
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zidi Xu
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Hang Xu
- The First School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yuetong Chen
- The First School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Kepei Chen
- Department of Neonatology, The Second School of Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Key Laboratory of Perinatal Medicine of Wenzhou, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Key Laboratory of Structural Malformations in Children of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Zhejiang Provincial Clinical Research Center for Pediatric Disease, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Weihong Zheng
- Department of Neonatology, The Second School of Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Key Laboratory of Perinatal Medicine of Wenzhou, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Key Laboratory of Structural Malformations in Children of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Zhejiang Provincial Clinical Research Center for Pediatric Disease, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Wei Lin
- Department of Neonatology, The Second School of Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Key Laboratory of Perinatal Medicine of Wenzhou, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Key Laboratory of Structural Malformations in Children of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Zhejiang Provincial Clinical Research Center for Pediatric Disease, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zhiming Liu
- Department of Spinal Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China.
| | - Zhenlang Lin
- Department of Neonatology, The Second School of Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Key Laboratory of Perinatal Medicine of Wenzhou, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Key Laboratory of Structural Malformations in Children of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Zhejiang Provincial Clinical Research Center for Pediatric Disease, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
| | - Min Zhang
- Department of Neonatology, The Second School of Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Key Laboratory of Perinatal Medicine of Wenzhou, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Key Laboratory of Structural Malformations in Children of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Zhejiang Provincial Clinical Research Center for Pediatric Disease, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
| |
Collapse
|
23
|
Yi Q, Ouyang X, Zhu G, Zhong J. Letter: The risk-benefit balance of CRISPR-Cas screening systems in gene editing and targeted cancer therapy. J Transl Med 2024; 22:1005. [PMID: 39511630 PMCID: PMC11545896 DOI: 10.1186/s12967-024-05834-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 10/31/2024] [Indexed: 11/15/2024] Open
Affiliation(s)
- Qiang Yi
- The First Clinical Medical College, Gannan Medical University,Jiangxi Provincial Tumor Clinical Key Specialty, Jiangxi Provincial Malignant Tumor Clinical Medical Research Center, Ganzhou, 341000, Jiangxi Province, China
| | - Xinting Ouyang
- The First Clinical Medical College, Gannan Medical University,Jiangxi Provincial Tumor Clinical Key Specialty, Jiangxi Provincial Malignant Tumor Clinical Medical Research Center, Ganzhou, 341000, Jiangxi Province, China
| | - Gangfeng Zhu
- The First Clinical Medical College, Gannan Medical University,Jiangxi Provincial Tumor Clinical Key Specialty, Jiangxi Provincial Malignant Tumor Clinical Medical Research Center, Ganzhou, 341000, Jiangxi Province, China
| | - Jinghua Zhong
- Department of Oncology, The First Affiliated Hospital of Gannan Medical University,Jiangxi Provincial Tumor Clinical Key Specialty, Jiangxi Provincial Malignant Tumor Clinical Medical Research Center, 128 Jinling Road, Ganzhou, 341000, Jiangxi Province, China.
| |
Collapse
|
24
|
Capelletti S, García Soto SC, Gonçalves MAFV. On RNA-programmable gene modulation as a versatile set of principles targeting muscular dystrophies. Mol Ther 2024; 32:3793-3807. [PMID: 39169620 PMCID: PMC11573585 DOI: 10.1016/j.ymthe.2024.08.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 07/24/2024] [Accepted: 08/16/2024] [Indexed: 08/23/2024] Open
Abstract
The repurposing of RNA-programmable CRISPR systems from genome editing into epigenome editing tools is gaining pace, including in research and development efforts directed at tackling human disorders. This momentum stems from the increasing knowledge regarding the epigenetic factors and networks underlying cell physiology and disease etiology and from the growing realization that genome editing principles involving chromosomal breaks generated by programmable nucleases are prone to unpredictable genetic changes and outcomes. Hence, engineered CRISPR systems are serving as versatile DNA-targeting scaffolds for heterologous and synthetic effector domains that, via locally recruiting transcription factors and chromatin remodeling complexes, seek interfering with loss-of-function and gain-of-function processes underlying recessive and dominant disorders, respectively. Here, after providing an overview about epigenetic drugs and CRISPR-Cas-based activation and interference platforms, we cover the testing of these platforms in the context of molecular therapies for muscular dystrophies. Finally, we examine attributes, obstacles, and deployment opportunities for CRISPR-based epigenetic modulating technologies.
Collapse
Affiliation(s)
- Sabrina Capelletti
- Department of Cell and Chemical Biology, Leiden University Medical Centre, Einthovenweg 20, 2333 ZC Leiden, the Netherlands
| | - Sofía C García Soto
- Department of Cell and Chemical Biology, Leiden University Medical Centre, Einthovenweg 20, 2333 ZC Leiden, the Netherlands
| | - Manuel A F V Gonçalves
- Department of Cell and Chemical Biology, Leiden University Medical Centre, Einthovenweg 20, 2333 ZC Leiden, the Netherlands.
| |
Collapse
|
25
|
Liang SQ, Navia AW, Ramseier M, Zhou X, Martinez M, Lee C, Zhou C, Wu J, Xie J, Su Q, Wang D, Flotte TR, Anderson DG, Tarantal AF, Shalek AK, Gao G, Xue W. AAV5 Delivery of CRISPR/Cas9 Mediates Genome Editing in the Lungs of Young Rhesus Monkeys. Hum Gene Ther 2024; 35:814-824. [PMID: 38767512 PMCID: PMC11511778 DOI: 10.1089/hum.2024.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 03/13/2024] [Indexed: 05/22/2024] Open
Abstract
Genome editing has the potential to treat genetic diseases in a variety of tissues, including the lung. We have previously developed and validated a dual adeno-associated virus (AAV) CRISPR platform that supports effective editing in the airways of mice. To validate this delivery vehicle in a large animal model, we have shown that intratracheal instillation of CRISPR/Cas9 in AAV5 can edit a housekeeping gene or a disease-related gene in the lungs of young rhesus monkeys. We observed up to 8% editing of angiotensin-converting enzyme 2 (ACE2) in lung lobes after single-dose administration. Single-nuclear RNA sequencing revealed that AAV5 transduces multiple cell types in the caudal lung lobes, including alveolar cells, macrophages, fibroblasts, endothelial cells, and B cells. These results demonstrate that AAV5 is efficient in the delivery of CRISPR/Cas9 in the lung lobes of young rhesus monkeys.
Collapse
Affiliation(s)
- Shun-Qing Liang
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Andrew W. Navia
- Institute for Medical Engineering and Science, Department of Chemistry, and Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts, USA
| | - Michelle Ramseier
- Institute for Medical Engineering and Science, Department of Chemistry, and Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts, USA
| | - Xuntao Zhou
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Michele Martinez
- Departments of Pediatrics and Cell Biology and Human Anatomy, School of Medicine, and California National Primate Research Center, University of California, Davis, California, USA
| | - Charles Lee
- Departments of Pediatrics and Cell Biology and Human Anatomy, School of Medicine, and California National Primate Research Center, University of California, Davis, California, USA
| | - Chen Zhou
- Horae Gene Therapy Center and Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts, USA
- Li Weibo Institute for Rare Diseases Research, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Joae Wu
- Department of Pediatrics, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Jun Xie
- Horae Gene Therapy Center and Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts, USA
- Li Weibo Institute for Rare Diseases Research, University of Massachusetts Medical School, Worcester, Massachusetts, USA
- Viral Vector Core, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Qin Su
- Horae Gene Therapy Center and Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts, USA
- Li Weibo Institute for Rare Diseases Research, University of Massachusetts Medical School, Worcester, Massachusetts, USA
- Viral Vector Core, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Dan Wang
- Horae Gene Therapy Center and Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts, USA
- Li Weibo Institute for Rare Diseases Research, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Terence R. Flotte
- Horae Gene Therapy Center and Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Daniel G. Anderson
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Harvard and MIT Division of Health Science and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Alice F. Tarantal
- Departments of Pediatrics and Cell Biology and Human Anatomy, School of Medicine, and California National Primate Research Center, University of California, Davis, California, USA
| | - Alex K. Shalek
- Institute for Medical Engineering and Science, Department of Chemistry, and Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts, USA
| | - Guangping Gao
- Horae Gene Therapy Center and Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts, USA
- Li Weibo Institute for Rare Diseases Research, University of Massachusetts Medical School, Worcester, Massachusetts, USA
- Viral Vector Core, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Wen Xue
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, Massachusetts, USA
- Li Weibo Institute for Rare Diseases Research, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| |
Collapse
|
26
|
Li N, Kumar SRP, Cao D, Munoz-Melero M, Arisa S, Brian BA, Greenwood CM, Yamada K, Duan D, Herzog RW. Redundancy in Innate Immune Pathways That Promote CD8 + T-Cell Responses in AAV1 Muscle Gene Transfer. Viruses 2024; 16:1507. [PMID: 39459842 PMCID: PMC11512359 DOI: 10.3390/v16101507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/19/2024] [Accepted: 09/21/2024] [Indexed: 10/28/2024] Open
Abstract
While adeno-associated viral (AAV) vectors are successfully used in a variety of in vivo gene therapy applications, they continue to be hampered by the immune system. Here, we sought to identify innate and cytokine signaling pathways that promote CD8+ T-cell responses against the transgene product upon AAV1 vector administration to murine skeletal muscle. Eliminating just one of several pathways (including DNA sensing via TLR9, IL-1 receptor signaling, and possibly endosomal sensing of double-stranded RNA) substantially reduced the CD8+ T-cell response at lower vector doses but was surprisingly ineffective at higher doses. Using genetic, antibody-mediated, and vector engineering approaches, we show that blockade of at least two innate pathways is required to achieve an effect at higher vector doses. Concurrent blockade of IL-1R1 > MyD88 and TLR9 > MyD88 > type I IFN > IFNaR pathways was often but not always synergistic and had limited utility in preventing antibody formation against the transgene product. Further, even low-frequency CD8+ T-cell responses could eliminate transgene expression, even in MyD88- or IL-1R1-deficient animals that received a low vector dose. However, we provide evidence that CpG depletion of vector genomes and including TLR9 inhibitory sequences can synergize. When this construct was combined with the use of a muscle-specific promoter, transgene expression in muscle was sustained with minimal local or systemic CD8+ T-cell response. Thus, innate immune avoidance/blockade strategies by themselves, albeit helpful, may not be sufficient to prevent destructive cellular responses in muscle gene transfer because of the redundancy of immune-activating pathways.
