1
|
Kainov Y, Hamid F, Makeyev EV. Recurrent disruption of tumour suppressor genes in cancer by somatic mutations in cleavage and polyadenylation signals. eLife 2024; 13:RP99040. [PMID: 39660592 PMCID: PMC11634062 DOI: 10.7554/elife.99040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2024] Open
Abstract
The expression of eukaryotic genes relies on the precise 3'-terminal cleavage and polyadenylation of newly synthesized pre-mRNA transcripts. Defects in these processes have been associated with various diseases, including cancer. While cancer-focused sequencing studies have identified numerous driver mutations in protein-coding sequences, noncoding drivers - particularly those affecting the cis-elements required for pre-mRNA cleavage and polyadenylation - have received less attention. Here, we systematically analysed somatic mutations affecting 3'UTR polyadenylation signals in human cancers using the Pan-Cancer Analysis of Whole Genomes (PCAWG) dataset. We found a striking enrichment of cancer-specific somatic mutations that disrupt strong and evolutionarily conserved cleavage and polyadenylation signals within tumour suppressor genes. Further bioinformatics and experimental analyses conducted as a part of our study suggest that these mutations have a profound capacity to downregulate the expression of tumour suppressor genes. Thus, this work uncovers a novel class of noncoding somatic mutations with significant potential to drive cancer progression.
Collapse
Affiliation(s)
- Yaroslav Kainov
- Centre for Developmental Neurobiology, King’s College LondonLondonUnited Kingdom
- Department of Medical and Molecular Genetics, King’s College LondonLondonUnited Kingdom
| | - Fursham Hamid
- Centre for Developmental Neurobiology, King’s College LondonLondonUnited Kingdom
| | - Eugene V Makeyev
- Centre for Developmental Neurobiology, King’s College LondonLondonUnited Kingdom
| |
Collapse
|
2
|
Besedina E, Supek F. Copy number losses of oncogenes and gains of tumor suppressor genes generate common driver mutations. Nat Commun 2024; 15:6139. [PMID: 39033140 PMCID: PMC11271286 DOI: 10.1038/s41467-024-50552-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 07/11/2024] [Indexed: 07/23/2024] Open
Abstract
Cancer driver genes can undergo positive selection for various types of genetic alterations, including gain-of-function or loss-of-function mutations and copy number alterations (CNA). We investigated the landscape of different types of alterations affecting driver genes in 17,644 cancer exomes and genomes. We find that oncogenes may simultaneously exhibit signatures of positive selection and also negative selection in different gene segments, suggesting a method to identify additional tumor types where an oncogene is a driver or a vulnerability. Next, we characterize the landscape of CNA-dependent selection effects, revealing a general trend of increased positive selection on oncogene mutations not only upon CNA gains but also upon CNA deletions. Similarly, we observe a positive interaction between mutations and CNA gains in tumor suppressor genes. Thus, two-hit events involving point mutations and CNA are universally observed regardless of the type of CNA and may signal new therapeutic opportunities. An analysis with focus on the somatic CNA two-hit events can help identify additional driver genes relevant to a tumor type. By a global inference of point mutation and CNA selection signatures and interactions thereof across genes and tissues, we identify 9 evolutionary archetypes of driver genes, representing different mechanisms of (in)activation by genetic alterations.
Collapse
Affiliation(s)
- Elizaveta Besedina
- Institute for Research in Biomedicine (IRB Barcelona), 08028, Barcelona, Spain
| | - Fran Supek
- Institute for Research in Biomedicine (IRB Barcelona), 08028, Barcelona, Spain.
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, 2200, Copenhagen, Denmark.
- Catalan Institution for Research and Advanced Studies (ICREA), 08010, Barcelona, Spain.
