1
|
Thunnissen E, Blaauwgeers H, Filipello F, Lissenberg-Witte B, Minami Y, Noguchi M, Quesne JL, Papotti MG, Flieder DB, Pelosi G, Sansano I, Berezowska S, Ryška A, Brcic L, Motoi N, Nakatani Y, Kuempers C, Hofman P, Hofman V, Dale VG, Rossi G, Ambrosi F, Matsubara D, Ishikawa Y, Weynand B, Calabrese F, Pezzuto F, Kern I, Nicholson S, Mutka A, Dacic S, Beasley MB, Arrigoni G, Timens W, Ooft M, Brinkhuis M, Bulkmans N, Britstra R, Vreuls W, Jones KD, von der Thüsen JH, Hager H, Perner S, Moore D, Leonte DG, Al-Janabi S, Schønau A, Neumann O, Kluck K, Ourailidis I, Ball M, Budczies J, Kazdal D, Stenzinger A. A reproducibility study on invasion in small pulmonary adenocarcinoma according to the WHO and a modified classification, supported by biomarkers. Lung Cancer 2024; 199:108060. [PMID: 39793325 DOI: 10.1016/j.lungcan.2024.108060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 12/04/2024] [Accepted: 12/12/2024] [Indexed: 01/13/2025]
Abstract
OBJECTIVES Evaluating invasion in non-mucinous adenocarcinoma (NMA) of the lung is crucial for accurate pT-staging. This study compares the World Health Organization (WHO) with a recently modified NMA classification. MATERIALS AND METHODS A retrospective case-control study was conducted on small NMA pT1N0M0 cases with a 5-year follow-up. Seventy cases were reviewed by 42 pulmonary pathologists first according to the WHO classification and after tutorial according to a modified classification. A third round was conducted based on feedback from 41 peers of previous rounds. Additionally, orthogonal biomarker analysis was performed. RESULTS In the first two rounds, 42 pathologists from 13 countries assessed all 70 cases, while 36 pathologists evaluated 41 non-unanimous cases in the third round. Kappa values for invasiveness increased in rounds 1, 2, and 3 to 0.27, 0.45 and 0.62, respectively. In contrast to low variation in total tumor size measurements (6 %), a marked increase in invasive tumor size variation was observed (42 %), which was associated with high uncertainty. In the third round 10 cases were non-invasive, all without recurrence. The modified classification showed in the 3rd round marked reduction of the variation in pT staging compared to the current WHO classification. Proliferation rate, tumor mutational burden, and transcriptomic profiles supported the distinction between invasive cases and non-invasive cases of the modified classification. CONCLUSION The modified classification demonstrates essentially higher reproducibility compared to the current WHO classification in NMA. The modified classification proves valuable in identifying low-risk lesions that are entirely non-invasive, and is supported by biomarker analysis.
Collapse
Affiliation(s)
- Erik Thunnissen
- Dept. of Pathology, Amsterdam UMC, VU University, Amsterdam, the Netherlands.
| | | | | | - Birgit Lissenberg-Witte
- Dept. of Epidemiology and Data Science, Amsterdam UMC, VU University, Amsterdam, the Netherlands
| | - Yuko Minami
- Dept. of Pathology, National Hospital Organization Ibarakihigashi National Hospital, Tokai, Japan
| | - Masayuki Noguchi
- Dept. of Pathology, Naritatomisato Tokushukai Hospital, Chiba, Japan
| | - John Le Quesne
- Dept. of Pathology, School of Cancer Sciences, University of Glasgow, Scotland, UK; Dept. of Pathology, CRUK Beatson Cancer Research Institute, Glasgow, Scotland, UK; Dept. of Pathology, Department of Histopathology, Queen Elizabeth University Hospital, Glasgow, Scotland, UK
| | | | | | - Giuseppe Pelosi
- Dept. of Pathology, Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Irene Sansano
- Dept. of Pathology, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - Sabina Berezowska
- Dept. of Pathology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Aleš Ryška
- Dept. of Pathology, Charles University, ESP, Hradec Kralove, Czech Republic
| | - Luka Brcic
- Dept. of Pathology, Medical University of Graz, Graz, Austria
| | - Noriko Motoi
- Dept. of Pathology, Saitama Cancer Center, Saitama, Japan
| | - Yukio Nakatani
- Dept. of Pathology, Yokosuka Kyosai Hospital, Yokosuka, Japan
| | - Christiane Kuempers
- Dept. of Pathology, Universitätsklinikum Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
| | - Paul Hofman
- IHU RespirERA, FHU OncoAge, Nice University Hospital Center, Laboratory of Clinical and Experimental Pathology, Nice, France
| | - Veronique Hofman
- IHU RespirERA, FHU OncoAge, Nice University Hospital Center, Laboratory of Clinical and Experimental Pathology, Nice, France
| | - Vibeke Grotnes Dale
- Dept. of Pathology, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway; Norwegian University of Science and Technology, Trondheim, Norway
| | - Giulio Rossi
- Dept. of Pathology, Fondazione Poliambulanza Hospital Institute, Brescia, Brescia, Italy
| | - Francesca Ambrosi
- Dept. of Pathology, Maggiore Hospital, University of Bologna, Bologna, Italy
| | | | - Yuichi Ishikawa
- Dept. of Pathology, International University of Health and Welfare, Mita Hospital, Tokyo, Japan
| | | | | | | | - Izidor Kern
- Dept. of Pathology, St. James's Hospital, Dublin, Ireland
| | - Siobhan Nicholson
- Dept. of Pathology, HUS Helsinki University Hospital, Helsinki, Finland
| | - Aino Mutka
- Dept. of Pathology, Yale School of Medicine, New Haven, CT, USA
| | - Sanja Dacic
- Dept. of Pathology, Mount Sinai Medical Center, New York, NY, USA
| | - Mary Beth Beasley
- Dept. of Pathology, University Medical Center Groningen, Groningen, the Netherlands
| | | | - Wim Timens
- Dept. of Pathology, Rijnstate Ziekenhuis, Arnhem, the Netherlands
| | - Marc Ooft
- Dept. of Pathology, LabPON, Hengelo, the Netherlands
| | - Mariel Brinkhuis
- Dept. Pathologie-DNA, St. Antoniusziekenhuis, Nieuwegein, the Netherlands
| | - Nicole Bulkmans