Collapse
Affiliation(s)
- Ning Li
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University, Indianapolis, IN 46202, USA; (N.L.); (D.C.); (M.M.-M.); (S.A.); (B.A.B.); (C.M.G.); (K.Y.)
| | - Sandeep R. P. Kumar
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University, Indianapolis, IN 46202, USA; (N.L.); (D.C.); (M.M.-M.); (S.A.); (B.A.B.); (C.M.G.); (K.Y.)
| | - Di Cao
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University, Indianapolis, IN 46202, USA; (N.L.); (D.C.); (M.M.-M.); (S.A.); (B.A.B.); (C.M.G.); (K.Y.)
| | - Maite Munoz-Melero
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University, Indianapolis, IN 46202, USA; (N.L.); (D.C.); (M.M.-M.); (S.A.); (B.A.B.); (C.M.G.); (K.Y.)
| | - Sreevani Arisa
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University, Indianapolis, IN 46202, USA; (N.L.); (D.C.); (M.M.-M.); (S.A.); (B.A.B.); (C.M.G.); (K.Y.)
| | - Bridget A. Brian
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University, Indianapolis, IN 46202, USA; (N.L.); (D.C.); (M.M.-M.); (S.A.); (B.A.B.); (C.M.G.); (K.Y.)
| | - Calista M. Greenwood
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University, Indianapolis, IN 46202, USA; (N.L.); (D.C.); (M.M.-M.); (S.A.); (B.A.B.); (C.M.G.); (K.Y.)
| | - Kentaro Yamada
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University, Indianapolis, IN 46202, USA; (N.L.); (D.C.); (M.M.-M.); (S.A.); (B.A.B.); (C.M.G.); (K.Y.)
| | - Dongsheng Duan
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO 65211, USA;
| | - Roland W. Herzog
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University, Indianapolis, IN 46202, USA; (N.L.); (D.C.); (M.M.-M.); (S.A.); (B.A.B.); (C.M.G.); (K.Y.)
| |
Collapse
|
27
|
Andrysiak K, Ferdek PE, Sanetra AM, Machaj G, Schmidt L, Kraszewska I, Sarad K, Palus-Chramiec K, Lis O, Targosz-Korecka M, Krüger M, Lewandowski MH, Ylla G, Stępniewski J, Dulak J. Upregulation of utrophin improves the phenotype of Duchenne muscular dystrophy hiPSC-derived CMs. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102247. [PMID: 39035791 PMCID: PMC11259739 DOI: 10.1016/j.omtn.2024.102247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 06/07/2024] [Indexed: 07/23/2024]
Abstract
Duchenne muscular dystrophy (DMD) is a genetic neuromuscular disease. Although it leads to muscle weakness, affected individuals predominantly die from cardiomyopathy, which remains uncurable. Accumulating evidence suggests that an overexpression of utrophin may counteract some of the pathophysiological outcomes of DMD. The aim of this study was to investigate the role of utrophin in dystrophin-deficient human cardiomyocytes (CMs) and to test whether an overexpression of utrophin, implemented via the CRISPR-deadCas9-VP64 system, can improve their phenotype. We used human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) lacking either dystrophin (DMD) or both dystrophin and utrophin (DMD KO/UTRN(+/-)). We carried out proteome analysis, which revealed considerable differences in the proteins related to muscle contraction, cell-cell adhesion, and extracellular matrix organization. Furthermore, we evaluated the role of utrophin in maintaining the physiological properties of DMD hiPSC-CMs using atomic force microscopy, patch-clamp, and Ca2+ oscillation analysis. Our results showed higher values of afterhyperpolarization and altered patterns of cytosolic Ca2+ oscillations in DMD; the latter was further disturbed in DMD KO/UTRN(+/-) hiPSC-CMs. Utrophin upregulation improved both parameters. Our findings demonstrate for the first time that utrophin maintains the physiological functions of DMD hiPSC-CMs, and that its upregulation can compensate for the loss of dystrophin.
Collapse
Affiliation(s)
- Kalina Andrysiak
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
| | - Paweł E. Ferdek
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
| | - Anna M. Sanetra
- Department of Neurophysiology and Chronobiology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, 30-387 Kraków, Poland
| | - Gabriela Machaj
- Laboratory of Bioinformatics and Genome Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
| | - Luisa Schmidt
- Institute for Genetics, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, 50931 Cologne, Germany
| | - Izabela Kraszewska
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
| | - Katarzyna Sarad
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, 30-348 Kraków, Poland
| | - Katarzyna Palus-Chramiec
- Department of Neurophysiology and Chronobiology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, 30-387 Kraków, Poland
| | - Olga Lis
- Department of Physics of Nanostructures and Nanotechnology, Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, 30-348 Kraków, Poland
| | - Marta Targosz-Korecka
- Department of Physics of Nanostructures and Nanotechnology, Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, 30-348 Kraków, Poland
| | - Marcus Krüger
- Institute for Genetics, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, 50931 Cologne, Germany
| | - Marian H. Lewandowski
- Department of Neurophysiology and Chronobiology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, 30-387 Kraków, Poland
| | - Guillem Ylla
- Laboratory of Bioinformatics and Genome Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
| | - Jacek Stępniewski
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
| | - Józef Dulak
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
| |
Collapse
|
28
|
Sun D, Lagor WR. Less is more: Allele-specific removal of dysfunctional RYR1 channel subunits. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102301. [PMID: 39359661 PMCID: PMC11445761 DOI: 10.1016/j.omtn.2024.102301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Affiliation(s)
- Derek Sun
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX 77030, USA
| | - William R. Lagor
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
29
|
Johnston JR, Adler ED. Precision Genetic Therapies: Balancing Risk and Benefit in Patients with Heart Failure. Curr Cardiol Rep 2024; 26:973-983. [PMID: 39110386 PMCID: PMC11379760 DOI: 10.1007/s11886-024-02096-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/02/2024] [Indexed: 09/07/2024]
Abstract
PURPOSE OF REVIEW Precision genetic medicine is evolving at a rapid pace and bears significant implications for clinical cardiology. Herein, we discuss the latest advancements and emerging strategies in gene therapy for cardiomyopathy and heart failure. RECENT FINDINGS Elucidating the genetic architecture of heart failure has paved the way for precision therapies in cardiovascular medicine. Recent preclinical studies and early-phase clinical trials have demonstrated encouraging results that support the development of gene therapies for heart failure arising from a variety of etiologies. In addition to the discovery of new therapeutic targets, innovative delivery platforms are being leveraged to improve the safety and efficacy of cardiac gene therapies. Precision genetic therapy represents a potentially safe and effective approach for improving outcomes in patients with heart failure. It holds promise for radically transforming the treatment paradigm for heart failure by directly targeting the underlying etiology. As this new generation of cardiovascular medicines progress to the clinic, it is especially important to carefully evaluate the benefits and risks for patients.
Collapse
Affiliation(s)
- Jamie R Johnston
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL, 32306, USA
| | - Eric D Adler
- Division of Cardiology, Department of Internal Medicine, University of California San Diego, La Jolla, CA, 92037, USA.
| |
Collapse
|
30
|
Hosseini SY, Mallick R, Mäkinen P, Ylä-Herttuala S. Insights into Prime Editing Technology: A Deep Dive into Fundamentals, Potentials, and Challenges. Hum Gene Ther 2024; 35:649-668. [PMID: 38832869 DOI: 10.1089/hum.2024.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024] Open
Abstract
As the most versatile and precise gene editing technology, prime editing (PE) can establish a durable cure for most human genetic disorders. Several generations of PE have been developed based on an editor machine or prime editing guide RNA (pegRNA) to achieve any kind of genetic correction. However, due to the early stage of development, PE complex elements need to be optimized for more efficient editing. Smart optimization of editor proteins as well as pegRNA has been contemplated by many researchers, but the universal PE machine's current shortcomings remain to be solved. The modification of PE elements, fine-tuning of the host genes, manipulation of epigenetics, and blockage of immune responses could be used to reach more efficient PE. Moreover, the host factors involved in the PE process, such as repair and innate immune system genes, have not been determined, and PE cell context dependency is still poorly understood. Regarding the large size of the PE elements, delivery is a significant challenge and the development of a universal viral or nonviral platform is still far from complete. PE versions with shortened variants of reverse transcriptase are still too large to fit in common viral vectors. Overall, PE faces challenges in optimization for efficiency, high context dependency during the cell cycling, and delivery due to the large size of elements. In addition, immune responses, unpredictability of outcomes, and off-target effects further limit its application, making it essential to address these issues for broader use in nonpersonalized gene editing. Besides, due to the limited number of suitable animal models and computational modeling, the prediction of the PE process remains challenging. In this review, the fundamentals of PE, including generations, potential, optimization, delivery, in vivo barriers, and the future landscape of the technology are discussed.
