1
|
Fang Y, Chen J, Wang H, Wang S, Chang M, Chen Q, Shi Q, Xian L, Feng M, Hu B, Wang R. Integrating large-scale single-cell RNA sequencing in central nervous system disease using self-supervised contrastive learning. Commun Biol 2024; 7:1107. [PMID: 39251817 PMCID: PMC11383967 DOI: 10.1038/s42003-024-06813-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 08/30/2024] [Indexed: 09/11/2024] Open
Abstract
The central nervous system (CNS) comprises a diverse range of brain cell types with distinct functions and gene expression profiles. Although single-cell RNA sequencing (scRNA-seq) provides new insights into the brain cell atlases, integrating large-scale CNS scRNA-seq data still encounters challenges due to the complexity and heterogeneity among CNS cell types/subtypes. In this study, we introduce a self-supervised contrastive learning method, called scCM, for integrating large-scale CNS scRNA-seq data. scCM brings functionally related cells close together while simultaneously pushing apart dissimilar cells by comparing the variations of gene expression, effectively revealing the heterogeneous relationships within the CNS cell types/subtypes. The effectiveness of scCM is evaluated on 20 CNS datasets covering 4 species and 10 CNS diseases. Leveraging these strengths, we successfully integrate the collected human CNS datasets into a large-scale reference to annotate cell types and subtypes in neural tissues. Results demonstrate that scCM provides an accurate annotation, along with rich spatial information of cell state. In summary, scCM is a robust and promising method for integrating large-scale CNS scRNA-seq data, enabling researchers to gain insights into the cellular and molecular mechanisms underlying CNS functions and diseases.
Collapse
Affiliation(s)
- Yi Fang
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Junjie Chen
- School of Computer Science and Technology, Harbin Institute of Technology, Shenzhen, Guangdong, China
| | - He Wang
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Neurospine center, China International Neuroscience Institute, Beijing, China
| | - Shousen Wang
- Department of Neurosurgery, 900th Hospital, Fuzong Clinical Medical College of Fujian Medical University, Fuzhou, Fujian, China
| | - Mengqi Chang
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qingcai Chen
- School of Computer Science and Technology, Harbin Institute of Technology, Shenzhen, Guangdong, China
| | - Qinglei Shi
- Chinese University of Hong Kong (Shenzhen) School of Medicine, People's Republic of China, Shenzhen, Guangdong, China
| | - Liang Xian
- Department of Neurosurgery, 900th Hospital, Fuzong Clinical Medical College of Fujian Medical University, Fuzhou, Fujian, China
| | - Ming Feng
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Baotian Hu
- School of Computer Science and Technology, Harbin Institute of Technology, Shenzhen, Guangdong, China.
| | - Renzhi Wang
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
- Chinese University of Hong Kong (Shenzhen) School of Medicine, People's Republic of China, Shenzhen, Guangdong, China.
| |
Collapse
|
2
|
Gaire S, An J, Yang H, Lee KA, Dumre M, Lee EJ, Park SM, Joe EH. Systemic inflammation attenuates the repair of damaged brains through reduced phagocytic activity of monocytes infiltrating the brain. Mol Brain 2024; 17:47. [PMID: 39075534 PMCID: PMC11288066 DOI: 10.1186/s13041-024-01116-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 05/19/2024] [Indexed: 07/31/2024] Open
Abstract
In this study, we examined how systemic inflammation affects repair of brain injury. To this end, we created a brain-injury model by stereotaxic injection of ATP, a damage-associated molecular pattern component, into the striatum of mice. Systemic inflammation was induced by intraperitoneal injection of lipopolysaccharide (LPS-ip). An analysis of magnetic resonance images showed that LPS-ip reduced the initial brain injury but slowed injury repair. An immunostaining analysis using the neuronal marker, NeuN, showed that LPS-ip delayed removal of dead/dying neurons, despite the fact that LPS-ip enhanced infiltration of monocytes, which serve to phagocytize dead cells/debris. Notably, infiltrating monocytes showed a widely scattered distribution. Bulk RNAseq analyses showed that LPS-ip decreased expression of genes associated with phagocytosis, with PCR and immunostaining of injured brains confirming reduced levels of Cd68 and Clec7a, markers of phagocytic activity, in monocytes. Collectively, these results suggest that systemic inflammation affects properties of blood monocytes as well as brain cells, resulting in delay in clearing damaged cells and activating repair processes.