- Dept. of Pathology, Meander Medisch Centrum, Amersfoort, the Netherlands
| | - Rieneke Britstra
- Dept. of Pathology, Canisius Wilhelmina Hospital, Nijmegen, the Netherlands
| | - Willem Vreuls
- Dept. of Pathology, University of California, San Francisco, CA, USA
| | - Kirk D Jones
- Dept. of Pathology, Erasmus Medical Center, Rotterdam, the Netherlands
| | | | - Hendrik Hager
- Dept. of Pathology, University College London Cancer Institute, London, United Kingdom
| | - Sven Perner
- Dept. of Pathology, Universitätsklinikum Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
| | - David Moore
- Dept. of Pathology, University of California, San Francisco, CA, USA
| | | | | | | | - Olaf Neumann
- Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany; Center for Personalized Medicine (ZPM) Heidelberg, Heidelberg, Germany; Translational Lung Research Center (TLRC), Member of the German Center for Lung Research (DZL), Heidelberg, Germany
| | - Klaus Kluck
- Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany; Center for Personalized Medicine (ZPM) Heidelberg, Heidelberg, Germany; Translational Lung Research Center (TLRC), Member of the German Center for Lung Research (DZL), Heidelberg, Germany
| | - Iordanis Ourailidis
- Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany; Center for Personalized Medicine (ZPM) Heidelberg, Heidelberg, Germany; Translational Lung Research Center (TLRC), Member of the German Center for Lung Research (DZL), Heidelberg, Germany
| | - Markus Ball
- Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany; Center for Personalized Medicine (ZPM) Heidelberg, Heidelberg, Germany; Translational Lung Research Center (TLRC), Member of the German Center for Lung Research (DZL), Heidelberg, Germany
| | - Jan Budczies
- Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany; Center for Personalized Medicine (ZPM) Heidelberg, Heidelberg, Germany; Translational Lung Research Center (TLRC), Member of the German Center for Lung Research (DZL), Heidelberg, Germany
| | - Daniel Kazdal
- Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany; Center for Personalized Medicine (ZPM) Heidelberg, Heidelberg, Germany; Translational Lung Research Center (TLRC), Member of the German Center for Lung Research (DZL), Heidelberg, Germany
| | - Albrecht Stenzinger
- Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany; Center for Personalized Medicine (ZPM) Heidelberg, Heidelberg, Germany; Translational Lung Research Center (TLRC), Member of the German Center for Lung Research (DZL), Heidelberg, Germany
| |
Collapse
|
2
|
Lubo I, Hernandez S, Wistuba II, Solis Soto LM. Novel Spatial Approaches to Dissect the Lung Cancer Immune Microenvironment. Cancers (Basel) 2024; 16:4145. [PMID: 39766047 PMCID: PMC11674389 DOI: 10.3390/cancers16244145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/07/2024] [Accepted: 12/10/2024] [Indexed: 01/11/2025] Open
Abstract
Lung cancer is a deadly disease with the highest rates of mortality. Over recent decades, a better understanding of the biological mechanisms implicated in its pathogenesis has led to the development of targeted therapies and immunotherapy, resulting in improvements in patient outcomes. To better understand lung cancer tumor biology and advance towards precision oncology, a comprehensive tumor profile is necessary. In recent years, novel in situ spatial multiomics approaches have emerged offering a more detailed view of the spatial location of tumor and tumor microenvironment cells, identifying their unique composition and functional status. In this sense, novel multiomics platforms have been developed to evaluate tumor heterogeneity, gene expression, metabolic reprogramming, signaling pathway activation, cell-cell interactions, and immune cell programs. In lung cancer research, several studies have used these spatial technologies to locate cells and associated them with histological features that are relevant to the pathogenesis of lung adenocarcinoma. These advancements may unveil further molecular and immune mechanisms in tumor biology that will lead to the discovery of biomarkers for treatment prediction and prognosis. In this review, we provide an overview of more widely used and emerging pathology-based approaches for spatial immune profiling in lung cancer and how they enhance our understanding of tumor biology and immune response.
Collapse
Affiliation(s)
| | | | | | - Luisa Maren Solis Soto
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (I.L.); (S.H.); (I.I.W.)
| |
Collapse
|
3
|
Tan N, Li Y, Ying J, Chen W. Histological transformation in lung adenocarcinoma: Insights of mechanisms and therapeutic windows. J Transl Int Med 2024; 12:452-465. [PMID: 39513032 PMCID: PMC11538883 DOI: 10.1515/jtim-2024-0019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2024] Open
Abstract
Histological transformation from lung adenocarcinoma (ADC) to small cell lung carcinoma (SCLC), large cell neuroendocrine carcinoma (LCNEC), squamous cell carcinoma (SCC), and sarcomatoid carcinoma (PSC) after targeted therapies is recognized as a mechanism of resistance in ADC treatments. Patients with transformed lung cancer typically experience a poor prognosis and short survival time. However, effective treatment options for these patients are currently lacking. Therefore, understanding the mechanisms underlying histological transformation is crucial for the development of effective therapies. Hypotheses including intratumoral heterogeneity, cancer stem cells, and alteration of suppressor genes have been proposed to explain the mechanism of histological transformation. In this review, we provide a comprehensive overview of the known molecular features and signaling pathways of transformed tumors, and summarized potential therapies based on previous findings.