Collapse
Affiliation(s)
- Seyed Younes Hosseini
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
- Bacteriology and Virology Department, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Rahul Mallick
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Petri Mäkinen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Seppo Ylä-Herttuala
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
- Heart Center and Gene Therapy Unit, Kuopio University Hospital, Kuopio, Finland
| |
Collapse
|
31
|
Ge W, Gou S, Zhao X, Jin Q, Zhuang Z, Zhao Y, Liang Y, Ouyang Z, Liu X, Chen F, Shi H, Yan H, Wu H, Lai L, Wang K. In vivo evaluation of guide-free Cas9-induced safety risks in a pig model. Signal Transduct Target Ther 2024; 9:184. [PMID: 39025833 PMCID: PMC11258294 DOI: 10.1038/s41392-024-01905-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 06/21/2024] [Accepted: 06/23/2024] [Indexed: 07/20/2024] Open
Abstract
The CRISPR/Cas9 system has shown great potential for treating human genetic diseases through gene therapy. However, there are concerns about the safety of this system, specifically related to the use of guide-free Cas9. Previous studies have shown that guide-free Cas9 can induce genomic instability in vitro. However, the in vivo safety risks associated with guide-free Cas9 have not been evaluated, which is necessary for the development of gene therapy in clinical settings. In this study, we used doxycycline-inducible Cas9-expressing pigs to evaluate the safety risks of guide-free Cas9 in vivo. Our findings demonstrated that expression of guide-free Cas9 could induce genomic damages and transcriptome changes in vivo. The severity of the genomic damages and transcriptome changes were correlate with the expression levels of Cas9 protein. Moreover, prolonged expression of Cas9 in pigs led to abnormal phenotypes, including a significant decrease in body weight, which may be attributable to genomic damage-induced nutritional absorption and metabolic dysfunction. Furthermore, we observed an increase in whole-genome and tumor driver gene mutations in pigs with long-term Cas9 expression, raising the risk of tumor occurrence. Our in vivo evaluation of guide-free Cas9 in pigs highlights the necessity of considering and monitoring the detrimental effects of Cas9 alone as genome editing via the CRISPR/Cas9 system is implemented in clinical gene therapy. This research emphasizes the importance of further study and implementation of safety measures to ensure the successful and safe application of the CRISPR/Cas9 system in clinical practice.
Collapse
Affiliation(s)
- Weikai Ge
- China-New Zealand Joint Laboratory on Biomedicine and Health, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, 510530, China
- Sanya institute of Swine resource, Hainan Provincial Research Center of Laboratory Animals, Sanya, 572000, China
- Guangdong Provincial Key Laboratory of Large Animal models for Biomedicine, Wuyi University, Jiangmen, 529020, China
- Guangzhou National Laboratory, Guangzhou, 510005, China
| | - Shixue Gou
- China-New Zealand Joint Laboratory on Biomedicine and Health, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, 510530, China
- Sanya institute of Swine resource, Hainan Provincial Research Center of Laboratory Animals, Sanya, 572000, China
- Guangzhou National Laboratory, Guangzhou, 510005, China
| | - Xiaozhu Zhao
- China-New Zealand Joint Laboratory on Biomedicine and Health, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, 510530, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Qin Jin
- China-New Zealand Joint Laboratory on Biomedicine and Health, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, 510530, China
- Sanya institute of Swine resource, Hainan Provincial Research Center of Laboratory Animals, Sanya, 572000, China
- Research Unit of Generation of Large Animal Disease Models, Chinese Academy of Medical Sciences (2019RU015), Guangzhou, 510530, China
| | - Zhenpeng Zhuang
- China-New Zealand Joint Laboratory on Biomedicine and Health, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, 510530, China
- Sanya institute of Swine resource, Hainan Provincial Research Center of Laboratory Animals, Sanya, 572000, China
| | - Yu Zhao
- China-New Zealand Joint Laboratory on Biomedicine and Health, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, 510530, China
- Sanya institute of Swine resource, Hainan Provincial Research Center of Laboratory Animals, Sanya, 572000, China
- Guangdong Provincial Key Laboratory of Large Animal models for Biomedicine, Wuyi University, Jiangmen, 529020, China
- Research Unit of Generation of Large Animal Disease Models, Chinese Academy of Medical Sciences (2019RU015), Guangzhou, 510530, China
| | - Yanhui Liang
- China-New Zealand Joint Laboratory on Biomedicine and Health, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, 510530, China
- Sanya institute of Swine resource, Hainan Provincial Research Center of Laboratory Animals, Sanya, 572000, China
- Research Unit of Generation of Large Animal Disease Models, Chinese Academy of Medical Sciences (2019RU015), Guangzhou, 510530, China
| | - Zhen Ouyang
- China-New Zealand Joint Laboratory on Biomedicine and Health, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, 510530, China
- Sanya institute of Swine resource, Hainan Provincial Research Center of Laboratory Animals, Sanya, 572000, China
- Guangdong Provincial Key Laboratory of Large Animal models for Biomedicine, Wuyi University, Jiangmen, 529020, China
- Research Unit of Generation of Large Animal Disease Models, Chinese Academy of Medical Sciences (2019RU015), Guangzhou, 510530, China
| | - Xiaoyi Liu
- China-New Zealand Joint Laboratory on Biomedicine and Health, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, 510530, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Fangbing Chen
- China-New Zealand Joint Laboratory on Biomedicine and Health, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, 510530, China
- Sanya institute of Swine resource, Hainan Provincial Research Center of Laboratory Animals, Sanya, 572000, China
- Guangdong Provincial Key Laboratory of Large Animal models for Biomedicine, Wuyi University, Jiangmen, 529020, China
| | - Hui Shi
- China-New Zealand Joint Laboratory on Biomedicine and Health, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, 510530, China
- Sanya institute of Swine resource, Hainan Provincial Research Center of Laboratory Animals, Sanya, 572000, China
| | - Haizhao Yan
- China-New Zealand Joint Laboratory on Biomedicine and Health, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, 510530, China
- Sanya institute of Swine resource, Hainan Provincial Research Center of Laboratory Animals, Sanya, 572000, China
- Guangdong Provincial Key Laboratory of Large Animal models for Biomedicine, Wuyi University, Jiangmen, 529020, China
| | - Han Wu
- China-New Zealand Joint Laboratory on Biomedicine and Health, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, 510530, China.
- Sanya institute of Swine resource, Hainan Provincial Research Center of Laboratory Animals, Sanya, 572000, China.
- Research Unit of Generation of Large Animal Disease Models, Chinese Academy of Medical Sciences (2019RU015), Guangzhou, 510530, China.
| | - Liangxue Lai
- China-New Zealand Joint Laboratory on Biomedicine and Health, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, 510530, China.
- Sanya institute of Swine resource, Hainan Provincial Research Center of Laboratory Animals, Sanya, 572000, China.
- Guangdong Provincial Key Laboratory of Large Animal models for Biomedicine, Wuyi University, Jiangmen, 529020, China.
- Research Unit of Generation of Large Animal Disease Models, Chinese Academy of Medical Sciences (2019RU015), Guangzhou, 510530, China.
| | - Kepin Wang
- China-New Zealand Joint Laboratory on Biomedicine and Health, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, 510530, China.
- Sanya institute of Swine resource, Hainan Provincial Research Center of Laboratory Animals, Sanya, 572000, China.
- Guangdong Provincial Key Laboratory of Large Animal models for Biomedicine, Wuyi University, Jiangmen, 529020, China.
- Research Unit of Generation of Large Animal Disease Models, Chinese Academy of Medical Sciences (2019RU015), Guangzhou, 510530, China.
| |
Collapse
|
32
|
Liu Y, Xia X, Zheng M, Shi B. Bio-Nano Toolbox for Precision Alzheimer's Disease Gene Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2314354. [PMID: 38778446 DOI: 10.1002/adma.202314354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 05/01/2024] [Indexed: 05/25/2024]
Abstract
Alzheimer's disease (AD) is the most burdensome aging-associated neurodegenerative disorder, and its treatment encounters numerous failures during drug development. Although there are newly approved in-market β-amyloid targeting antibody solutions, pathological heterogeneity among patient populations still challenges the treatment outcome. Emerging advances in gene therapies offer opportunities for more precise personalized medicine; while, major obstacles including the pathological heterogeneity among patient populations, the puzzled mechanism for druggable target development, and the precision delivery of functional therapeutic elements across the blood-brain barrier remain and limit the use of gene therapy for central neuronal diseases. Aiming for "precision delivery" challenges, nanomedicine provides versatile platforms that may overcome the targeted delivery challenges for AD gene therapy. In this perspective, to picture a toolbox for AD gene therapy strategy development, the most recent advances from benchtop to clinics are highlighted, possibly available gene therapy targets, tools, and delivery platforms are outlined, their challenges as well as rational design elements are addressed, and perspectives in this promising research field are discussed.