Collapse
Affiliation(s)
- Sushil Gaire
- Neuroscience Graduate Program, Department of Biomedical Sciences, Ajou University School of Medicine, Worldcup-ro 164, Suwon, Kyunggi-do, 16499, South Korea
- Department of Pharmacology, Ajou University School of Medicine, Worldcup-ro 164, Suwon, Kyunggi-do, 16499, South Korea
| | - Jiawei An
- Department of Pharmacology, Ajou University School of Medicine, Worldcup-ro 164, Suwon, Kyunggi-do, 16499, South Korea
- Center for Convergence Research of Neurological Disorders, Ajou University School of Medicine, Worldcup-ro 164, Suwon, Kyunggi-do, 16499, South Korea
| | - Haijie Yang
- Department of Pharmacology, Ajou University School of Medicine, Worldcup-ro 164, Suwon, Kyunggi-do, 16499, South Korea
- Center for Convergence Research of Neurological Disorders, Ajou University School of Medicine, Worldcup-ro 164, Suwon, Kyunggi-do, 16499, South Korea
| | - Keon Ah Lee
- Department of Pharmacology, Ajou University School of Medicine, Worldcup-ro 164, Suwon, Kyunggi-do, 16499, South Korea
- Center for Convergence Research of Neurological Disorders, Ajou University School of Medicine, Worldcup-ro 164, Suwon, Kyunggi-do, 16499, South Korea
| | - Manisha Dumre
- Department of Pharmacology, Ajou University School of Medicine, Worldcup-ro 164, Suwon, Kyunggi-do, 16499, South Korea
- Center for Convergence Research of Neurological Disorders, Ajou University School of Medicine, Worldcup-ro 164, Suwon, Kyunggi-do, 16499, South Korea
| | - Eun Jeong Lee
- Neuroscience Graduate Program, Department of Biomedical Sciences, Ajou University School of Medicine, Worldcup-ro 164, Suwon, Kyunggi-do, 16499, South Korea
- Department of Brain Science, Ajou University School of Medicine, Worldcup-ro 164, Suwon, Kyunggi-do, 16499, South Korea
| | - Sang-Myun Park
- Neuroscience Graduate Program, Department of Biomedical Sciences, Ajou University School of Medicine, Worldcup-ro 164, Suwon, Kyunggi-do, 16499, South Korea
- Department of Pharmacology, Ajou University School of Medicine, Worldcup-ro 164, Suwon, Kyunggi-do, 16499, South Korea
- Center for Convergence Research of Neurological Disorders, Ajou University School of Medicine, Worldcup-ro 164, Suwon, Kyunggi-do, 16499, South Korea
| | - Eun-Hye Joe
- Neuroscience Graduate Program, Department of Biomedical Sciences, Ajou University School of Medicine, Worldcup-ro 164, Suwon, Kyunggi-do, 16499, South Korea.
- Department of Pharmacology, Ajou University School of Medicine, Worldcup-ro 164, Suwon, Kyunggi-do, 16499, South Korea.
- Center for Convergence Research of Neurological Disorders, Ajou University School of Medicine, Worldcup-ro 164, Suwon, Kyunggi-do, 16499, South Korea.
| |
Collapse
|
3
|
Bormann D, Knoflach M, Poreba E, Riedl CJ, Testa G, Orset C, Levilly A, Cottereau A, Jauk P, Hametner S, Stranzl N, Golabi B, Copic D, Klas K, Direder M, Kühtreiber H, Salek M, Zur Nedden S, Baier-Bitterlich G, Kiechl S, Haider C, Endmayr V, Höftberger R, Ankersmit HJ, Mildner M. Single-nucleus RNA sequencing reveals glial cell type-specific responses to ischemic stroke in male rodents. Nat Commun 2024; 15:6232. [PMID: 39043661 PMCID: PMC11266704 DOI: 10.1038/s41467-024-50465-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 07/09/2024] [Indexed: 07/25/2024] Open
Abstract
Neuroglia critically shape the brain´s response to ischemic stroke. However, their phenotypic heterogeneity impedes a holistic understanding of the cellular composition of the early ischemic lesion. Here we present a single cell resolution transcriptomics dataset of the brain´s acute response to infarction. Oligodendrocyte lineage cells and astrocytes range among the most transcriptionally perturbed populations and exhibit infarction- and subtype-specific molecular signatures. Specifically, we find infarction restricted proliferating oligodendrocyte precursor cells (OPCs), mature oligodendrocytes and reactive astrocytes, exhibiting transcriptional commonalities in response to ischemic injury. OPCs and reactive astrocytes are involved in a shared immuno-glial cross talk with stroke-specific myeloid cells. Within the perilesional zone, osteopontin positive myeloid cells accumulate in close proximity to CD44+ proliferating OPCs and reactive astrocytes. In vitro, osteopontin increases the migratory capacity of OPCs. Collectively, our study highlights molecular cross talk events which might govern the cellular composition of acutely infarcted brain tissue.