Collapse
Affiliation(s)
- Nuopei Tan
- Office of Cancer Screening, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yan Li
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jianming Ying
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wanqing Chen
- Office of Cancer Screening, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
4
|
Li Y, Xie T, Wang S, Yang L, Hao X, Wang Y, Hu X, Wang L, Li J, Ying J, Xing P. Mechanism exploration and model construction for small cell transformation in EGFR-mutant lung adenocarcinomas. Signal Transduct Target Ther 2024; 9:261. [PMID: 39353908 PMCID: PMC11445518 DOI: 10.1038/s41392-024-01981-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 09/03/2024] [Accepted: 09/14/2024] [Indexed: 10/03/2024] Open
Abstract
Small-cell lung cancer (SCLC) transformation accounts for 3-14% of resistance in EGFR-TKI relapsed lung adenocarcinomas (LUADs), with unknown molecular mechanisms and optimal treatment strategies. We performed transcriptomic analyses (including bulk and spatial transcriptomics) and multiplex immunofluorescence on pre-treated samples from LUADs without transformation after EGFR-TKI treatment (LUAD-NT), primary SCLCs (SCLC-P) and LUADs with transformation after EGFR-TKI treatment (before transformation: LUAD-BT; after transformation: SCLC-AT). Our study found that LUAD-BT exhibited potential transcriptomic characteristics for transformation compared with LUAD-NT. We identified several pathways that shifted during transformation, and the transformation might be promoted by epigenetic alterations (such as HDAC10, HDAC1, DNMT3A) within the tumor cells instead of within the tumor microenvironment. For druggable pathways, transformed-SCLC were proved to be less dependent on EGF signaling but more relied on FGF signaling, while VEGF-VEGFR pathway remained active, indicating potential treatments after transformation. We also found transformed-SCLC showed an immuno-exhausted status which was associated with the duration of EGFR-TKI before transformation. Besides, SCLC-AT exhibited distinct molecular subtypes from SCLC-P. Moreover, we constructed an ideal 4-marker model based on transcriptomic and IHC data to predict SCLC transformation, which obtained a sensitivity of 100% and 87.5%, a specificity of 95.7% and 100% in the training and test cohorts, respectively. We provided insights into the molecular mechanisms of SCLC transformation and the differences between SCLC-AT and SCLC-P, which might shed light on prevention strategies and subsequent therapeutic strategies for SCLC transformation in the future.
Collapse
Affiliation(s)
- Yan Li
- State Key Laboratory of Molecular Oncology, Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Tongji Xie
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
- Department of Pulmonary and Critical Care Medicine, Beijing Hospital, National Centre of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Shouzheng Wang
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
- Department of Medical Oncology, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, 101149, China
| | - Lin Yang
- State Key Laboratory of Molecular Oncology, Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Xuezhi Hao
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Yan Wang
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Xingsheng Hu
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Lin Wang
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Junling Li
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Jianming Ying
- State Key Laboratory of Molecular Oncology, Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| | - Puyuan Xing
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| |
Collapse
|
5
|
Liu T, Chen X, Mo S, Zhou T, Ma W, Chen G, Chen X, Shi M, Yang Y, Huang Y, Zhao H, Fang W, Yang Y, Li J, Zhang L, Zhao Y. Molecular subtypes and prognostic factors of lung large cell neuroendocrine carcinoma. Transl Lung Cancer Res 2024; 13:2222-2235. [PMID: 39430332 PMCID: PMC11484736 DOI: 10.21037/tlcr-24-292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 07/26/2024] [Indexed: 10/22/2024]
Abstract
Background Lung large cell neuroendocrine carcinoma (LCNEC) is an aggressive disease with poor prognosis and short-term survival, which lacks effective prognostic indicators. The study aims to investigate the molecular subtypes and prognostic markers of lung LCNEC. Methods Patients diagnosed with lung LCNEC at Sun Yat-sen University Cancer Center (SYSUCC) between November 2007 and January 2021 were screened. Baseline clinical data were collected and routine blood indexes including lymphocyte-to-monocyte ratio (LMR), neutrophil-to-lymphocyte ratio (NLR), platelet-to-lymphocyte ratio (PLR) and systemic immune-inflammation index (SII) were calculated. Immunohistochemistry (IHC) of ASCL1, NEUROD1, POU2F3, YAP1 were done to perform molecular subtyping, while CD56, Syn, CgA, CD3, CD8, CD20, CD68, and CD163 were also stained on tissue samples. Then prognostic factors of lung LCNEC were explored. Results One hundred and fifty-one lung LCNEC patients were identified, 103 of whom had complete clinical information, available routine blood and biochemical indexes were eventually included in the present study. Tumor tissue specimens were available from 64 patients. Positive expression rates of ASCL1, NEUROD1, and YAP1 were 82.8%, 50.0%, and 28.1%, respectively. No POU2F3+ cases were detected. Forty (62.5%) patients co-expressed with two or three markers. High LMR (>3.3) was an independent predictor of favorable prognosis of disease-free survival (DFS) [hazard ratio (HR), 0.391; 95% confidence interval (CI): 0.161-0.948; P=0.04] and overall survival (OS) (HR, 0.201; 95% CI: 0.071-0.574; P=0.003). Notably, high LMR was correlated with higher intra-tumoral CD3+ (P=0.004), CD8+ (P=0.01), and CD68+ (P<0.001) immune cell infiltration compared to low LMR in lung LCNEC. Conclusions Our study validated molecular subtypes by IHC in lung LCNEC, and co-expression was found among different subtypes, with no prognostic effect. High blood LMR level was associated with a favorable prognosis in lung LCNEC, which might partly reflect a hot tumor tissue immune microenvironment. Our findings may benefit clinical practice, and further studies are warranted.
Collapse
Affiliation(s)
- Tingting Liu
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Xueyuan Chen
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Silang Mo
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Ting Zhou
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Wenjuan Ma
- Department of Intensive Care Unit, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Gang Chen
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Xiang Chen
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Mengting Shi
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yuwen Yang
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yan Huang
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Hongyun Zhao
- Department of Clinical Research, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Wenfeng Fang
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yunpeng Yang
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Jing Li
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Li Zhang
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yuanyuan Zhao
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| |
Collapse
|
6
|
Zeng L, Zhang L, Li L, Liao X, Yin C, Zhang L, Chen X, Sun J. RNA sequencing identifies lung cancer lineage and facilitates drug repositioning. PeerJ 2024; 12:e18159. [PMID: 39346064 PMCID: PMC11430167 DOI: 10.7717/peerj.18159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 09/02/2024] [Indexed: 10/01/2024] Open
Abstract
Recent breakthrough therapies have improved survival rates in non-small cell lung cancer (NSCLC), but a paradigm for prospective confirmation is still lacking. Patientdatasets were mainly downloaded from TCGA, CPTAC and GEO. We conducted downstream analysis by collecting metagenes and generated 42-gene subtype classifiers to elucidate biological pathways. Subsequently, scRNA, eRNA, methylation, mutation, and copy number variation were depicted from a phenotype perspective. Enhancing the clinical translatability of molecular subtypes, preclinical models including CMAP, CCLE, and GDSC were utilized for drug repositioning. Importantly, we verified the presence of previously described three phenotypes including bronchioid, neuroendocrine, and squamoid. Poor prognosis was seen in squamoid and neuroendocrine clusters for treatment-naive and immunotherapy populations. The neuroendocrine cluster was dominated by STK11 mutations and 14q13.3 amplifications, whose related methylated loci are predictive of immunotherapy. And the greatest therapeutic potential lies in the bronchioid cluster. We further estimated the relative cell abundance of the tumor microenvironment (TME), specific cell types could be reflected among three clusters. Meanwhile, the higher portion of immune cell infiltration belonged to bronchioid and squamoid, not the neuroendocrine cluster. In drug repositioning, MEK inhibitors resisted bronchioid but were squamoid-sensitive. To conceptually validate compounds/targets, we employed RNA-seq and CCK-8/western blot assays. Our results indicated that dinaciclib and alvocidib exhibited similar activity and sensitivity in the neuroendocrine cluster. Also, a lineage factor named KLF5 recognized by inferred transcriptional factors activity could be suppressed by verteporfin.