| |
Collapse
|
3
|
Dakal TC, Dhabhai B, Pant A, Moar K, Chaudhary K, Yadav V, Ranga V, Sharma NK, Kumar A, Maurya PK, Maciaczyk J, Schmidt‐Wolf IGH, Sharma A. Oncogenes and tumor suppressor genes: functions and roles in cancers. MedComm (Beijing) 2024; 5:e582. [PMID: 38827026 PMCID: PMC11141506 DOI: 10.1002/mco2.582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 04/21/2024] [Accepted: 04/26/2024] [Indexed: 06/04/2024] Open
Abstract
Cancer, being the most formidable ailment, has had a profound impact on the human health. The disease is primarily associated with genetic mutations that impact oncogenes and tumor suppressor genes (TSGs). Recently, growing evidence have shown that X-linked TSGs have specific role in cancer progression and metastasis as well. Interestingly, our genome harbors around substantial portion of genes that function as tumor suppressors, and the X chromosome alone harbors a considerable number of TSGs. The scenario becomes even more compelling as X-linked TSGs are adaptive to key epigenetic processes such as X chromosome inactivation. Therefore, delineating the new paradigm related to X-linked TSGs, for instance, their crosstalk with autosome and involvement in cancer initiation, progression, and metastasis becomes utmost importance. Considering this, herein, we present a comprehensive discussion of X-linked TSG dysregulation in various cancers as a consequence of genetic variations and epigenetic alterations. In addition, the dynamic role of X-linked TSGs in sex chromosome-autosome crosstalk in cancer genome remodeling is being explored thoroughly. Besides, the functional roles of ncRNAs, role of X-linked TSG in immunomodulation and in gender-based cancer disparities has also been highlighted. Overall, the focal idea of the present article is to recapitulate the findings on X-linked TSG regulation in the cancer landscape and to redefine their role toward improving cancer treatment strategies.
Collapse
Affiliation(s)
- Tikam Chand Dakal
- Department of BiotechnologyGenome and Computational Biology LabMohanlal Sukhadia UniversityUdaipurRajasthanIndia
| | - Bhanupriya Dhabhai
- Department of BiotechnologyGenome and Computational Biology LabMohanlal Sukhadia UniversityUdaipurRajasthanIndia
| | - Anuja Pant
- Department of BiochemistryCentral University of HaryanaMahendergarhHaryanaIndia
| | - Kareena Moar
- Department of BiochemistryCentral University of HaryanaMahendergarhHaryanaIndia
| | - Kanika Chaudhary
- School of Life Sciences. Jawaharlal Nehru UniversityNew DelhiIndia
| | - Vikas Yadav
- School of Life Sciences. Jawaharlal Nehru UniversityNew DelhiIndia
| | - Vipin Ranga
- Dearptment of Agricultural BiotechnologyDBT‐NECAB, Assam Agricultural UniversityJorhatAssamIndia
| | | | - Abhishek Kumar
- Manipal Academy of Higher EducationManipalKarnatakaIndia
- Institute of Bioinformatics, International Technology ParkBangaloreIndia
| | - Pawan Kumar Maurya
- Department of BiochemistryCentral University of HaryanaMahendergarhHaryanaIndia
| | - Jarek Maciaczyk
- Department of Stereotactic and Functional NeurosurgeryUniversity Hospital of BonnBonnGermany
| | - Ingo G. H. Schmidt‐Wolf
- Department of Integrated OncologyCenter for Integrated Oncology (CIO)University Hospital BonnBonnGermany
| | - Amit Sharma
- Department of Stereotactic and Functional NeurosurgeryUniversity Hospital of BonnBonnGermany
- Department of Integrated OncologyCenter for Integrated Oncology (CIO)University Hospital BonnBonnGermany
| |
Collapse
|
4
|
MacDonald N, Raven N, Diep W, Evans S, Pannipitiya S, Bramwell G, Vanbeek C, Thomas F, Russell T, Dujon AM, Telonis-Scott M, Ujvari B. The molecular evolution of cancer associated genes in mammals. Sci Rep 2024; 14:11650. [PMID: 38773187 PMCID: PMC11109183 DOI: 10.1038/s41598-024-62425-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 05/16/2024] [Indexed: 05/23/2024] Open
Abstract
Cancer is a disease that many multicellular organisms have faced for millions of years, and species have evolved various tumour suppression mechanisms to control oncogenesis. Although cancer occurs across the tree of life, cancer related mortality risks vary across mammalian orders, with Carnivorans particularly affected. Evolutionary theory predicts different selection pressures on genes associated with cancer progression and suppression, including oncogenes, tumour suppressor genes and immune genes. Therefore, we investigated the evolutionary history of cancer associated gene sequences across 384 mammalian taxa, to detect signatures of selection across categories of oncogenes (GRB2, FGL2 and CDC42), tumour suppressors (LITAF, Casp8 and BRCA2) and immune genes (IL2, CD274 and B2M). This approach allowed us to conduct a fine scale analysis of gene wide and site-specific signatures of selection across mammalian lineages under the lens of cancer susceptibility. Phylogenetic analyses revealed that for most species the evolution of cancer associated genes follows the species' evolution. The gene wide selection analyses revealed oncogenes being the most conserved, tumour suppressor and immune genes having similar amounts of episodic diversifying selection. Despite BRCA2's status as a key caretaker gene, episodic diversifying selection was detected across mammals. The site-specific selection analyses revealed that the two apoptosis associated domains of the Casp8 gene of bats (Chiroptera) are under opposing forces of selection (positive and negative respectively), highlighting the importance of site-specific selection analyses to understand the evolution of highly complex gene families. Our results highlighted the need to critically assess different types of selection pressure on cancer associated genes when investigating evolutionary adaptations to cancer across the tree of life. This study provides an extensive assessment of cancer associated genes in mammals with highly representative, and substantially large sample size for a comparative genomic analysis in the field and identifies various avenues for future research into the mechanisms of cancer resistance and susceptibility in mammals.