Collapse
Affiliation(s)
- Daniel Bormann
- Applied Immunology Laboratory, Department of Thoracic Surgery, Medical University of Vienna, 1090, Vienna, Austria
- Aposcience AG, 1200, Vienna, Austria
| | - Michael Knoflach
- Department of Neurology, Medical University of Innsbruck, Anichstraße 35, 6020, Innsbruck, Austria
- VASCage, Centre on Clinical Stroke Research, 6020, Innsbruck, Austria
| | - Emilia Poreba
- Department of Dermatology, Medical University of Vienna, 1090, Vienna, Austria
| | - Christian J Riedl
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, 1090, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria
| | - Giulia Testa
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, 1090, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria
| | - Cyrille Orset
- Normandie University, UNICAEN, ESR3P, INSERM UMR-S U1237, Physiopathology and Imaging of Neurological Disorders (PhIND), Institut Blood and Brain @ Caen-Normandie (BB@C), GIP Cyceron, Caen, France
- Department of Clinical Research, Caen-Normandie University Hospital, Caen, France
| | - Anthony Levilly
- Normandie University, UNICAEN, ESR3P, INSERM UMR-S U1237, Physiopathology and Imaging of Neurological Disorders (PhIND), Institut Blood and Brain @ Caen-Normandie (BB@C), GIP Cyceron, Caen, France
- Department of Clinical Research, Caen-Normandie University Hospital, Caen, France
| | - Andréa Cottereau
- Normandie University, UNICAEN, ESR3P, INSERM UMR-S U1237, Physiopathology and Imaging of Neurological Disorders (PhIND), Institut Blood and Brain @ Caen-Normandie (BB@C), GIP Cyceron, Caen, France
- Department of Clinical Research, Caen-Normandie University Hospital, Caen, France
| | - Philipp Jauk
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, 1090, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, 1090, Vienna, Austria
| | - Simon Hametner
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, 1090, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria
| | - Nadine Stranzl
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, 1090, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria
| | - Bahar Golabi
- Department of Dermatology, Medical University of Vienna, 1090, Vienna, Austria
| | - Dragan Copic
- Applied Immunology Laboratory, Department of Thoracic Surgery, Medical University of Vienna, 1090, Vienna, Austria
- Aposcience AG, 1200, Vienna, Austria
- Division of Nephrology and Dialysis, Department of Internal Medicine III, Medical University of Vienna, 1090, Vienna, Austria
| | - Katharina Klas
- Applied Immunology Laboratory, Department of Thoracic Surgery, Medical University of Vienna, 1090, Vienna, Austria
- Aposcience AG, 1200, Vienna, Austria
| | - Martin Direder
- Applied Immunology Laboratory, Department of Thoracic Surgery, Medical University of Vienna, 1090, Vienna, Austria
- Aposcience AG, 1200, Vienna, Austria
- Department of Orthopedics and Trauma Surgery, Medical University of Vienna, 1090, Vienna, Austria
| | - Hannes Kühtreiber
- Applied Immunology Laboratory, Department of Thoracic Surgery, Medical University of Vienna, 1090, Vienna, Austria
- Aposcience AG, 1200, Vienna, Austria
| | - Melanie Salek
- Applied Immunology Laboratory, Department of Thoracic Surgery, Medical University of Vienna, 1090, Vienna, Austria
- Aposcience AG, 1200, Vienna, Austria
| | - Stephanie Zur Nedden
- Institute of Neurobiochemistry, CCB-Biocenter, Medical University of Innsbruck, 6020, Innsbruck, Austria
| | - Gabriele Baier-Bitterlich
- Institute of Neurobiochemistry, CCB-Biocenter, Medical University of Innsbruck, 6020, Innsbruck, Austria
| | - Stefan Kiechl
- Department of Neurology, Medical University of Innsbruck, Anichstraße 35, 6020, Innsbruck, Austria
- VASCage, Centre on Clinical Stroke Research, 6020, Innsbruck, Austria
| | - Carmen Haider
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, 1090, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria
| | - Verena Endmayr
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, 1090, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria
| | - Romana Höftberger
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, 1090, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria
| | - Hendrik J Ankersmit
- Applied Immunology Laboratory, Department of Thoracic Surgery, Medical University of Vienna, 1090, Vienna, Austria.
- Aposcience AG, 1200, Vienna, Austria.
| | - Michael Mildner
- Department of Dermatology, Medical University of Vienna, 1090, Vienna, Austria.
| |
Collapse
|
4
|
Khan S, Nasir A. Can NogoA Be a Suitable Target to Treat Ischemic Stroke? Neurosci Bull 2024; 40:557-560. [PMID: 38195810 PMCID: PMC11004092 DOI: 10.1007/s12264-023-01164-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 10/16/2023] [Indexed: 01/11/2024] Open
Affiliation(s)
- Suliman Khan
- Medical Research Center, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, 540014, China.
| | - Abdul Nasir
- Medical Research Center, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, 540014, China.