Collapse
Affiliation(s)
- Longjin Zeng
- Department of Basic Medicine, Army Medical University, Chongqing, China
| | - Longyao Zhang
- Cancer Institute, Xinqiao Hospital, Chongqing, China
| | - Lingchen Li
- Cancer Institute, Xinqiao Hospital, Chongqing, China
| | - Xingyun Liao
- Affiliated Tumor Hospital, Department of Oncology, Chongqing, China
| | - Chenrui Yin
- Cancer Institute, Xinqiao Hospital, Chongqing, China
| | - Lincheng Zhang
- Department of Basic Medicine, Army Medical University, Chongqing, China
| | - Xiewan Chen
- Department of Basic Medicine, Army Medical University, Chongqing, China
| | - Jianguo Sun
- Cancer Institute, Xinqiao Hospital, Chongqing, China
| |
Collapse
|
7
|
Hu W, He Y, Ren H, Chai L, Li H, Chen J, Li C, Wang Y, James TD. Near-infrared imaging for visualizing the synergistic relationship between autophagy and NFS1 protein during multidrug resistance using an ICT-TICT integrated platform. Chem Sci 2024; 15:6028-6035. [PMID: 38665516 PMCID: PMC11040642 DOI: 10.1039/d3sc06459j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 03/11/2024] [Indexed: 04/28/2024] Open
Abstract
Drug resistance is a major challenge for cancer treatment, and its identification is crucial for medical research. However, since drug resistance is a multi-faceted phenomenon, it is important to simultaneously evaluate multiple target fluctuations. Recently developed fluorescence-based probes that can simultaneously respond to multiple targets offer many advantages for real-time and in situ monitoring of cellular metabolism, including ease of operation, rapid reporting, and their non-invasive nature. As such we developed a dual-response platform (Vis-H2S) with integrated ICT-TICT to image H2S and viscosity in mitochondria, which could simultaneously track fluctuations in cysteine desulfurase (NFS1 protein and H2S inducer) and autophagy during chemotherapy-induced multidrug resistance. This platform could monitor multiple endogenous metabolites and the synergistic relationship between autophagy and NFS1 protein during multidrug resistance induced by chemotherapy. The results indicated that chemotherapeutic drugs simultaneously up-regulate the levels of NFS1 protein and autophagy. It was also found that the NFS1 protein was linked with autophagy, which eventually led to multidrug resistance. As such, this platform could serve as an effective tool for the in-depth exploration of drug resistance mechanisms.
Collapse
Affiliation(s)
- Wei Hu
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education, Key Laboratory of Analytical Chemistry of the State Ethnic Affairs Commission, College of Chemistry and Materials Science, South-Central Minzu University Wuhan 430074 China
- Department of Chemistry, Xinzhou Normal University Xinzhou Shanxi 034000 China
- Department of Chemistry, University of Bath Bath BA27AY UK
| | - Yifan He
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education, Key Laboratory of Analytical Chemistry of the State Ethnic Affairs Commission, College of Chemistry and Materials Science, South-Central Minzu University Wuhan 430074 China
| | - Haixian Ren
- Department of Chemistry, Xinzhou Normal University Xinzhou Shanxi 034000 China
| | - Li Chai
- Department of Chemistry, Xinzhou Normal University Xinzhou Shanxi 034000 China
| | - Haiyan Li
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education, Key Laboratory of Analytical Chemistry of the State Ethnic Affairs Commission, College of Chemistry and Materials Science, South-Central Minzu University Wuhan 430074 China
| | - Jianbin Chen
- School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences) Jinan Shandong 250353 China
| | - Chunya Li
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education, Key Laboratory of Analytical Chemistry of the State Ethnic Affairs Commission, College of Chemistry and Materials Science, South-Central Minzu University Wuhan 430074 China
| | - Yanying Wang
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education, Key Laboratory of Analytical Chemistry of the State Ethnic Affairs Commission, College of Chemistry and Materials Science, South-Central Minzu University Wuhan 430074 China
| | - Tony D James
- Department of Chemistry, University of Bath Bath BA27AY UK
- School of Chemistry and Chemical Engineering, Henan Normal University Xinxiang 453007 China
| |
Collapse
|
8
|
Heeke S, Gay CM, Estecio MR, Tran H, Morris BB, Zhang B, Tang X, Raso MG, Rocha P, Lai S, Arriola E, Hofman P, Hofman V, Kopparapu P, Lovly CM, Concannon K, De Sousa LG, Lewis WE, Kondo K, Hu X, Tanimoto A, Vokes NI, Nilsson MB, Stewart A, Jansen M, Horváth I, Gaga M, Panagoulias V, Raviv Y, Frumkin D, Wasserstrom A, Shuali A, Schnabel CA, Xi Y, Diao L, Wang Q, Zhang J, Van Loo P, Wang J, Wistuba II, Byers LA, Heymach JV. Tumor- and circulating-free DNA methylation identifies clinically relevant small cell lung cancer subtypes. Cancer Cell 2024; 42:225-237.e5. [PMID: 38278149 PMCID: PMC10982990 DOI: 10.1016/j.ccell.2024.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 07/26/2023] [Accepted: 01/04/2024] [Indexed: 01/28/2024]
Abstract
Small cell lung cancer (SCLC) is an aggressive malignancy composed of distinct transcriptional subtypes, but implementing subtyping in the clinic has remained challenging, particularly due to limited tissue availability. Given the known epigenetic regulation of critical SCLC transcriptional programs, we hypothesized that subtype-specific patterns of DNA methylation could be detected in tumor or blood from SCLC patients. Using genomic-wide reduced-representation bisulfite sequencing (RRBS) in two cohorts totaling 179 SCLC patients and using machine learning approaches, we report a highly accurate DNA methylation-based classifier (SCLC-DMC) that can distinguish SCLC subtypes. We further adjust the classifier for circulating-free DNA (cfDNA) to subtype SCLC from plasma. Using the cfDNA classifier (cfDMC), we demonstrate that SCLC phenotypes can evolve during disease progression, highlighting the need for longitudinal tracking of SCLC during clinical treatment. These data establish that tumor and cfDNA methylation can be used to identify SCLC subtypes and might guide precision SCLC therapy.