Collapse
Affiliation(s)
- Yang Liu
- Department of Radiotherapy and Translational Medicine Center, Huaihe Hospital of Henan University, Henan University, Kaifeng, Henan, 475000, China
- Henan-Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Xue Xia
- Department of Radiotherapy and Translational Medicine Center, Huaihe Hospital of Henan University, Henan University, Kaifeng, Henan, 475000, China
- Henan-Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, Henan, 475004, China
- Macquarie Medical School, Faculty of Medicine & Health Sciences, Macquarie University, Sydney, New South Wales, 2109, Australia
| | - Meng Zheng
- Department of Radiotherapy and Translational Medicine Center, Huaihe Hospital of Henan University, Henan University, Kaifeng, Henan, 475000, China
- Henan-Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Bingyang Shi
- Henan-Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, Henan, 475004, China
- Macquarie Medical School, Faculty of Medicine & Health Sciences, Macquarie University, Sydney, New South Wales, 2109, Australia
| |
Collapse
|
33
|
Wang J, Gao G, Wang D. Developing AAV-delivered nonsense suppressor tRNAs for neurological disorders. Neurotherapeutics 2024; 21:e00391. [PMID: 38959711 PMCID: PMC11269797 DOI: 10.1016/j.neurot.2024.e00391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 05/29/2024] [Accepted: 06/19/2024] [Indexed: 07/05/2024] Open
Abstract
Adeno-associated virus (AAV)-based gene therapy is a clinical stage therapeutic modality for neurological disorders. A common genetic defect in myriad monogenic neurological disorders is nonsense mutations that account for about 11% of all human pathogenic mutations. Stop codon readthrough by suppressor transfer RNA (sup-tRNA) has long been sought as a potential gene therapy approach to target nonsense mutations, but hindered by inefficient in vivo delivery. The rapid advances in AAV delivery technology have not only powered gene therapy development but also enabled in vivo preclinical assessment of a range of nucleic acid therapeutics, such as sup-tRNA. Compared with conventional AAV gene therapy that delivers a transgene to produce therapeutic proteins, AAV-delivered sup-tRNA has several advantages, such as small gene sizes and operating within the endogenous gene expression regulation, which are important considerations for treating some neurological disorders. This review will first examine sup-tRNA designs and delivery by AAV vectors. We will then analyze how AAV-delivered sup-tRNA can potentially address some neurological disorders that are challenging to conventional gene therapy, followed by discussing available mouse models of neurological diseases for in vivo preclinical testing. Potential challenges for AAV-delivered sup-tRNA to achieve therapeutic efficacy and safety will also be discussed.
Collapse
Affiliation(s)
- Jiaming Wang
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA; Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Guangping Gao
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA; Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA.
| | - Dan Wang
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA; RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA.
| |
Collapse
|
34
|
Kodippili K, Hakim CH, Burke MJ, Yue Y, Teixeira JA, Zhang K, Yao G, Babu GJ, Herzog RW, Duan D. SERCA2a overexpression improves muscle function in a canine Duchenne muscular dystrophy model. Mol Ther Methods Clin Dev 2024; 32:101268. [PMID: 38911286 PMCID: PMC11190715 DOI: 10.1016/j.omtm.2024.101268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 05/16/2024] [Indexed: 06/25/2024]
Abstract
Excessive cytosolic calcium accumulation contributes to muscle degeneration in Duchenne muscular dystrophy (DMD). Sarco/endoplasmic reticulum calcium ATPase (SERCA) is a sarcoplasmic reticulum (SR) calcium pump that actively transports calcium from the cytosol into the SR. We previously showed that adeno-associated virus (AAV)-mediated SERCA2a therapy reduced cytosolic calcium overload and improved muscle and heart function in the murine DMD model. Here, we tested whether AAV SERCA2a therapy could ameliorate muscle disease in the canine DMD model. 7.83 × 1013 vector genome particles of the AAV vector were injected into the extensor carpi ulnaris (ECU) muscles of four juvenile affected dogs. Contralateral ECU muscles received excipient. Three months later, we observed widespread transgene expression and significantly increased SERCA2a levels in the AAV-injected muscles. Treatment improved SR calcium uptake, significantly reduced calpain activity, significantly improved contractile kinetics, and significantly enhanced resistance to eccentric contraction-induced force loss. Nonetheless, muscle histology was not improved. To evaluate the safety of AAV SERCA2a therapy, we delivered the vector to the ECU muscle of adult normal dogs. We achieved strong transgene expression without altering muscle histology and function. Our results suggest that AAV SERCA2a therapy has the potential to improve muscle performance in a dystrophic large mammal.
Collapse
Affiliation(s)
- Kasun Kodippili
- Department of Molecular Microbiology and Immunology, School of Medicine, The University of Missouri, Columbia, MO 65212, USA
| | - Chady H. Hakim
- Department of Molecular Microbiology and Immunology, School of Medicine, The University of Missouri, Columbia, MO 65212, USA
| | - Matthew J. Burke
- Department of Molecular Microbiology and Immunology, School of Medicine, The University of Missouri, Columbia, MO 65212, USA
| | - Yongping Yue
- Department of Molecular Microbiology and Immunology, School of Medicine, The University of Missouri, Columbia, MO 65212, USA
| | - James A. Teixeira
- Department of Molecular Microbiology and Immunology, School of Medicine, The University of Missouri, Columbia, MO 65212, USA
| | - Keqing Zhang
- Department of Molecular Microbiology and Immunology, School of Medicine, The University of Missouri, Columbia, MO 65212, USA
| | - Gang Yao
- Department of Chemical and Biomedical Engineering, College of Engineering, The University of Missouri, Columbia, MO 65212, USA
| | - Gopal J. Babu
- Department of Cell Biology and Molecular Medicine, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| | - Roland W. Herzog
- Herman B Wells Center for Pediatric Research, Indiana University, Indianapolis, IN 46202, USA
| | - Dongsheng Duan
- Department of Molecular Microbiology and Immunology, School of Medicine, The University of Missouri, Columbia, MO 65212, USA
- Department of Chemical and Biomedical Engineering, College of Engineering, The University of Missouri, Columbia, MO 65212, USA
- Department of Neurology, School of Medicine, The University of Missouri, Columbia, MO 65212, USA
- Department of Biomedical Sciences, College of Veterinary Medicine, The University of Missouri, Columbia, MO 65212, USA
| |
Collapse
|
35
|
Weber JA, Lang JF, Carrell EM, Alameh MG, Davidson BL. Temporal restriction of Cas9 expression improves CRISPR-mediated deletion efficacy and fidelity. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102172. [PMID: 38978694 PMCID: PMC11229411 DOI: 10.1016/j.omtn.2024.102172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 03/08/2024] [Indexed: 07/10/2024]
Abstract
Clinical application of CRISPR-Cas9 technology for large deletions of somatic mutations is inefficient, and methods to improve utility suffer from our inability to rapidly assess mono- vs. biallelic deletions. Here we establish a model system for investigating allelic heterogeneity at the single-cell level and identify indel scarring from non-simultaneous nuclease activity at gRNA cut sites as a major barrier to CRISPR-del efficacy both in vitro and in vivo. We show that non-simultaneous nuclease activity is partially prevented via restriction of CRISPR-Cas9 expression via inducible adeno-associated viruses (AAVs) or lipid nanoparticles (LNPs). Inducible AAV-based expression of CRISPR-del machinery significantly improved mono- and biallelic deletion frequency in vivo, supporting the use of the Xon cassette over traditional constitutively expressing AAV approaches. These data depicting improvements to deletions and insight into allelic heterogeneity after CRISPR-del will inform therapeutic approaches for phenotypes that require either large mono- or biallelic deletions, such as autosomal recessive diseases or where mutant allele-specific gRNAs are not readily available, or in situations where the targeted sequence for excision is located multiple times in a genome.
Collapse
Affiliation(s)
- Jesse A Weber
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Cell and Molecular Biology Graduate Group, Biomedical Graduate Studies, University of Pennsylvania, Philadelphia, PA, USA
| | - Jonathan F Lang
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Cell and Molecular Biology Graduate Group, Biomedical Graduate Studies, University of Pennsylvania, Philadelphia, PA, USA
| | - Ellie M Carrell
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Mohamad-Gabriel Alameh
- Penn Institute for RNA Innovation, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Beverly L Davidson
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
36
|
Yi H, Yun Y, Choi WH, Hwang HY, Cha JH, Seok H, Song JJ, Lee JH, Lee SY, Kim D. CRISPR-based editing strategies to rectify EYA1 complex genomic rearrangement linked to haploinsufficiency. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102199. [PMID: 38766525 PMCID: PMC11101721 DOI: 10.1016/j.omtn.2024.102199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 04/21/2024] [Indexed: 05/22/2024]
Abstract
Pathogenic structure variations (SVs) are associated with various types of cancer and rare genetic diseases. Recent studies have used Cas9 nuclease with paired guide RNAs (gRNAs) to generate targeted chromosomal rearrangements, focusing on producing fusion proteins that cause cancer, whereas research on precision genome editing for rectifying SVs is limited. In this study, we identified a novel complex genomic rearrangement (CGR), specifically an EYA1 inversion with a deletion, implicated in branchio-oto-renal/branchio-oto syndrome. To address this, two CRISPR-based approaches were tested. First, we used Cas9 nuclease and paired gRNAs tailored to the patient's genome. The dual CRISPR-Cas9 system induced efficient correction of paracentric inversion in patient-derived fibroblast, and effectively restored the expression of EYA1 mRNA and protein, along with its transcriptional activity required to regulate the target gene expression. Additionally, we used CRISPR activation (CRISPRa), which leads to the upregulation of EYA1 mRNA expression in patient-derived fibroblasts. Moreover, CRISPRa significantly improved EYA1 protein expression and transcriptional activity essential for target gene expression. This suggests that CRISPRa-based gene therapies could offer substantial translational potential for approximately 70% of disease-causing EYA1 variants responsible for haploinsufficiency. Our findings demonstrate the potential of CRISPR-guided genome editing for correcting SVs, including those with EYA1 CGR linked to haploinsufficiency.