| |
Collapse
|
5
|
Mahmoudi N, Wang Y, Moriarty N, Ahmed NY, Dehorter N, Lisowski L, Harvey AR, Parish CL, Williams RJ, Nisbet DR. Neuronal Replenishment via Hydrogel-Rationed Delivery of Reprogramming Factors. ACS NANO 2024; 18:3597-3613. [PMID: 38221746 DOI: 10.1021/acsnano.3c11337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2024]
Abstract
The central nervous system's limited capacity for regeneration often leads to permanent neuronal loss following injury. Reprogramming resident reactive astrocytes into induced neurons at the site of injury is a promising strategy for neural repair, but challenges persist in stabilizing and accurately targeting viral vectors for transgene expression. In this study, we employed a bioinspired self-assembling peptide (SAP) hydrogel for the precise and controlled release of a hybrid adeno-associated virus (AAV) vector, AAVDJ, carrying the NeuroD1 neural reprogramming transgene. This method effectively mitigates the issues of high viral dosage at the target site, off-target delivery, and immunogenic reactions, enhancing the vector's targeting and reprogramming efficiency. In vitro, this vector successfully induced neuron formation, as confirmed by morphological, histochemical, and electrophysiological analyses. In vivo, SAP-mediated delivery of AAVDJ-NeuroD1 facilitated the trans-differentiation of reactive host astrocytes into induced neurons, concurrently reducing glial scarring. Our findings introduce a safe and effective method for treating central nervous system injuries, marking a significant advancement in regenerative neuroscience.
Collapse
Affiliation(s)
- Negar Mahmoudi
- Laboratory of Advanced Biomaterials, the John Curtin School of Medical Research, Australian National University, Canberra, ACT 2601, Australia
- ANU College of Engineering & Computer Science, Acton, ACT 2601, Australia
| | - Yi Wang
- The Graeme Clark Institute, The University of Melbourne, Melbourne, VIC 3010, Australia
- Department of Biomedical Engineering, Faculty of Engineering and Information Technology, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Niamh Moriarty
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Melbourne, VIC 3010, Australia
| | - Noorya Y Ahmed
- The John Curtin School of Medical Research, The Australian National University, Canberra, ACT 2601, Australia
- The Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Nathalie Dehorter
- The John Curtin School of Medical Research, The Australian National University, Canberra, ACT 2601, Australia
- The Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Leszek Lisowski
- Translational Vectorology Research Unit, Children's Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead, NSW 2145, Australia
- Vector and Genome Engineering Facility, Children's Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead, NSW 2145, Australia
- Australian Genome Therapeutics Centre, Children's Medical Research Institute and Sydney Children's Hospitals Network, Westmead, NSW 2145, Australia
- Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine, 04-141 Warsaw, Poland
| | - Alan R Harvey
- School of Human Sciences, The University of Western Australia, and Perron Institute for Neurological and Translational Science, Perth, WA 6009, Australia
| | - Clare L Parish
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Melbourne, VIC 3010, Australia
| | - Richard J Williams
- The Graeme Clark Institute, The University of Melbourne, Melbourne, VIC 3010, Australia
- IMPACT, School of Medicine, Deakin University, Geelong, VIC 3217, Australia
| | - David R Nisbet
- Laboratory of Advanced Biomaterials, the John Curtin School of Medical Research, Australian National University, Canberra, ACT 2601, Australia
- The Graeme Clark Institute, The University of Melbourne, Melbourne, VIC 3010, Australia
- Department of Biomedical Engineering, Faculty of Engineering and Information Technology, The University of Melbourne, Melbourne, VIC 3010, Australia
- Melbourne Medical School, Faculty of Medicine, Dentistry and Health Science, The University of Melbourne, Melbourne, VIC 3010, Australia
| |
Collapse
|
6
|
Prescott K, Münch AE, Brahms E, Weigel MK, Inoue K, Buckwalter MS, Liddelow SA, Peterson TC. Blocking of microglia-astrocyte proinflammatory signaling is beneficial following stroke. Front Mol Neurosci 2024; 16:1305949. [PMID: 38240014 PMCID: PMC10794541 DOI: 10.3389/fnmol.2023.1305949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 12/01/2023] [Indexed: 01/22/2024] Open
Abstract
Microglia and astrocytes play an important role in the neuroinflammatory response and contribute to both the destruction of neighboring tissue as well as the resolution of inflammation following stroke. These reactive glial cells are highly heterogeneous at both the transcriptomic and functional level. Depending upon the stimulus, microglia and astrocytes mount a complex, and specific response composed of distinct microglial and astrocyte substates. These substates ultimately drive the landscape of the initiation and recovery from the adverse stimulus. In one state, inflammation- and damage-induced microglia release tumor necrosis factor (TNF), interleukin 1α (IL1α), and complement component 1q (C1q), together "TIC." This cocktail of cytokines drives astrocytes into a neurotoxic reactive astrocyte (nRA) substate. This nRA substate is associated with loss of many physiological astrocyte functions (e.g., synapse formation and maturation, phagocytosis, among others), as well as a gain-of-function release of neurotoxic long-chain fatty acids which kill neighboring cells. Here we report that transgenic removal of TIC led to reduction of gliosis, infarct expansion, and worsened functional deficits in the acute and delayed stages following stroke. Our results suggest that TIC cytokines, and likely nRAs play an important role that may maintain neuroinflammation and inhibit functional motor recovery after ischemic stroke. This is the first report that this paradigm is relevant in stroke and that therapies against nRAs may be a novel means to treat patients. Since nRAs are evolutionarily conserved from rodents to humans and present in multiple neurodegenerative diseases and injuries, further identification of mechanistic role of nRAs will lead to a better understanding of the neuroinflammatory response and the development of new therapies.