Collapse
Affiliation(s)
- Simon Heeke
- Department of Thoracic/Head & Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Carl M Gay
- Department of Thoracic/Head & Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Marcos R Estecio
- Epigenetic and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Hai Tran
- Department of Thoracic/Head & Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Benjamin B Morris
- Department of Thoracic/Head & Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Bingnan Zhang
- Department of Thoracic/Head & Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ximing Tang
- Department of Translational Molecular Pathology, the University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Maria Gabriela Raso
- Department of Translational Molecular Pathology, the University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Pedro Rocha
- Medical Oncology Department, Hospital del Mar, Barcelona, Spain
| | - Siqi Lai
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center UTHealth Houston, Houston, TX, USA
| | - Edurne Arriola
- Medical Oncology Department, Hospital del Mar, Barcelona, Spain
| | - Paul Hofman
- Laboratory of Clinical and Experimental Pathology, IHU RespirERA, Nice Hospital, University Côte d'Azur, Nice, France
| | - Veronique Hofman
- Laboratory of Clinical and Experimental Pathology, IHU RespirERA, Nice Hospital, University Côte d'Azur, Nice, France
| | - Prasad Kopparapu
- Department of Medicine, Division of Hematology and Oncology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Christine M Lovly
- Department of Medicine, Division of Hematology and Oncology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Kyle Concannon
- Department of Thoracic/Head & Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Luana Guimaraes De Sousa
- Department of Thoracic/Head & Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Whitney Elisabeth Lewis
- Department of Thoracic/Head & Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kimie Kondo
- Epigenetic and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xin Hu
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Azusa Tanimoto
- Department of Thoracic/Head & Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Natalie I Vokes
- Department of Thoracic/Head & Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Monique B Nilsson
- Department of Thoracic/Head & Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Allison Stewart
- Department of Thoracic/Head & Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Maarten Jansen
- Pulmonary Department, Ziekenhuisgroep Twente, Hengelo, the Netherlands
| | - Ildikó Horváth
- National Korányi Institute of Pulmonology, Budapest, Hungary
| | - Mina Gaga
- 7th Respiratory Medicine Department, Athens Chest Hospital, Athens, Greece
| | | | - Yael Raviv
- Department of Medicine, Pulmonology, Institute, Soroka Medical Center, Ben-Gurion University, Beer-Sheva, Israel
| | | | | | | | | | - Yuanxin Xi
- Department of Bioinformatics and Computational Biology, the University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Lixia Diao
- Department of Bioinformatics and Computational Biology, the University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Qi Wang
- Department of Bioinformatics and Computational Biology, the University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jianjun Zhang
- Department of Thoracic/Head & Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Peter Van Loo
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; The Francis Crick Institute, London, UK
| | - Jing Wang
- Department of Bioinformatics and Computational Biology, the University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ignacio I Wistuba
- Department of Translational Molecular Pathology, the University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Lauren A Byers
- Department of Thoracic/Head & Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - John V Heymach
- Department of Thoracic/Head & Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
9
|
Dacic S, Cao X, Bota-Rabassedas N, Sanchez-Espiridion B, Berezowska S, Han Y, Chung JH, Beasley MB, Dongmei L, Hwang D, Mino-Kenudson M, Minami Y, Papotti M, Rekhtman N, Roden AC, Thunnissen E, Tsao MS, Yatabe Y, Yoshida A, Wang L, Hartman DJ, Jerome JA, Kadara H, Chou TY, Wistuba II. Genomic Staging of Multifocal Lung Squamous Cell Carcinomas Is Independent of the Comprehensive Morphologic Assessment. J Thorac Oncol 2024; 19:273-284. [PMID: 37717856 DOI: 10.1016/j.jtho.2023.09.275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 08/19/2023] [Accepted: 09/10/2023] [Indexed: 09/19/2023]
Abstract
INTRODUCTION Morphologic and molecular data for staging of multifocal lung squamous cell carcinomas (LSCCs) are limited. In this study, whole exome sequencing (WES) was used as the gold standard to determine whether multifocal LSCC represented separate primary lung cancers (SPLCs) or intrapulmonary metastases (IPMs). Genomic profiles were compared with the comprehensive morphologic assessment. METHODS WES was performed on 20 tumor pairs of multifocal LSCC and matched normal lymph nodes using the Illumina NovaSeq6000 S4-Xp (Illumina, San Diego, CA). WES clonal and subclonal analysis data were compared with histologic assessment by 16 thoracic pathologists. In addition, the immune gene profiling of the study cases was characterized by the HTG EdgeSeq Precision Immuno-Oncology Panel. RESULTS By WES data, 11 cases were classified as SPLC and seven cases as IPM. Two cases were technically suboptimal. Analysis revealed marked genomic and immunogenic heterogeneity, but immune gene expression profiles highly correlated with mutation profiles. Tumors classified as IPM have a large number of shared mutations (ranging from 33.5% to 80.7%). The agreement between individual morphologic assessments for each case and WES was 58.3%. One case was unanimously interpreted morphologically as IPM and was in agreement with WES. In a further 17 cases, the number of pathologists whose morphologic interpretation was in agreement with WES ranged from two (one case) to 15 pathologists (one case) per case. Pathologists showed a fair interobserver agreement in the morphologic staging of multiple LSCCs, with an overall kappa of 0.232. CONCLUSIONS Staging of multifocal LSCC based on morphologic assessment is unreliable. Comprehensive genomic analyses should be adopted for the staging of multifocal LSCC.