Collapse
Affiliation(s)
- Hwalin Yi
- Department of Precision Medicine, Sungkyunkwan University School of Medicine, Suwon 16419, Republic of Korea
| | - Yejin Yun
- Department of Otorhinolaryngology, Seoul National University College of Medicine, Seoul National University Hospital, Seoul 03080, South Korea
| | - Won Hoon Choi
- Department of Otorhinolaryngology, Seoul National University College of Medicine, Seoul National University Hospital, Seoul 03080, South Korea
| | - Hye-Yeon Hwang
- Department of Precision Medicine, Sungkyunkwan University School of Medicine, Suwon 16419, Republic of Korea
| | - Ju Hyuen Cha
- Department of Otorhinolaryngology, Seoul National University College of Medicine, Seoul National University Hospital, Seoul 03080, South Korea
| | - Heeyoung Seok
- Department of Transdisciplinary Research and Collaboration, Genomics Core Facility, Biomedical Research Institute, Seoul National University Hospital, Seoul 03080, South Korea
| | - Jae-Jin Song
- Department of Otorhinolaryngology, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Jun Ho Lee
- Department of Otorhinolaryngology, Seoul National University College of Medicine, Seoul National University Hospital, Seoul 03080, South Korea
| | - Sang-Yeon Lee
- Department of Otorhinolaryngology, Seoul National University College of Medicine, Seoul National University Hospital, Seoul 03080, South Korea
- Department of Genomic Medicine, Seoul National University Hospital, Seoul 03080, Republic of Korea
- Sensory Organ Research Institute, Seoul National University Medical Research Center, Seoul 03080, Republic of Korea
| | - Daesik Kim
- Department of Precision Medicine, Sungkyunkwan University School of Medicine, Suwon 16419, Republic of Korea
| |
Collapse
|
37
|
Jauze L, Vie M, Miagoux Q, Rossiaud L, Vidal P, Montalvo-Romeral V, Saliba H, Jarrige M, Polveche H, Nozi J, Le Brun PR, Bocchialini L, Francois A, Cosette J, Rouillon J, Collaud F, Bordier F, Bertil-Froidevaux E, Georger C, van Wittenberghe L, Miranda A, Daniele NF, Gross DA, Hoch L, Nissan X, Ronzitti G. Synergism of dual AAV gene therapy and rapamycin rescues GSDIII phenotype in muscle and liver. JCI Insight 2024; 9:e172614. [PMID: 38753465 PMCID: PMC11382881 DOI: 10.1172/jci.insight.172614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 05/01/2024] [Indexed: 05/18/2024] Open
Abstract
Glycogen storage disease type III (GSDIII) is a rare metabolic disorder due to glycogen debranching enzyme (GDE) deficiency. Reduced GDE activity leads to pathological glycogen accumulation responsible for impaired hepatic metabolism and muscle weakness. To date, there is no curative treatment for GSDIII. We previously reported that 2 distinct dual AAV vectors encoding for GDE were needed to correct liver and muscle in a GSDIII mouse model. Here, we evaluated the efficacy of rapamycin in combination with AAV gene therapy. Simultaneous treatment with rapamycin and a potentially novel dual AAV vector expressing GDE in the liver and muscle resulted in a synergic effect demonstrated at biochemical and functional levels. Transcriptomic analysis confirmed synergy and suggested a putative mechanism based on the correction of lysosomal impairment. In GSDIII mice livers, dual AAV gene therapy combined with rapamycin reduced the effect of the immune response to AAV observed in this disease model. These data provide proof of concept of an approach exploiting the combination of gene therapy and rapamycin to improve efficacy and safety and to support clinical translation.
Collapse
Affiliation(s)
- Louisa Jauze
- Généthon, Évry, France
- Université Paris-Saclay, Univ Évry, Inserm, Généthon, Integrare research unit UMR_S951, 91000 Évry, France
| | - Mallaury Vie
- Généthon, Évry, France
- Université Paris-Saclay, Univ Évry, Inserm, Généthon, Integrare research unit UMR_S951, 91000 Évry, France
| | - Quentin Miagoux
- CECS, I-STEM, Institute for Stem Cell Therapy and Exploration of Monogenic Diseases, Corbeil-Essonnes, France
| | - Lucille Rossiaud
- Généthon, Évry, France
- Université Paris-Saclay, Univ Évry, Inserm, Généthon, Integrare research unit UMR_S951, 91000 Évry, France
- CECS, I-STEM, Institute for Stem Cell Therapy and Exploration of Monogenic Diseases, Corbeil-Essonnes, France
| | - Patrice Vidal
- Généthon, Évry, France
- Université Paris-Saclay, Univ Évry, Inserm, Généthon, Integrare research unit UMR_S951, 91000 Évry, France
| | - Valle Montalvo-Romeral
- Généthon, Évry, France
- Université Paris-Saclay, Univ Évry, Inserm, Généthon, Integrare research unit UMR_S951, 91000 Évry, France
| | - Hanadi Saliba
- Généthon, Évry, France
- Université Paris-Saclay, Univ Évry, Inserm, Généthon, Integrare research unit UMR_S951, 91000 Évry, France
| | - Margot Jarrige
- CECS, I-STEM, Institute for Stem Cell Therapy and Exploration of Monogenic Diseases, Corbeil-Essonnes, France
| | - Helene Polveche
- CECS, I-STEM, Institute for Stem Cell Therapy and Exploration of Monogenic Diseases, Corbeil-Essonnes, France
| | - Justine Nozi
- Généthon, Évry, France
- Université Paris-Saclay, Univ Évry, Inserm, Généthon, Integrare research unit UMR_S951, 91000 Évry, France
| | | | - Luca Bocchialini
- Généthon, Évry, France
- Université Paris-Saclay, Univ Évry, Inserm, Généthon, Integrare research unit UMR_S951, 91000 Évry, France
| | - Amandine Francois
- Généthon, Évry, France
- Université Paris-Saclay, Univ Évry, Inserm, Généthon, Integrare research unit UMR_S951, 91000 Évry, France
| | | | - Jérémy Rouillon
- Généthon, Évry, France
- Université Paris-Saclay, Univ Évry, Inserm, Généthon, Integrare research unit UMR_S951, 91000 Évry, France
| | - Fanny Collaud
- Généthon, Évry, France
- Université Paris-Saclay, Univ Évry, Inserm, Généthon, Integrare research unit UMR_S951, 91000 Évry, France
| | | | | | | | | | | | | | - David-Alexandre Gross
- Généthon, Évry, France
- Université Paris-Saclay, Univ Évry, Inserm, Généthon, Integrare research unit UMR_S951, 91000 Évry, France
| | - Lucile Hoch
- CECS, I-STEM, Institute for Stem Cell Therapy and Exploration of Monogenic Diseases, Corbeil-Essonnes, France
| | - Xavier Nissan
- CECS, I-STEM, Institute for Stem Cell Therapy and Exploration of Monogenic Diseases, Corbeil-Essonnes, France
| | - Giuseppe Ronzitti
- Généthon, Évry, France
- Université Paris-Saclay, Univ Évry, Inserm, Généthon, Integrare research unit UMR_S951, 91000 Évry, France
| |
Collapse
|
38
|
Riley JS, Luks VL, Berkowitz CL, Dumitru AM, Kus NJ, Dave A, Menon P, De Paepe ME, Jain R, Li L, Dugoff L, Teefey CP, Alameh MG, Zoltick PW, Peranteau WH. Preexisting maternal immunity to AAV but not Cas9 impairs in utero gene editing in mice. J Clin Invest 2024; 134:e179848. [PMID: 38950310 PMCID: PMC11178531 DOI: 10.1172/jci179848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 05/01/2024] [Indexed: 07/03/2024] Open
Abstract
In utero gene editing (IUGE) is a potential treatment for inherited diseases that cause pathology before or soon after birth. Preexisting immunity to adeno-associated virus (AAV) vectors and Cas9 endonuclease may limit postnatal gene editing. The tolerogenic fetal immune system minimizes a fetal immune barrier to IUGE. However, the ability of maternal immunity to limit fetal gene editing remains a question. We investigated whether preexisting maternal immunity to AAV or Cas9 impairs IUGE. Using a combination of fluorescent reporter mice and a murine model of a metabolic liver disease, we demonstrated that maternal anti-AAV IgG antibodies were efficiently transferred from dam to fetus and impaired IUGE in a maternal titer-dependent fashion. By contrast, maternal cellular immunity was inefficiently transferred to the fetus, and neither maternal cellular nor humoral immunity to Cas9 impaired IUGE. Using human umbilical cord and maternal blood samples collected from mid- to late-gestation pregnancies, we demonstrated that maternal-fetal transmission of anti-AAV IgG was inefficient in midgestation compared with term, suggesting that the maternal immune barrier to clinical IUGE would be less relevant at midgestation. These findings support immunologic advantages for IUGE and inform maternal preprocedural testing protocols and exclusion criteria for future clinical trials.