Collapse
Affiliation(s)
- Kimberly Prescott
- Department of Psychology, University of North Carolina Wilmington, Wilmington, NC, United States
| | - Alexandra E. Münch
- Neuroscience Department, Stanford University, Stanford, CA, United States
| | - Evan Brahms
- Department of Neurology and Neurological Sciences, Stanford School of Medicine, Stanford, CA, United States
| | - Maya K. Weigel
- Neuroscience Department, Stanford University, Stanford, CA, United States
| | - Kenya Inoue
- Department of Psychology, University of North Carolina Wilmington, Wilmington, NC, United States
| | - Marion S. Buckwalter
- Department of Neurology and Neurological Sciences, Stanford School of Medicine, Stanford, CA, United States
- Department of Neurosurgery, Stanford School of Medicine, Stanford, CA, United States
| | - Shane A. Liddelow
- Neuroscience Institute, NYU Grossman School of Medicine, New York, NY, United States
- Department of Neuroscience and Physiology, NYU Grossman School of Medicine, New York, NY, United States
- Department of Ophthalmology, NYU Grossman School of Medicine, New York, NY, United States
- Parekh Center for Interdisciplinary Neurology, NYU Grossman School of Medicine, New York, NY, United States
| | - Todd C. Peterson
- Department of Psychology, University of North Carolina Wilmington, Wilmington, NC, United States
- Department of Neurology and Neurological Sciences, Stanford School of Medicine, Stanford, CA, United States
| |
Collapse
|
7
|
Bormann D, Knoflach M, Poreba E, Riedl CJ, Testa G, Orset C, Levilly A, Cottereau A, Jauk P, Hametner S, Golabi B, Copic D, Klas K, Direder M, Kühtreiber H, Salek M, zur Nedden S, Baier-Bitterlich G, Kiechl S, Haider C, Endmayr V, Höftberger R, Ankersmit HJ, Mildner M. Single nucleus RNA sequencing reveals glial cell type-specific responses to ischemic stroke. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.26.573302. [PMID: 38234821 PMCID: PMC10793395 DOI: 10.1101/2023.12.26.573302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Reactive neuroglia critically shape the braińs response to ischemic stroke. However, their phenotypic heterogeneity impedes a holistic understanding of the cellular composition and microenvironment of the early ischemic lesion. Here we generated a single cell resolution transcriptomics dataset of the injured brain during the acute recovery from permanent middle cerebral artery occlusion. This approach unveiled infarction and subtype specific molecular signatures in oligodendrocyte lineage cells and astrocytes, which ranged among the most transcriptionally perturbed cell types in our dataset. Specifically, we characterized and compared infarction restricted proliferating oligodendrocyte precursor cells (OPCs), mature oligodendrocytes and heterogeneous reactive astrocyte populations. Our analyses unveiled unexpected commonalities in the transcriptional response of oligodendrocyte lineage cells and astrocytes to ischemic injury. Moreover, OPCs and reactive astrocytes were involved in a shared immuno-glial cross talk with stroke specific myeloid cells. In situ, osteopontin positive myeloid cells accumulated in close proximity to proliferating OPCs and reactive astrocytes, which expressed the osteopontin receptor CD44, within the perilesional zone specifically. In vitro, osteopontin increased the migratory capacity of OPCs. Collectively, our study highlights molecular cross talk events which might govern the cellular composition and microenvironment of infarcted brain tissue in the early stages of recovery.