Collapse
Affiliation(s)
- Sanja Dacic
- Department of Pathology University of Pittsburgh, Pittsburgh, Pennsylvania.
| | - Xuanye Cao
- Department of Translational Molecular Pathology, The University of Texas M. D. Anderson, Houston, Texas
| | - Neus Bota-Rabassedas
- Department of Translational Molecular Pathology, The University of Texas M. D. Anderson, Houston, Texas
| | | | - Sabina Berezowska
- Institute of Pathology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Yuchen Han
- Department of Pathology, Shanghai Chest Hospital, Shanghai, People's Republic of China
| | - Jin-Haeng Chung
- Department of Pathology and Translational Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Mary Beth Beasley
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Lin Dongmei
- Department of Pathology, Beijing Cancer Center, Beijing, People's Republic of China
| | - David Hwang
- Sunnybrook Health Sciences Centre, Odette Cancer Centre, Ontario, Canada
| | - Mari Mino-Kenudson
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Yuko Minami
- Department of Pathology, National Hospital Organization Ibarakihigashi National Hospital, The Center of Chest Diseases and Severe Motor & Intellectual Disabilities, Tokai, Ibaraki, Japan
| | - Mauro Papotti
- Department of Pathology, University of Turin, Torino, Italy
| | - Natasha Rekhtman
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Anja C Roden
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Erik Thunnissen
- Department of Pathology, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Ming-Sound Tsao
- Department of Pathology, University Health Network and Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Yasushi Yatabe
- Department of Diagnostic Pathology, National Cancer Center Hospital, Tokyo, Japan
| | - Akihiko Yoshida
- Department of Diagnostic Pathology, National Cancer Center Hospital, Tokyo, Japan
| | - Linghua Wang
- Department of Translational Molecular Pathology, The University of Texas M. D. Anderson, Houston, Texas
| | - Douglas J Hartman
- Department of Pathology University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Jacob A Jerome
- Department of Pathology University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Humam Kadara
- Department of Translational Molecular Pathology, The University of Texas M. D. Anderson, Houston, Texas
| | - Teh-Ying Chou
- Department of Pathology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Ignacio I Wistuba
- Department of Translational Molecular Pathology, The University of Texas M. D. Anderson, Houston, Texas
| |
Collapse
|
10
|
Zeng J, Ding X, Ding J, Wang X. Histological transformation into SCLC: An important resistance mechanism of NSCLC upon immunotherapy. Front Immunol 2023; 14:1275957. [PMID: 38022621 PMCID: PMC10646212 DOI: 10.3389/fimmu.2023.1275957] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 10/16/2023] [Indexed: 12/01/2023] Open
Abstract
The phenomenon of histological transformation has been widely reported in advanced non-small cell lung cancer (NSCLC) with EGFR mutations following the failure of EGFR-TKI treatment. Recent evidence suggests that similar histological changes can also occur in advanced NSCLC without driver gene mutations after developing resistance to immunotherapy. In this review, it was found that 66.7% of cases with immunotherapy-induced histological transformation were classified as lung squamous cell carcinoma (LSCC), while histological conversion into lung adenocarcinoma (LUAD) without EGFR or ALK gene mutations has rarely been reported. There have been sporadic reports on the occurrence of mutual transformation between LUAD and LSCC. The histological conversion from NSCLC into small cell lung cancer (SCLC) appears to be significantly underestimated, likely due to the infrequency of re-biopsy following the development of immunotherapy resistance. Several studies have reported a close association between the transformation and mutations at TP53 and the RB1 splice site, as well as the loss of an FBXW7 mutation. However, the exact mechanisms underlying this conversion remain unclear. Currently, there is a lack of guidelines for the management of transformed SCLC from NSCLC following immunotherapy, with chemotherapy being the most commonly employed treatment approach.
Collapse
Affiliation(s)
- Jiao Zeng
- Department of Hematology & Oncology, Jiujiang University Affiliated Hospital, Jiujiang, Jiangxi, China
- Graduate Department, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Xinjing Ding
- Department of Oncology, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Jianghua Ding
- Department of Hematology & Oncology, Jiujiang University Affiliated Hospital, Jiujiang, Jiangxi, China
| | - Xin Wang
- Department of Social Medicine and Public Health, School of Basic Medicine, Jiujiang University, Jiujiang, Jiangxi, China
| |
Collapse
|
11
|
Zhang L, Liu C, Zhang B, Zheng J, Singh PK, Bshara W, Wang J, Gomez EC, Zhang X, Wang Y, Zhu X, Goodrich DW. PTEN Loss Expands the Histopathologic Diversity and Lineage Plasticity of Lung Cancers Initiated by Rb1/Trp53 Deletion. J Thorac Oncol 2023; 18:324-338. [PMID: 36473627 PMCID: PMC9974779 DOI: 10.1016/j.jtho.2022.11.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 11/07/2022] [Accepted: 11/15/2022] [Indexed: 12/12/2022]
Abstract
INTRODUCTION High-grade neuroendocrine tumors of the lung such as SCLC are recalcitrant cancers for which more effective systemic therapies are needed. Despite their histopathologic and molecular heterogeneity, they are generally treated as a single disease entity with similar chemotherapy regimens. Whereas marked clinical responses can be observed, they are short-lived. Inter- and intratumoral heterogeneity is considered a confounding factor in these unsatisfactory clinical outcomes, yet the origin of this heterogeneity and its impact on therapeutic responses is not well understood. METHODS New genetically engineered mouse models are used to test the effects of PTEN loss on the development of lung tumors initiated by Rb1 and Trp53 tumor suppressor gene deletion. RESULTS Complete PTEN loss drives more rapid tumor development with a greater diversity of tumor histopathology ranging from adenocarcinoma to SCLC. PTEN loss also drives transcriptional heterogeneity as marked lineage plasticity is observed within histopathologic subtypes. Spatial profiling indicates transcriptional heterogeneity exists both within and among tumor foci with transcriptional patterns correlating with spatial position, implying that the growth environment influences gene expression. CONCLUSIONS These results identify PTEN loss as a clinically relevant genetic alteration driving the molecular and histopathologic heterogeneity of neuroendocrine lung tumors initiated by Rb1/Trp53 mutations.