Collapse
Affiliation(s)
- John S. Riley
- Center for Fetal Research, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Surgery, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Valerie L. Luks
- Center for Fetal Research, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Surgery, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Cara L. Berkowitz
- Center for Fetal Research, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Ana Maria Dumitru
- Center for Fetal Research, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Nicole J. Kus
- Center for Fetal Research, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Apeksha Dave
- Center for Fetal Research, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Pallavi Menon
- Center for Fetal Research, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Monique E. De Paepe
- Department of Pathology and Laboratory Medicine, Brown University, Providence, Rhode Island, USA
| | - Rajan Jain
- Division of Cardiology, Department of Medicine, and
| | - Li Li
- Division of Cardiology, Department of Medicine, and
| | - Lorraine Dugoff
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | - Mohamad-Gabriel Alameh
- Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Philip W. Zoltick
- Center for Fetal Research, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - William H. Peranteau
- Center for Fetal Research, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Center for Fetal Diagnosis and Treatment and
| |
Collapse
|
39
|
Piñón Hofbauer J, Guttmann-Gruber C, Wally V, Sharma A, Gratz IK, Koller U. Challenges and progress related to gene editing in rare skin diseases. Adv Drug Deliv Rev 2024; 208:115294. [PMID: 38527624 DOI: 10.1016/j.addr.2024.115294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 03/01/2024] [Accepted: 03/21/2024] [Indexed: 03/27/2024]
Abstract
Genodermatoses represent a large group of inherited skin disorders encompassing clinically-heterogeneous conditions that manifest in the skin and other organs. Depending on disease variant, associated clinical manifestations and secondary complications can severely impact patients' quality of life and currently available treatments are transient and not curative. Multiple emerging approaches using CRISPR-based technologies offer promising prospects for therapy. Here, we explore current advances and challenges related to gene editing in rare skin diseases, including different strategies tailored to mutation type and structural organization of the affected gene, considerations for in vivo and ex vivo applications, the critical issue of delivery into the skin, and immune aspects of therapy. Against the backdrop of a landmark FDA approval for the first re-dosable gene replacement therapy for a rare genetic skin disorder, gene editing approaches are inching closer to the clinics and the possibility of a local permanent cure for patients affected by these disorders.
Collapse
Affiliation(s)
- Josefina Piñón Hofbauer
- EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University, 5020 Salzburg, Austria
| | - Christina Guttmann-Gruber
- EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University, 5020 Salzburg, Austria
| | - Verena Wally
- EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University, 5020 Salzburg, Austria
| | - Anshu Sharma
- EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University, 5020 Salzburg, Austria; Department of Biosciences and Medical Biology, University of Salzburg, 5020 Salzburg, Austria
| | - Iris K Gratz
- EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University, 5020 Salzburg, Austria; Department of Biosciences and Medical Biology, University of Salzburg, 5020 Salzburg, Austria; Center for Tumor Biology and Immunology, University of Salzburg, 5020 Salzburg, Austria
| | - Ulrich Koller
- EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University, 5020 Salzburg, Austria.
| |
Collapse
|
40
|
Romanishin A, Vasilev A, Khasanshin E, Evtekhov A, Pusynin E, Rubina K, Kakotkin V, Agapov M, Semina E. Oncolytic viral therapy for gliomas: Advances in the mechanisms and approaches to delivery. Virology 2024; 593:110033. [PMID: 38442508 DOI: 10.1016/j.virol.2024.110033] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 02/04/2024] [Accepted: 02/19/2024] [Indexed: 03/07/2024]
Abstract
Glioma is a diverse category of tumors originating from glial cells encompasses various subtypes, based on the specific type of glial cells involved. The most aggressive is glioblastoma multiforme (GBM), which stands as the predominant primary malignant tumor within the central nervous system in adults. Despite the application of treatment strategy, the median survival rate for GBM patients still hovers around 15 months. Oncolytic viruses (OVs) are artificially engineered viruses designed to selectively target and induce apoptosis in cancer cells. While clinical trials have demonstrated encouraging results with intratumoral OV injections for some cancers, applying this approach to GBM presents unique challenges. Here we elaborate on current trends in oncolytic viral therapy and their delivery methods. We delve into the various methods of delivering OVs for therapy, exploring their respective advantages and disadvantages and discussing how selecting the optimal delivery method can enhance the efficacy of this innovative treatment approach.
Collapse
Affiliation(s)
- A Romanishin
- Institute of Medicine and Life Science, Immanuel Kant Baltic Federal University, Kaliningrad, 236041, Russia.
| | - A Vasilev
- Institute of Medicine and Life Science, Immanuel Kant Baltic Federal University, Kaliningrad, 236041, Russia
| | - E Khasanshin
- Kaliningrad Regional Hospital, Kaliningrad, 236016, Russia
| | - A Evtekhov
- Kaliningrad Regional Hospital, Kaliningrad, 236016, Russia
| | - E Pusynin
- Kaliningrad Regional Hospital, Kaliningrad, 236016, Russia
| | - K Rubina
- Faculty of Medicine, Lomonosov Moscow State University, Lomonosovsky Ave., 27/1, 119991, Moscow, Russia
| | - V Kakotkin
- Institute of Medicine and Life Science, Immanuel Kant Baltic Federal University, Kaliningrad, 236041, Russia
| | - M Agapov
- Institute of Medicine and Life Science, Immanuel Kant Baltic Federal University, Kaliningrad, 236041, Russia; Faculty of Medicine, Lomonosov Moscow State University, Lomonosovsky Ave., 27/1, 119991, Moscow, Russia
| | - E Semina
- Institute of Medicine and Life Science, Immanuel Kant Baltic Federal University, Kaliningrad, 236041, Russia; Faculty of Medicine, Lomonosov Moscow State University, Lomonosovsky Ave., 27/1, 119991, Moscow, Russia
| |
Collapse
|
41
|
Kaczmarek R, Miesbach W, Ozelo MC, Chowdary P. Current and emerging gene therapies for haemophilia A and B. Haemophilia 2024; 30 Suppl 3:12-20. [PMID: 38528615 DOI: 10.1111/hae.14984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/19/2024] [Accepted: 02/26/2024] [Indexed: 03/27/2024]
Abstract
INTRODUCTION After decades of stumbling clinical development, the first gene therapies for haemophilia A and B have been commercialized and have normalized factor (F)VIII and factor (F)IX levels in some individuals in the long term. Several other clinical programs testing adeno-associated viral (AAV) vector gene therapy are at various stages of clinical testing. DISCUSSION Multiyear follow-up in phase 1/2 and 3 studies showed long-term and sometimes curative but widely variable and unpredictable efficacy. Liver toxicities, mostly low-grade, occur in the 1st year in at least some individuals in all haemophilia A and B trials and are poorly understood. Wide variability and unpredictability of outcome and slow decline of FVIII levels are a major disadvantage because immune responses to AAV vectors preclude repeat dosing, which otherwise could improve suboptimal or restore declining expression, while overexpression may predispose to thrombosis. Long-term safety outcomes will need lifelong monitoring because AAV vectors infused at high doses integrate into chromosomes at rates that raise questions about potential oncogenicity and necessitate vigilance. Alternative gene transfer systems employing gene editing and/or non-viral vectors are under development and promise to overcome some limitations of the current state of the art for both haemophilia A and B. CONCLUSIONS AAV gene therapies for haemophilia have now become new treatment options but not universal cures. AAV is a powerful but imperfect gene transfer platform. Biobetter FVIII transgenes may help solve some problems plaguing gene therapy for haemophilia A. Addressing variability and unpredictability of efficacy, and delivery of gene therapy to ineligible patient subgroups may require different gene transfer systems, most of which are not ready for clinical translation yet but bring innovations needed to overcome the current limitations of gene therapy.
Collapse
Affiliation(s)
- Radoslaw Kaczmarek
- Wells Centre for Paediatric Research, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Wolfgang Miesbach
- Department of Haemostasis/Haemophilia Centre, Laboratory for Coagulation Disorders, University Hospital Frankfurt, Frankfurt, Germany
| | - Margareth C Ozelo
- Hemocentro UNICAMP, Department of Internal Medicine, School of Medical Sciences, University of Campinas, Campinas, SP, Brazil
| | - Pratima Chowdary
- Katharine Dormandy Haemophilia and Thrombosis Centre, Royal Free Hospital, London, UK
| |
Collapse
|
42
|
Boutin J, Genevois C, Couillaud F, Lamrissi-Garcia I, Guyonnet-Duperat V, Bibeyran A, Lalanne M, Amintas S, Moranvillier I, Richard E, Blouin JM, Dabernat S, Moreau-Gaudry F, Bedel A. CRISPR editing to mimic porphyria combined with light: A new preclinical approach for prostate cancer. MOLECULAR THERAPY. ONCOLOGY 2024; 32:200772. [PMID: 38596305 PMCID: PMC10899051 DOI: 10.1016/j.omton.2024.200772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 01/15/2024] [Accepted: 02/06/2024] [Indexed: 04/11/2024]
Abstract
Thanks to its very high genome-editing efficiency, CRISPR-Cas9 technology could be a promising anticancer weapon. Clinical trials using CRISPR-Cas9 nuclease to ex vivo edit and alter immune cells are ongoing. However, to date, this strategy still has not been applied in clinical practice to directly target cancer cells. Targeting a canonical metabolic pathway essential to good functioning of cells without potential escape would represent an attractive strategy. We propose to mimic a genetic metabolic disorder in cancer cells to weaken cancer cells, independent of their genomic abnormalities. Mutations affecting the heme biosynthesis pathway are responsible for porphyria, and most of them are characterized by an accumulation of toxic photoreactive porphyrins. This study aimed to mimic porphyria by using CRISPR-Cas9 to inactivate UROS, leading to porphyrin accumulation in a prostate cancer model. Prostate cancer is the leading cancer in men and has a high mortality rate despite therapeutic progress, with a primary tumor accessible to light. By combining light with gene therapy, we obtained high efficiency in vitro and in vivo, with considerable improvement in the survival of mice. Finally, we achieved the preclinical proof-of-principle of performing cancer CRISPR gene therapy.