Collapse
Affiliation(s)
- Daniel Bormann
- Applied Immunology Laboratory, Department of Thoracic Surgery, Medical University of Vienna, 1090 Vienna, Austria
- Aposcience AG, 1200 Vienna, Austria
| | - Michael Knoflach
- Department of Neurology, Medical University of Innsbruck, Anichstraße 35, 6020 Innsbruck, Austria
- VASCage, Research Centre on Vascular Ageing and Stroke, 6020 Innsbruck, Austria
| | - Emilia Poreba
- Department of Dermatology, Medical University of Vienna, 1090 Vienna, Austria
| | - Christian J. Riedl
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, 1090 Vienna, Austria
| | - Giulia Testa
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, 1090 Vienna, Austria
| | - Cyrille Orset
- Normandie University, UNICAEN, ESR3P, INSERM UMR-S U1237, Physiopathology and Imaging of Neurological Disorders (PhIND), GIP Cyceron, Institut Blood and Brain @ Caen-Normandie (BB@C), Caen, France
- Department of Clinical Research, Caen-Normandie University Hospital, Caen, France
| | - Anthony Levilly
- Normandie University, UNICAEN, ESR3P, INSERM UMR-S U1237, Physiopathology and Imaging of Neurological Disorders (PhIND), GIP Cyceron, Institut Blood and Brain @ Caen-Normandie (BB@C), Caen, France
- Department of Clinical Research, Caen-Normandie University Hospital, Caen, France
| | - Andreá Cottereau
- Normandie University, UNICAEN, ESR3P, INSERM UMR-S U1237, Physiopathology and Imaging of Neurological Disorders (PhIND), GIP Cyceron, Institut Blood and Brain @ Caen-Normandie (BB@C), Caen, France
- Department of Clinical Research, Caen-Normandie University Hospital, Caen, France
| | - Philipp Jauk
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, 1090 Vienna, Austria
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, 1090 Vienna, Austria
| | - Simon Hametner
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, 1090 Vienna, Austria
| | - Bahar Golabi
- Department of Dermatology, Medical University of Vienna, 1090 Vienna, Austria
| | - Dragan Copic
- Applied Immunology Laboratory, Department of Thoracic Surgery, Medical University of Vienna, 1090 Vienna, Austria
- Aposcience AG, 1200 Vienna, Austria
- Division of Nephrology and Dialysis, Department of Internal Medicine III, Medical University of Vienna, 1090 Vienna, Austria
| | - Katharina Klas
- Applied Immunology Laboratory, Department of Thoracic Surgery, Medical University of Vienna, 1090 Vienna, Austria
- Aposcience AG, 1200 Vienna, Austria
| | - Martin Direder
- Applied Immunology Laboratory, Department of Thoracic Surgery, Medical University of Vienna, 1090 Vienna, Austria
- Aposcience AG, 1200 Vienna, Austria
- Department of Orthopedics and Trauma Surgery, Medical University of Vienna, 1090 Vienna, Austria
| | - Hannes Kühtreiber
- Applied Immunology Laboratory, Department of Thoracic Surgery, Medical University of Vienna, 1090 Vienna, Austria
- Aposcience AG, 1200 Vienna, Austria
| | - Melanie Salek
- Applied Immunology Laboratory, Department of Thoracic Surgery, Medical University of Vienna, 1090 Vienna, Austria
- Aposcience AG, 1200 Vienna, Austria
| | - Stephanie zur Nedden
- Institute of Neurobiochemistry, CCB-Biocenter, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Gabriele Baier-Bitterlich
- Institute of Neurobiochemistry, CCB-Biocenter, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Stefan Kiechl
- Department of Neurology, Medical University of Innsbruck, Anichstraße 35, 6020 Innsbruck, Austria
- VASCage, Research Centre on Vascular Ageing and Stroke, 6020 Innsbruck, Austria
| | - Carmen Haider
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, 1090 Vienna, Austria
| | - Verena Endmayr
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, 1090 Vienna, Austria
| | - Romana Höftberger
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, 1090 Vienna, Austria
| | - Hendrik J. Ankersmit
- Applied Immunology Laboratory, Department of Thoracic Surgery, Medical University of Vienna, 1090 Vienna, Austria
- Aposcience AG, 1200 Vienna, Austria
| | - Michael Mildner
- Department of Dermatology, Medical University of Vienna, 1090 Vienna, Austria
| |
Collapse
|
8
|
Kim RD, Marchildon AE, Frazel PW, Hasel P, Guo AX, Liddelow SA. Temporal and spatial analysis of astrocytes following stroke identifies novel drivers of reactivity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.12.566710. [PMID: 38014211 PMCID: PMC10680590 DOI: 10.1101/2023.11.12.566710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Astrocytes undergo robust gene expression changes in response to a variety of perturbations, including ischemic injury. How these transitions are affected by time, and how heterogeneous and spatially distinct various reactive astrocyte populations are, remain unclear. To address these questions, we performed spatial transcriptomics as well as single nucleus RNAseq of ∼138,000 mouse forebrain astrocytes at 1, 3, and 14 days after ischemic injury. We observed a widespread and temporally diverse response across many astrocyte subtypes. We identified astrocyte clusters unique in injury, including a transiently proliferative substate that may be BRCA1-dependent. We also found an interferon-responsive population that rapidly expands to the perilesion cortex at 1 day and persists up to 14 days post stroke. These lowly abundant, spatially restricted populations are likely functionally important in post-injury stabilization and resolution. These datasets offer valuable insights into injury-induced reactive astrocyte heterogeneity and can be used to guide functional interrogation of biologically meaningful reactive astrocyte substates to understand their pro- and anti-reparative functions following acute injuries such as stroke.