Collapse
Affiliation(s)
- Nick MacDonald
- School of Life and Environmental Sciences, Deakin University, Geelong, Waurn Ponds, Geelong, VIC, 3216, Australia
| | - Nynke Raven
- School of Life and Environmental Sciences, Deakin University, Geelong, Waurn Ponds, Geelong, VIC, 3216, Australia
| | - Wendy Diep
- School of Life and Environmental Sciences, Deakin University, Geelong, Waurn Ponds, Geelong, VIC, 3216, Australia
| | - Samantha Evans
- School of Life and Environmental Sciences, Deakin University, Geelong, Waurn Ponds, Geelong, VIC, 3216, Australia
| | - Senuri Pannipitiya
- School of Life and Environmental Sciences, Deakin University, Geelong, Waurn Ponds, Geelong, VIC, 3216, Australia
| | - Georgina Bramwell
- School of Life and Environmental Sciences, Deakin University, Geelong, Waurn Ponds, Geelong, VIC, 3216, Australia
| | - Caitlin Vanbeek
- School of Life and Environmental Sciences, Deakin University, Geelong, Waurn Ponds, Geelong, VIC, 3216, Australia
| | - Frédéric Thomas
- CREEC, UMR IRD 224-CNRS 5290, Université de Montpellier, Montpellier, France
- MIVEGEC, IRD, CNRS, Université Montpellier, Montpellier, France
| | - Tracey Russell
- Faculty of Science, School of Life and Environmental Sciences, Sydney, NSW, Australia
| | - Antoine M Dujon
- School of Life and Environmental Sciences, Deakin University, Geelong, Waurn Ponds, Geelong, VIC, 3216, Australia
| | - Marina Telonis-Scott
- School of Life and Environmental Sciences, Deakin University, Burwood, Burwood, VIC, 3125, Australia
| | - Beata Ujvari
- School of Life and Environmental Sciences, Deakin University, Geelong, Waurn Ponds, Geelong, VIC, 3216, Australia.
| |
Collapse
|
5
|
Alejandre C, Calle-Espinosa J, Iranzo J. Synergistic epistasis among cancer drivers can rescue early tumors from the accumulation of deleterious passengers. PLoS Comput Biol 2024; 20:e1012081. [PMID: 38687804 PMCID: PMC11087069 DOI: 10.1371/journal.pcbi.1012081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 05/10/2024] [Accepted: 04/16/2024] [Indexed: 05/02/2024] Open
Abstract
Epistasis among driver mutations is pervasive and explains relevant features of cancer, such as differential therapy response and convergence towards well-characterized molecular subtypes. Furthermore, a growing body of evidence suggests that tumor development could be hampered by the accumulation of slightly deleterious passenger mutations. In this work, we combined empirical epistasis networks, computer simulations, and mathematical models to explore how synergistic interactions among driver mutations affect cancer progression under the burden of slightly deleterious passengers. We found that epistasis plays a crucial role in tumor development by promoting the transformation of precancerous clones into rapidly growing tumors through a process that is analogous to evolutionary rescue. The triggering of epistasis-driven rescue is strongly dependent on the intensity of epistasis and could be a key rate-limiting step in many tumors, contributing to their unpredictability. As a result, central genes in cancer epistasis networks appear as key intervention targets for cancer therapy.