Collapse
Affiliation(s)
- Julian Boutin
- University of Bordeaux, INSERM, UMR 1312, Bordeaux Institute of Oncology, 146 Rue Léo Saignat, 33076 Bordeaux, France
- CHU de Bordeaux, Biochemistry Laboratory, 33000 Bordeaux, France
| | - Coralie Genevois
- University of Bordeaux, INSERM, UMR 1312, Bordeaux Institute of Oncology, 146 Rue Léo Saignat, 33076 Bordeaux, France
- Vivoptic Platform INSERM US 005—CNRS UAR 3427-TBM-Core, Bordeaux University, 33000 Bordeaux, France
| | - Franck Couillaud
- University of Bordeaux, INSERM, UMR 1312, Bordeaux Institute of Oncology, 146 Rue Léo Saignat, 33076 Bordeaux, France
- Vivoptic Platform INSERM US 005—CNRS UAR 3427-TBM-Core, Bordeaux University, 33000 Bordeaux, France
| | - Isabelle Lamrissi-Garcia
- University of Bordeaux, INSERM, UMR 1312, Bordeaux Institute of Oncology, 146 Rue Léo Saignat, 33076 Bordeaux, France
| | - Veronique Guyonnet-Duperat
- University of Bordeaux, INSERM, UMR 1312, Bordeaux Institute of Oncology, 146 Rue Léo Saignat, 33076 Bordeaux, France
- Vect’UB, Vectorology Platform, INSERM US 005—CNRS UAR 3427-TBM-Core, Bordeaux University, 33000 Bordeaux, France
| | - Alice Bibeyran
- University of Bordeaux, INSERM, UMR 1312, Bordeaux Institute of Oncology, 146 Rue Léo Saignat, 33076 Bordeaux, France
- Vect’UB, Vectorology Platform, INSERM US 005—CNRS UAR 3427-TBM-Core, Bordeaux University, 33000 Bordeaux, France
| | - Magalie Lalanne
- University of Bordeaux, INSERM, UMR 1312, Bordeaux Institute of Oncology, 146 Rue Léo Saignat, 33076 Bordeaux, France
| | - Samuel Amintas
- University of Bordeaux, INSERM, UMR 1312, Bordeaux Institute of Oncology, 146 Rue Léo Saignat, 33076 Bordeaux, France
- CHU de Bordeaux, Tumor Biology and Tumor Bank Laboratory, 33000 Bordeaux, France
| | - Isabelle Moranvillier
- University of Bordeaux, INSERM, UMR 1312, Bordeaux Institute of Oncology, 146 Rue Léo Saignat, 33076 Bordeaux, France
| | - Emmanuel Richard
- University of Bordeaux, INSERM, UMR 1312, Bordeaux Institute of Oncology, 146 Rue Léo Saignat, 33076 Bordeaux, France
- CHU de Bordeaux, Biochemistry Laboratory, 33000 Bordeaux, France
| | - Jean-Marc Blouin
- University of Bordeaux, INSERM, UMR 1312, Bordeaux Institute of Oncology, 146 Rue Léo Saignat, 33076 Bordeaux, France
- CHU de Bordeaux, Biochemistry Laboratory, 33000 Bordeaux, France
| | - Sandrine Dabernat
- University of Bordeaux, INSERM, UMR 1312, Bordeaux Institute of Oncology, 146 Rue Léo Saignat, 33076 Bordeaux, France
- CHU de Bordeaux, Biochemistry Laboratory, 33000 Bordeaux, France
| | - François Moreau-Gaudry
- University of Bordeaux, INSERM, UMR 1312, Bordeaux Institute of Oncology, 146 Rue Léo Saignat, 33076 Bordeaux, France
- CHU de Bordeaux, Biochemistry Laboratory, 33000 Bordeaux, France
| | - Aurélie Bedel
- University of Bordeaux, INSERM, UMR 1312, Bordeaux Institute of Oncology, 146 Rue Léo Saignat, 33076 Bordeaux, France
- CHU de Bordeaux, Biochemistry Laboratory, 33000 Bordeaux, France
| |
Collapse
|
43
|
Kolesnik VV, Nurtdinov RF, Oloruntimehin ES, Karabelsky AV, Malogolovkin AS. Optimization strategies and advances in the research and development of AAV-based gene therapy to deliver large transgenes. Clin Transl Med 2024; 14:e1607. [PMID: 38488469 PMCID: PMC10941601 DOI: 10.1002/ctm2.1607] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 02/07/2024] [Accepted: 02/15/2024] [Indexed: 03/18/2024] Open
Abstract
Adeno-associated virus (AAV)-based therapies are recognized as one of the most potent next-generation treatments for inherited and genetic diseases. However, several biological and technological aspects of AAV vectors remain a critical issue for their widespread clinical application. Among them, the limited capacity of the AAV genome significantly hinders the development of AAV-based gene therapy. In this context, genetically modified transgenes compatible with AAV are opening up new opportunities for unlimited gene therapies for many genetic disorders. Recent advances in de novo protein design and remodelling are paving the way for new, more efficient and targeted gene therapeutics. Using computational and genetic tools, AAV expression cassette and transgenic DNA can be split, miniaturized, shuffled or created from scratch to mediate efficient gene transfer into targeted cells. In this review, we highlight recent advances in AAV-based gene therapy with a focus on its use in translational research. We summarize recent research and development in gene therapy, with an emphasis on large transgenes (>4.8 kb) and optimizing strategies applied by biomedical companies in the research pipeline. We critically discuss the prospects for AAV-based treatment and some emerging challenges. We anticipate that the continued development of novel computational tools will lead to rapid advances in basic gene therapy research and translational studies.
Collapse
Affiliation(s)
- Valeria V. Kolesnik
- Martsinovsky Institute of Medical ParasitologyTropical and Vector‐Borne Diseases, Sechenov UniversityMoscowRussia
| | - Ruslan F. Nurtdinov
- Martsinovsky Institute of Medical ParasitologyTropical and Vector‐Borne Diseases, Sechenov UniversityMoscowRussia
| | - Ezekiel Sola Oloruntimehin
- Martsinovsky Institute of Medical ParasitologyTropical and Vector‐Borne Diseases, Sechenov UniversityMoscowRussia
| | | | - Alexander S. Malogolovkin
- Martsinovsky Institute of Medical ParasitologyTropical and Vector‐Borne Diseases, Sechenov UniversityMoscowRussia
- Center for Translational MedicineSirius University of Science and TechnologySochiRussia
| |
Collapse
|
44
|
Pacesa M, Pelea O, Jinek M. Past, present, and future of CRISPR genome editing technologies. Cell 2024; 187:1076-1100. [PMID: 38428389 DOI: 10.1016/j.cell.2024.01.042] [Citation(s) in RCA: 116] [Impact Index Per Article: 116.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/23/2024] [Accepted: 01/26/2024] [Indexed: 03/03/2024]
Abstract
Genome editing has been a transformative force in the life sciences and human medicine, offering unprecedented opportunities to dissect complex biological processes and treat the underlying causes of many genetic diseases. CRISPR-based technologies, with their remarkable efficiency and easy programmability, stand at the forefront of this revolution. In this Review, we discuss the current state of CRISPR gene editing technologies in both research and therapy, highlighting limitations that constrain them and the technological innovations that have been developed in recent years to address them. Additionally, we examine and summarize the current landscape of gene editing applications in the context of human health and therapeutics. Finally, we outline potential future developments that could shape gene editing technologies and their applications in the coming years.
Collapse
Affiliation(s)
- Martin Pacesa
- Laboratory of Protein Design and Immunoengineering, École Polytechnique Fédérale de Lausanne and Swiss Institute of Bioinformatics, Station 19, CH-1015 Lausanne, Switzerland
| | - Oana Pelea
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Martin Jinek
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland.
| |
Collapse
|
45
|
Kovalev MA, Davletshin AI, Karpov DS. Engineering Cas9: next generation of genomic editors. Appl Microbiol Biotechnol 2024; 108:209. [PMID: 38353732 PMCID: PMC10866799 DOI: 10.1007/s00253-024-13056-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 02/05/2024] [Accepted: 02/06/2024] [Indexed: 02/16/2024]
Abstract
The Cas9 endonuclease of the CRISPR/Cas type IIA system from Streptococcus pyogenes is the heart of genome editing technology that can be used to treat human genetic and viral diseases. Despite its large size and other drawbacks, S. pyogenes Cas9 remains the most widely used genome editor. A vast amount of research is aimed at improving Cas9 as a promising genetic therapy. Strategies include directed evolution of the Cas9 protein, rational design, and domain swapping. The first generation of Cas9 editors comes directly from the wild-type protein. The next generation is obtained by combining mutations from the first-generation variants, adding new mutations to them, or refining mutations. This review summarizes and discusses recent advances and ways in the creation of next-generation genomic editors derived from S. pyogenes Cas9. KEY POINTS: • The next-generation Cas9-based editors are more active than in the first one. • PAM-relaxed variants of Cas9 are improved by increased specificity and activity. • Less mutagenic and immunogenic variants of Cas9 are created.
Collapse
Affiliation(s)
- Maxim A Kovalev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Str., 32, 119991, Moscow, Russia
- Department of Biology, Lomonosov Moscow State University, 119234, Moscow, Russia
| | - Artem I Davletshin
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Str., 32, 119991, Moscow, Russia
| | - Dmitry S Karpov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Str., 32, 119991, Moscow, Russia.