Collapse
|
9
|
Prescott K, Münch AE, Brahms E, Weigel MM, Inoue K, Buckwalter MS, Liddelow SA, Peterson TC. Blocking Formation of Neurotoxic Reactive Astrocytes is Beneficial Following Stroke. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.11.561918. [PMID: 37905154 PMCID: PMC10614742 DOI: 10.1101/2023.10.11.561918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Microglia and astrocytes play an important role in the neuroinflammatory response and contribute to both the destruction of neighboring tissue as well as the resolution of inflammation following stroke. These reactive glial cells are highly heterogeneous at both the transcriptomic and functional level. Depending upon the stimulus, microglia and astrocytes mount a complex, and specific response composed of distinct microglial and astrocyte substates. These substates ultimately drive the landscape of the initiation and recovery from the adverse stimulus. In one state, inflammation- and damage-induced microglia release tumor necrosis factor (TNF), interleukin 1α (IL1α), and complement component 1q (C1q), together 'TIC'. This cocktail of cytokines drives astrocytes into a neurotoxic reactive astrocyte (nRA) substate. This nRA substate is associated with loss of many physiological astrocyte functions (e.g., synapse formation and maturation, phagocytosis, among others), as well as a gain-of-function release of neurotoxic long-chain fatty acids which kill neighboring cells. Here we report that transgenic removal of TIC led to reduction of gliosis, infarct expansion, and worsened functional deficits in the acute and delayed stages following stroke. Our results suggest that TIC cytokines, and likely nRAs play an important role that may maintain neuroinflammation and inhibit functional motor recovery after ischemic stroke. This is the first report that this paradigm is relevant in stroke and that therapies against nRAs may be a novel means to treat patients. Since nRAs are evolutionarily conserved from rodents to humans and present in multiple neurodegenerative diseases and injuries, further identification of mechanistic role of nRAs will lead to a better understanding of the neuroinflammatory response and the development of new therapies.
Collapse
Affiliation(s)
- Kimberly Prescott
- Department of Psychology, University of North Carolina Wilmington, 28428
| | | | - Evan Brahms
- Department of Neurology and Neurological Sciences, Stanford School of Medicine, 94305
| | | | - Kenya Inoue
- Department of Psychology, University of North Carolina Wilmington, 28428
| | - Marion S Buckwalter
- Department of Neurology and Neurological Sciences, Stanford School of Medicine, 94305
- Department of Neurosurgery, Stanford School of Medicine, 94305
| | - Shane A Liddelow
- Neuroscience Institute, NYU Grossman School of Medicine, 10016
- Department of Neuroscience and Physiology, NYU Grossman School of Medicine, 10016
- Department of Ophthalmology, NYU Grossman School of Medicine, 10016
- Parekh Center for Interdisciplinary Neurology, NYU Grossman School of Medicine, 10016
| | - Todd C Peterson
- Department of Psychology, University of North Carolina Wilmington, 28428
- Department of Neurology and Neurological Sciences, Stanford School of Medicine, 94305
| |
Collapse
|
10
|
Patani R, Hardingham GE, Liddelow SA. Functional roles of reactive astrocytes in neuroinflammation and neurodegeneration. Nat Rev Neurol 2023; 19:395-409. [PMID: 37308616 DOI: 10.1038/s41582-023-00822-1] [Citation(s) in RCA: 130] [Impact Index Per Article: 65.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/11/2023] [Indexed: 06/14/2023]
Abstract
Despite advances in uncovering the mechanisms that underlie neuroinflammation and neurodegenerative disease, therapies that prevent neuronal loss remain elusive. Targeting of disease-defining markers in conditions such as Alzheimer disease (amyloid-β and tau) or Parkinson disease (α-synuclein) has been met with limited success, suggesting that these proteins do not act in isolation but form part of a pathological network. This network could involve phenotypic alteration of multiple cell types in the CNS, including astrocytes, which have a major neurosupportive, homeostatic role in the healthy CNS but adopt reactive states under acute or chronic adverse conditions. Transcriptomic studies in human patients and disease models have revealed the co-existence of many putative reactive sub-states of astrocytes. Inter-disease and even intra-disease heterogeneity of reactive astrocytic sub-states are well established, but the extent to which specific sub-states are shared across different diseases is unclear. In this Review, we highlight how single-cell and single-nuclei RNA sequencing and other 'omics' technologies can enable the functional characterization of defined reactive astrocyte states in various pathological scenarios. We provide an integrated perspective, advocating cross-modal validation of key findings to define functionally important sub-states of astrocytes and their triggers as tractable therapeutic targets with cross-disease relevance.