Collapse
Affiliation(s)
- Carla Alejandre
- Centro de Astrobiología (CAB) CSIC-INTA, Torrejón de Ardoz, Madrid, Spain
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)—Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Madrid, Spain
| | - Jorge Calle-Espinosa
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)—Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Madrid, Spain
| | - Jaime Iranzo
- Centro de Astrobiología (CAB) CSIC-INTA, Torrejón de Ardoz, Madrid, Spain
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)—Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Madrid, Spain
- Institute for Biocomputation and Physics of Complex Systems (BIFI), University of Zaragoza, Zaragoza, Spain
| |
Collapse
|
6
|
Deng M, Guo J, Ling Z, Zhang C, He L, Fan Z, Cheng B, Xia J. KRAS mutations upregulate Runx1 to promote occurrence of head and neck squamous cell carcinoma. Mol Carcinog 2023; 62:1284-1294. [PMID: 37222390 DOI: 10.1002/mc.23563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 04/23/2023] [Accepted: 05/04/2023] [Indexed: 05/25/2023]
Abstract
Gene mutations play an important role in head and neck squamous cell carcinoma (HNSCC) by not only promoting the occurrence and progression of HNSCC but also affecting sensitivity to treatment and prognosis. KRAS is one of the most frequently mutated oncogenes, which has been reported to have a mutation rate from 1.7% to 12.7% and may lead to poor prognosis in HNSCC, but its role remains unclear. Here, we found that the KRAS mutation can promote HNSCC generation through synergism with 4-Nitroquinoline-1-Oxide(4NQO). Mechanistically, KRAS mutations can significantly upregulate Runx1 to promote oral epithelial cell proliferation and migration and inhibit apoptosis. Runx1 inhibitor Ro 5-3335 can effectively inhibit KRAS-mutated HNSCC progression both in vitro and in vivo. These findings suggest that the KRAS mutation plays an important role in HNSCC and that Runx1 may be a novel therapeutic target for KRAS-mutated HNSCC.
Collapse
Affiliation(s)
- Miao Deng
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, P. R. China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, P. R. China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, P. R. China
| | - Jiaxin Guo
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, P. R. China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, P. R. China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, P. R. China
| | - Zihang Ling
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, P. R. China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, P. R. China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, P. R. China
| | - Chi Zhang
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, P. R. China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, P. R. China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, P. R. China
| | - Lihong He
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, P. R. China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, P. R. China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, P. R. China
| | - Zhaona Fan
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, P. R. China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, P. R. China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, P. R. China
| | - Bin Cheng
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, P. R. China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, P. R. China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, P. R. China
| | - Juan Xia
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, P. R. China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, P. R. China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, P. R. China
| |
Collapse
|
7
|
Bosso G, Cipressa F, Tullo L, Cenci G. Co-amplification of CBX3 with EGFR or RAC1 in human cancers corroborated by a conserved genetic interaction among the genes. Cell Death Discov 2023; 9:317. [PMID: 37633946 PMCID: PMC10460438 DOI: 10.1038/s41420-023-01598-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 07/29/2023] [Accepted: 08/09/2023] [Indexed: 08/28/2023] Open
Abstract
Chromobox Protein 3 (CBX3) overexpression is a common event occurring in cancer, promotes cancer cell proliferation and represents a poor prognosis marker in a plethora of human cancers. Here we describe that a wide spectrum of human cancers harbors a co-amplification of CBX3 gene with either EGFR or RAC1, which yields a statistically significant increase of both mRNA and protein levels of CBX3, EGFR and RAC1. We also reveal that the simultaneous overexpression of CBX3, RAC1 and EGFR gene products correlates with a worse prognosis compared to the condition when CBX3, RAC1 and EGFR are singularly upregulated. Furthermore, we also show that a co-occurrence of low-grade amplification, in addition to high-grade amplification, between CBX3 and EGFR or RAC1 is associated with a reduced patient lifespan. Finally, we find that CBX3 and RAC1/EGFR genetically interact in the model organism Drosophila melanogaster, suggesting that the simultaneous overexpression as well as well the co-occurrence of high- or low-grade copy number alterations in these genes is not accidental and could reflect evolutionarily conserved functional relationships.