Collapse
Affiliation(s)
- Letian Zhang
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, New York; Department of Pathology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Congrong Liu
- Department of Pathology, School of Basic Medical Sciences, Peking University Third Hospital, Peking University Health Science Center, Beijing, People's Republic of China
| | - Bo Zhang
- Department of Pathology, School of Basic Medical Sciences, Peking University Third Hospital, Peking University Health Science Center, Beijing, People's Republic of China
| | - Jie Zheng
- Department of Pathology, School of Basic Medical Sciences, Peking University Third Hospital, Peking University Health Science Center, Beijing, People's Republic of China
| | - Prashant K Singh
- Department of Cancer Genetics & Genomics, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Wiam Bshara
- Department of Pathology, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Jianmin Wang
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Eduardo Cortes Gomez
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Xiaojing Zhang
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Yanqing Wang
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Xiang Zhu
- Department of Pathology, School of Basic Medical Sciences, Peking University Third Hospital, Peking University Health Science Center, Beijing, People's Republic of China
| | - David W Goodrich
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, New York.
| |
Collapse
|
12
|
Li Y, Liu L, Pan Y, Fang F, Xie T, Cheng N, Guo C, Xue X, Zeng H, Xue L. Integrated molecular characterization of esophageal basaloid squamous cell carcinoma: a subtype with distinct RNA expression pattern and immune characteristics, but no specific genetic mutations. J Pathol 2023; 259:136-148. [PMID: 36371676 DOI: 10.1002/path.6028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 10/09/2022] [Accepted: 10/31/2022] [Indexed: 11/15/2022]
Abstract
Esophageal basaloid squamous cell carcinoma (bSCC) is a subtype of squamous cell carcinoma (SCC) with a different behavior and poor prognosis. Exploring bSCC's molecular characteristics and treatment strategies are of great clinical significance. We performed multi-omics analysis of paired bSCC and common SCC (cSCC) using whole exome sequencing and a NanoString nCounter gene expression panel. Immunohistochemistry was used for verification of candidate biomarkers. Different treatment response was analyzed on both patients receiving neoadjuvant treatment and late-stage patients. The common genetically-clonal origin of bSCC and cSCC was confirmed. No significant differences between their genetic alterations or mutation spectra were observed. Mutation signature 15 (associated with defective DNA damage repair) was less prominent, and tumor mutational burden (TMB) was lower in bSCC. bSCC with an RNA expression pattern resembling cSCC had a better survival than other bSCCs. Moreover, bSCC showed significant upregulation of expression of genes associated with angiogenesis response, basement membranes, and epithelial-mesenchymal transition, and downregulation of KRT14 (squamous differentiation) and CCL21 (associated with immune response). Immunohistochemistry for SFRP1 was shown to be highly sensitive and specific for bSCC diagnosis (p < 0.001). In addition, bSCC receiving neoadjuvant immuno-chemotherapy had a worse pathological response than bSCC receiving neoadjuvant chemotherapy (but without statistical significance), even in bSCC positive for PD-L1. Our results demonstrated the molecular characteristics of esophageal bSCC as a subtype with a distinct RNA expression pattern and immune characteristics, but no specific genetic mutations. We provided a useful biomarker, SFRP1, for diagnosis. After outcome analysis for six bSCCs with neoadjuvant immunotherapy treatment and four late-stage bSCCs with immunotherapy, we found that immunotherapy may not be an effective treatment option for most bSCCs. This may also provide a clue for the same subtypes of lung and head and neck cancer. Our study highlighted the heterogeneity among bSCC patients, and might explain the conflicting results of bSCC outcomes in existing studies. © 2022 The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Yan Li
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College, Beijing, PR China
| | - Linxiu Liu
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College, Beijing, PR China.,Department of Pathology, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, PR China
| | - Yi Pan
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College, Beijing, PR China
| | - Fang Fang
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College, Beijing, PR China.,Department of Pathology, Beijing Hospital, National Center of Gerontology, Beijing, PR China
| | - Tongji Xie
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China
| | - Na Cheng
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College, Beijing, PR China
| | - Changyuan Guo
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College, Beijing, PR China
| | - Xuemin Xue
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College, Beijing, PR China
| | - Hua Zeng
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College, Beijing, PR China
| | - Liyan Xue
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College, Beijing, PR China.,Center for Cancer Precision Medicine, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China
| |
Collapse
|
13
|
Posner A, Prall OW, Sivakumaran T, Etemadamoghadam D, Thio N, Pattison A, Balachander S, Fisher K, Webb S, Wood C, DeFazio A, Wilcken N, Gao B, Karapetis CS, Singh M, Collins IM, Richardson G, Steer C, Warren M, Karanth N, Wright G, Williams S, George J, Hicks RJ, Boussioutas A, Gill AJ, Solomon BJ, Xu H, Fellowes A, Fox SB, Schofield P, Bowtell D, Mileshkin L, Tothill RW. A comparison of DNA sequencing and gene expression profiling to assist tissue of origin diagnosis in cancer of unknown primary. J Pathol 2023; 259:81-92. [PMID: 36287571 PMCID: PMC10099529 DOI: 10.1002/path.6022] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 10/02/2022] [Accepted: 10/24/2022] [Indexed: 11/11/2022]
Abstract