Collapse
Affiliation(s)
- Rickie Patani
- Department of Neuromuscular Disease, UCL Queen Square Institute of Neurology, London, UK
- The Francis Crick Institute, Human Stem Cells and Neurodegeneration Laboratory, London, UK
| | - Giles E Hardingham
- Euan MacDonald Centre for MND, University of Edinburgh, Edinburgh, UK
- UK Dementia Research Institute at the University of Edinburgh, University of Edinburgh, Edinburgh, UK
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Shane A Liddelow
- Neuroscience Institute, NYU Grossman School of Medicine, New York, NY, USA.
- Department of Neuroscience & Physiology, NYU Grossman School of Medicine, New York, NY, USA.
- Department of Ophthalmology, NYU Grossman School of Medicine, New York, NY, USA.
- Parekh Center for Interdisciplinary Neurology, NYU Grossman School of Medicine, New York, NY, USA.
| |
Collapse
|
11
|
Luo Y, Qu J, He Z, Zhang M, Zou Z, Li L, Zhang Y, Ye J. Human Umbilical Cord Mesenchymal Stem Cells Improve the Status of Hypoxic/Ischemic Cerebral Palsy Rats by Downregulating NogoA/NgR/Rho Pathway. Cell Transplant 2023; 32:9636897231210069. [PMID: 37982384 PMCID: PMC10664427 DOI: 10.1177/09636897231210069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 08/31/2023] [Accepted: 09/28/2023] [Indexed: 11/21/2023] Open
Abstract
Human umbilical cord mesenchymal stem cells (hUCMSC) have shown promising potential in ameliorating brain injury, but the mechanism is unclear. We explore the role of NogoA/NgR/Rho pathway in mediating hUCMSC to improve neurobehavioral status and alleviate brain injury in hypoxia/ischemia-induced CP (cerebral palsy) rat model in order to promote the clinical application of stem cell therapy in CP. The injury model of HT22 cells was established after 3 h hypoxia, and then co-cultured with hUCMSC. The rat model of CP was established by ligation of the left common carotid artery for 2.5 h. Subsequently, hUCMSC was administered via the tail vein once a week for a total of four times. The neurobehavioral status of CP rats was determined by behavioral experiment, and the pathological brain injury was determined by pathological staining method. The mRNA and protein expressions of NogoA, NgR, RhoA, Rac1, and CDC42 in brain tissues of rats in all groups and cell groups were detected by real-time quantitative polymerase chain reaction (RT-qPCR), Western blot, and immunofluorescence. The CP rats exhibited obvious motor function abnormalities and pathological damage. Compared with the control group, hUCMSC transplantation could significantly improve the neurobehavioral situation and attenuate brain pathological injury in CP rats. The relative expression of NogoA, NgR, RhoA mRNA, and protein in brain tissues of rats in the CP group was significantly higher than the rats in the sham and CP+hUCMSC group. The relative expression of Rac1, CDC42 mRNA, and protein in brain tissues of rats in the CP group was significantly lower than the rats in the sham and CP+hUCMSC group. The animal experiment results were consistent with the experimental trend of hypoxic injury of HT22 cells. This study confirmed that hUCMSC can efficiently improve neurobehavioral status and alleviate brain injury in hypoxia/ischemia-induced CP rat model and HT22 cell model through downregulating the NogoA/NgR/Rho pathway.
Collapse
Affiliation(s)
- Yaoling Luo
- Subcenter for Stem Cell Clinical Translation, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- Clinical Medicine Research Center, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- Ganzhou Key Laboratory of Stem Cell and Regenerative Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Jiayang Qu
- Subcenter for Stem Cell Clinical Translation, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- School of Rehabilitation Medicine Gannan Medical University, Ganzhou, China
| | - Zhengyi He
- Subcenter for Stem Cell Clinical Translation, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- Clinical Medicine Research Center, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- Ganzhou Key Laboratory of Stem Cell and Regenerative Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Minhong Zhang
- Subcenter for Stem Cell Clinical Translation, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- Clinical Medicine Research Center, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- Ganzhou Key Laboratory of Stem Cell and Regenerative Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Zhengwei Zou
- Subcenter for Stem Cell Clinical Translation, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- Clinical Medicine Research Center, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- Ganzhou Key Laboratory of Stem Cell and Regenerative Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Lincai Li
- Subcenter for Stem Cell Clinical Translation, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- Clinical Medicine Research Center, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- Ganzhou Key Laboratory of Stem Cell and Regenerative Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | | | - Junsong Ye
- Subcenter for Stem Cell Clinical Translation, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- Ganzhou Key Laboratory of Stem Cell and Regenerative Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, China
- Key Laboratory of Biomaterials and Biofabrication in Tissue Engineering of Jiangxi Province, Gannan Medical University, Ganzhou, China
| |
Collapse
|