Collapse
Affiliation(s)
- Giuseppe Bosso
- Department of Biology and Biotechnology "C. Darwin", Sapienza Università di Roma, Rome, Italy.
- Telomeres and Telomerase Group, Molecular Oncology Program, Spanish National Cancer Centre (CNIO), Melchor Fernández Almagro 3, Madrid, E-28029, Spain.
| | - Francesca Cipressa
- Department of Ecological and Biological Sciences, Università degli Studi della Tuscia, Viterbo, Italy
| | - Liliana Tullo
- Department of Biology and Biotechnology "C. Darwin", Sapienza Università di Roma, Rome, Italy
| | - Giovanni Cenci
- Department of Biology and Biotechnology "C. Darwin", Sapienza Università di Roma, Rome, Italy.
- Fondazione Cenci Bolognetti, Istituto Pasteur Italia, Rome, Italy.
| |
Collapse
|
8
|
In silico validation of RNA-Seq results can identify gene fusions with oncogenic potential in glioblastoma. Sci Rep 2022; 12:14439. [PMID: 36002559 PMCID: PMC9402576 DOI: 10.1038/s41598-022-18608-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 08/16/2022] [Indexed: 11/08/2022] Open
Abstract
RNA-Sequencing (RNA-Seq) can identify gene fusions in tumors, but not all these fusions have functional consequences. Using multiple data bases, we have performed an in silico analysis of fusions detected by RNA-Seq in tumor samples from 139 newly diagnosed glioblastoma patients to identify in-frame fusions with predictable oncogenic potential. Among 61 samples with fusions, there were 103 different fusions, involving 167 different genes, including 20 known oncogenes or tumor suppressor genes (TSGs), 16 associated with cancer but not oncogenes or TSGs, and 32 not associated with cancer but previously shown to be involved in fusions in gliomas. After selecting in-frame fusions able to produce a protein product and running Oncofuse, we identified 30 fusions with predictable oncogenic potential and classified them into four non-overlapping categories: six previously described in cancer; six involving an oncogene or TSG; four predicted by Oncofuse to have oncogenic potential; and 14 other in-frame fusions. Only 24 patients harbored one or more of these 30 fusions, and only two fusions were present in more than one patient: FGFR3::TACC3 and EGFR::SEPTIN14. This in silico study provides a good starting point for the identification of gene fusions with functional consequences in the pathogenesis or treatment of glioblastoma.
Collapse
|
9
|
Tan K, Stupack DG, Wilkinson MF. Nonsense-mediated RNA decay: an emerging modulator of malignancy. Nat Rev Cancer 2022; 22:437-451. [PMID: 35624152 PMCID: PMC11009036 DOI: 10.1038/s41568-022-00481-2] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/19/2022] [Indexed: 12/11/2022]
Abstract
Nonsense-mediated RNA decay (NMD) is a highly conserved RNA turnover pathway that selectively degrades RNAs harbouring truncating mutations that prematurely terminate translation, including nonsense, frameshift and some splice-site mutations. Recent studies show that NMD shapes the mutational landscape of tumours by selecting for mutations that tend to downregulate the expression of tumour suppressor genes but not oncogenes. This suggests that NMD can benefit tumours, a notion further supported by the finding that mRNAs encoding immunogenic neoantigen peptides are typically targeted for decay by NMD. Together, this raises the possibility that NMD-inhibitory therapy could be of therapeutic benefit against many tumour types, including those with a high load of neoantigen-generating mutations. Complicating this scenario is the evidence that NMD can also be detrimental for many tumour types, and consequently tumours often have perturbed NMD. NMD may suppress tumour generation and progression by degrading subsets of specific normal mRNAs, including those encoding stress-response proteins, signalling factors and other proteins beneficial for tumours, as well as pro-tumour non-coding RNAs. Together, these findings suggest that NMD-modulatory therapy has the potential to provide widespread therapeutic benefit against diverse tumour types. However, whether NMD should be stimulated or repressed requires careful analysis of the tumour to be treated.
Collapse
Affiliation(s)
- Kun Tan
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Dwayne G Stupack
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California, San Diego, La Jolla, CA, USA.
- UCSD Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA.
| | - Miles F Wilkinson
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California, San Diego, La Jolla, CA, USA.
- Institute of Genomic Medicine, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|