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Str., 32, 119991, Moscow, Russia.
| |
Collapse
|
46
|
Kumar SRP, Biswas M, Cao D, Arisa S, Muñoz-Melero M, Lam AK, Piñeros AR, Kapur R, Kaisho T, Kaufman RJ, Xiao W, Shayakhmetov DM, Terhorst C, de Jong YP, Herzog RW. TLR9-independent CD8 + T cell responses in hepatic AAV gene transfer through IL-1R1-MyD88 signaling. Mol Ther 2024; 32:325-339. [PMID: 38053332 PMCID: PMC10861967 DOI: 10.1016/j.ymthe.2023.11.029] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/14/2023] [Accepted: 11/30/2023] [Indexed: 12/07/2023] Open
Abstract
Upon viral infection of the liver, CD8+ T cell responses may be triggered despite the immune suppressive properties that manifest in this organ. We sought to identify pathways that activate responses to a neoantigen expressed in hepatocytes, using adeno-associated viral (AAV) gene transfer. It was previously established that cooperation between plasmacytoid dendritic cells (pDCs), which sense AAV genomes by Toll-like receptor 9 (TLR9), and conventional DCs promotes cross-priming of capsid-specific CD8+ T cells. Surprisingly, we find local initiation of a CD8+ T cell response against antigen expressed in ∼20% of murine hepatocytes, independent of TLR9 or type I interferons and instead relying on IL-1 receptor 1-MyD88 signaling. Both IL-1α and IL-1β contribute to this response, which can be blunted by IL-1 blockade. Upon AAV administration, IL-1-producing pDCs infiltrate the liver and co-cluster with XCR1+ DCs, CD8+ T cells, and Kupffer cells. Analogous events were observed following coagulation factor VIII gene transfer in hemophilia A mice. Therefore, pDCs have alternative means of promoting anti-viral T cell responses and participate in intrahepatic immune cell networks similar to those that form in lymphoid organs. Combined TLR9 and IL-1 blockade may broadly prevent CD8+ T responses against AAV capsid and transgene product.
Collapse
Affiliation(s)
- Sandeep R P Kumar
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University, Indianapolis, IN, USA
| | - Moanaro Biswas
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University, Indianapolis, IN, USA
| | - Di Cao
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University, Indianapolis, IN, USA
| | - Sreevani Arisa
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University, Indianapolis, IN, USA
| | - Maite Muñoz-Melero
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University, Indianapolis, IN, USA
| | - Anh K Lam
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University, Indianapolis, IN, USA
| | - Annie R Piñeros
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University, Indianapolis, IN, USA
| | - Reuben Kapur
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University, Indianapolis, IN, USA
| | - Tsuneyasu Kaisho
- Department of Immunology, Institute of Advanced Medicine, Wakayama Medical University, Wakayama, Japan
| | - Randal J Kaufman
- Center for Genetic Disorders and Aging Research, Samford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Weidong Xiao
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University, Indianapolis, IN, USA
| | - Dmitry M Shayakhmetov
- Lowance Center for Human Immunology, Emory Vaccine Center, Departments of Pediatrics and Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Cox Terhorst
- Division of Immunology, Beth Israel Deaconess Medical Center (BIDMC), Boston, MA, USA
| | - Ype P de Jong
- Division of Gastroenterology & Hepatology, Weill Cornell Medicine, New York, NY, USA
| | - Roland W Herzog
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University, Indianapolis, IN, USA.
| |
Collapse
|
47
|
Chuecos MA, Lagor WR. Liver directed adeno-associated viral vectors to treat metabolic disease. J Inherit Metab Dis 2024; 47:22-40. [PMID: 37254440 PMCID: PMC10687323 DOI: 10.1002/jimd.12637] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/05/2023] [Accepted: 05/25/2023] [Indexed: 06/01/2023]
Abstract
The liver is the metabolic center of the body and an ideal target for gene therapy of inherited metabolic disorders (IMDs). Adeno-associated viral (AAV) vectors can deliver transgenes to the liver with high efficiency and specificity and a favorable safety profile. Recombinant AAV vectors contain only the transgene cassette, and their payload is converted to non-integrating circular double-stranded DNA episomes, which can provide stable expression from months to years. Insights from cellular studies and preclinical animal models have provided valuable information about AAV capsid serotypes with a high liver tropism. These vectors have been applied successfully in the clinic, particularly in trials for hemophilia, resulting in the first approved liver-directed gene therapy. Lessons from ongoing clinical trials have identified key factors affecting efficacy and safety that were not readily apparent in animal models. Circumventing pre-existing neutralizing antibodies to the AAV capsid, and mitigating adaptive immune responses to transduced cells are critical to achieving therapeutic benefit. Combining the high efficiency of AAV delivery with genome editing is a promising path to achieve more precise control of gene expression. The primary safety concern for liver gene therapy with AAV continues to be the small risk of tumorigenesis from rare vector integrations. Hepatotoxicity is a key consideration in the safety of neuromuscular gene therapies which are applied at substantially higher doses. The current knowledge base and toolkit for AAV is well developed, and poised to correct some of the most severe IMDs with liver-directed gene therapy.
Collapse
Affiliation(s)
- Marcel A. Chuecos
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX USA
- Translational Biology and Molecular Medicine Program, Baylor College of Medicine, Houston, TX USA
| | - William R. Lagor
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX USA
| |
Collapse
|
48
|
Hosseini SY, Mallick R, Mäkinen P, Ylä-Herttuala S. Navigating the prime editing strategy to treat cardiovascular genetic disorders in transforming heart health. Expert Rev Cardiovasc Ther 2024; 22:75-89. [PMID: 38494784 DOI: 10.1080/14779072.2024.2328642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 03/06/2024] [Indexed: 03/19/2024]
Abstract
INTRODUCTION After understanding the genetic basis of cardiovascular disorders, the discovery of prime editing (PE), has opened new horizons for finding their cures. PE strategy is the most versatile editing tool to change cardiac genetic background for therapeutic interventions. The optimization of elements, prediction of efficiency, and discovery of the involved genes regulating the process have not been completed. The large size of the cargo and multi-elementary structure makes the in vivo heart delivery challenging. AREAS COVERED Updated from recent published studies, the fundamentals of the PEs, their application in cardiology, potentials, shortcomings, and the future perspectives for the treatment of cardiac-related genetic disorders will be discussed. EXPERT OPINION The ideal PE for the heart should be tissue-specific, regulatable, less immunogenic, high transducing, and safe. However, low efficiency, sup-optimal PE architecture, the large size of required elements, the unclear role of transcriptomics on the process, unpredictable off-target effects, and its context-dependency are subjects that need to be considered. It is also of great importance to see how beneficial or detrimental cell cycle or epigenomic modifier is to bring changes into cardiac cells. The PE delivery is challenging due to the size, multi-component properties of the editors and liver sink.
Collapse
Affiliation(s)
- Seyed Younes Hosseini
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
- Bacteriology and Virology Department, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Rahul Mallick
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Petri Mäkinen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Seppo Ylä-Herttuala
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
- Heart Center and Gene Therapy Unit, Kuopio University Hospital, Kuopio, Finland
| |
Collapse
|
49
|
Pfeiffer LS, Stafforst T. Precision RNA base editing with engineered and endogenous effectors. Nat Biotechnol 2023; 41:1526-1542. [PMID: 37735261 DOI: 10.1038/s41587-023-01927-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 07/26/2023] [Indexed: 09/23/2023]
Abstract
RNA base editing refers to the rewriting of genetic information within an intact RNA molecule and serves various functions, such as evasion of the endogenous immune system and regulation of protein function. To achieve this, certain enzymes have been discovered in human cells that catalyze the conversion of one nucleobase into another. This natural process could be exploited to manipulate and recode any base in a target transcript. In contrast to DNA base editing, analogous changes introduced in RNA are not permanent or inheritable but rather allow reversible and doseable effects that appeal to various therapeutic applications. The current practice of RNA base editing involves the deamination of adenosines and cytidines, which are converted to inosines and uridines, respectively. In this Review, we summarize current site-directed RNA base-editing strategies and highlight recent achievements to improve editing efficiency, precision, codon-targeting scope and in vivo delivery into disease-relevant tissues. Besides engineered editing effectors, we focus on strategies to harness endogenous adenosine deaminases acting on RNA (ADAR) enzymes and discuss limitations and future perspectives to apply the tools in basic research and as a therapeutic modality. We expect the field to realize the first RNA base-editing drug soon, likely on a well-defined genetic disease. However, the long-term challenge will be to carve out the sweet spot of the technology where its unique ability is exploited to modulate signaling cues, metabolism or other clinically relevant processes in a safe and doseable manner.
Collapse
Affiliation(s)
- Laura S Pfeiffer
- Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany
| | - Thorsten Stafforst
- Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany.
- Gene and RNA Therapy Center, Faculty of Medicine, University of Tübingen, Tübingen, Germany.
| |
Collapse
|
50
|
Duan D. Lethal immunotoxicity in high-dose systemic AAV therapy. Mol Ther 2023; 31:3123-3126. [PMID: 37822079 PMCID: PMC10638066 DOI: 10.1016/j.ymthe.2023.10.015] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 10/09/2023] [Accepted: 10/09/2023] [Indexed: 10/13/2023] Open
Abstract
High-dose systemic gene therapy with adeno-associated virus (AAV) is in clinical trials to treat various inherited diseases. Despite remarkable success in spinal muscular atrophy and promising results in other diseases, fatality has been observed due to liver, kidney, heart, or lung failure. Innate and adaptive immune responses to the vector play a critical role in the toxicity. Host factors also contribute to patient death. This mini-review summarizes clinical findings and calls for concerted efforts from all stakeholders to better understand the mechanisms underlying lethality in AAV gene therapy and to develop effective strategies to prevent/treat high-dose systemic AAV-gene-therapy-induced immunotoxicity.
Collapse
Affiliation(s)
- Dongsheng Duan
- Department of Molecular Microbiology and Immunology and Department of Neurology, School of Medicine, Department of Biomedical Sciences, College of Veterinary Medicine, Department of Chemical and Biomedical Engineering, College of Engineering, University of Missouri, Columbia, MO 65212, USA.
| |
Collapse
|