Cancer of unknown primary (CUP) is a syndrome defined by clinical absence of a primary cancer after standardised investigations. Gene expression profiling (GEP) and DNA sequencing have been used to predict primary tissue of origin (TOO) in CUP and find molecularly guided treatments; however, a detailed comparison of the diagnostic yield from these two tests has not been described. Here, we compared the diagnostic utility of RNA and DNA tests in 215 CUP patients (82% received both tests) in a prospective Australian study. Based on retrospective assessment of clinicopathological data, 77% (166/215) of CUPs had insufficient evidence to support TOO diagnosis (clinicopathology unresolved). The remainder had either a latent primary diagnosis (10%) or clinicopathological evidence to support a likely TOO diagnosis (13%) (clinicopathology resolved). We applied a microarray (CUPGuide) or custom NanoString 18-class GEP test to 191 CUPs with an accuracy of 91.5% in known metastatic cancers for high-medium confidence predictions. Classification performance was similar in clinicopathology-resolved CUPs - 80% had high-medium predictions and 94% were concordant with pathology. Notably, only 56% of the clinicopathology-unresolved CUPs had high-medium confidence GEP predictions. Diagnostic DNA features were interrogated in 201 CUP tumours guided by the cancer type specificity of mutations observed across 22 cancer types from the AACR Project GENIE database (77,058 tumours) as well as mutational signatures (e.g. smoking). Among the clinicopathology-unresolved CUPs, mutations and mutational signatures provided additional diagnostic evidence in 31% of cases. GEP classification was useful in only 13% of cases and oncoviral detection in 4%. Among CUPs where genomics informed TOO, lung and biliary cancers were the most frequently identified types, while kidney tumours were another identifiable subset. In conclusion, DNA and RNA profiling supported an unconfirmed TOO diagnosis in one-third of CUPs otherwise unresolved by clinicopathology assessment alone. DNA mutation profiling was the more diagnostically informative assay. © 2022 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Atara Posner
- Department of Clinical Pathology and Centre for Cancer Research, University of Melbourne, Melbourne, VIC, Australia
| | - Owen Wj Prall
- Department of Pathology, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Tharani Sivakumaran
- Department of Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, Australia
| | | | - Niko Thio
- Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Andrew Pattison
- Department of Clinical Pathology and Centre for Cancer Research, University of Melbourne, Melbourne, VIC, Australia
| | - Shiva Balachander
- Department of Clinical Pathology and Centre for Cancer Research, University of Melbourne, Melbourne, VIC, Australia
| | - Krista Fisher
- Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Samantha Webb
- Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Colin Wood
- Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Anna DeFazio
- The Westmead Institute for Medical Research, Sydney, NSW, Australia.,Department of Gynaecological Oncology, Westmead Hospital, Sydney, NSW, Australia.,The Daffodil Centre, The University of Sydney, a joint venture with Cancer Council NSW, Sydney, NSW, Australia
| | - Nicholas Wilcken
- Department of Medical Oncology, Crown Princess Mary Cancer Centre, Westmead Hospital, Sydney, NSW, Australia
| | - Bo Gao
- Department of Medical Oncology, Crown Princess Mary Cancer Centre, Westmead Hospital, Sydney, NSW, Australia
| | - Christos S Karapetis
- Department of Medical Oncology, Flinders University and Flinders Medical Centre, Adelaide, SA, Australia
| | - Madhu Singh
- Department of Medical Oncology, Barwon Health Cancer Services, Geelong, VIC, Australia
| | - Ian M Collins
- Department of Medical Oncology, SouthWest HealthCare, Warrnambool and Deakin University, Geelong, VIC, Australia
| | - Gary Richardson
- Department of Medical Oncology, Cabrini Health, Melbourne, VIC, Australia
| | - Christopher Steer
- Border Medical Oncology, Albury Wodonga Regional Cancer Centre, Albury, NSW, Australia
| | - Mark Warren
- Department of Medical Oncology, Bendigo Health, Bendigo, VIC, Australia
| | - Narayan Karanth
- Division of Medicine, Alan Walker Cancer Centre, Darwin, NT, Australia
| | - Gavin Wright
- Department of Cardiothoracic Surgery, St Vincent's Hospital, Melbourne, VIC, Australia
| | - Scott Williams
- Department of Radiation Oncology, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Joshy George
- Department of Computational Sciences, The Jackson Laboratory, Farmington, Connecticut, USA
| | - Rodney J Hicks
- The St Vincent's Hospital Department of Medicine, University of Melbourne, Melbourne, VIC, Australia
| | - Alex Boussioutas
- Department of Medicine, Royal Melbourne Hospital, University of Melbourne, Melbourne, VIC, Australia
| | - Anthony J Gill
- Cancer Diagnosis and Pathology Group, Kolling Institute of Medical, Research and Sydney Medical School, University of Sydney, Sydney, NSW, Australia
| | - Benjamin J Solomon
- Department of Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Huiling Xu
- Department of Pathology, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Andrew Fellowes
- Department of Pathology, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Stephen B Fox
- Department of Pathology, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, Australia
| | - Penelope Schofield
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, Australia.,Department of Psychology, and Iverson Health Innovation Research Institute, Swinburne University, Melbourne, VIC, Australia.,Behavioural Sciences Unit, Health Services Research and Implementation Sciences, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - David Bowtell
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, Australia.,Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Linda Mileshkin
- Department of Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, Australia
| | - Richard W Tothill
- Department of Clinical Pathology and Centre for Cancer Research, University of Melbourne, Melbourne, VIC, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
14
|
Postel MD, Culver JO, Ricker C, Craig DW. Transcriptome analysis provides critical answers to the "variants of uncertain significance" conundrum. Hum Mutat 2022; 43:1590-1608. [PMID: 35510381 PMCID: PMC9560997 DOI: 10.1002/humu.24394] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 03/16/2022] [Accepted: 04/26/2022] [Indexed: 12/30/2022]
Abstract
While whole-genome and exome sequencing have transformed our collective understanding of genetics' role in disease pathogenesis, there are certain conditions and populations for whom DNA-level data fails to identify the underlying genetic etiology. Specifically, patients of non-White race and non-European ancestry are disproportionately affected by "variants of unknown/uncertain significance" (VUS), limiting the scope of precision medicine for minority patients and perpetuating health disparities. VUS often include deep intronic and splicing variants which are difficult to interpret from DNA data alone. RNA analysis can illuminate the consequences of VUS, thereby allowing for their reclassification as pathogenic versus benign. Here we review the critical role transcriptome analysis plays in clarifying VUS in both neoplastic and non-neoplastic diseases.
Collapse
Affiliation(s)
- Mackenzie D. Postel
- Department of Translational GenomicsUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
- Keck School of Medicine of USCUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Julie O. Culver
- Keck School of Medicine of USCUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Charité Ricker
- Keck School of Medicine of USCUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - David W. Craig
- Department of Translational GenomicsUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
- Keck School of Medicine of USCUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| |
Collapse
|
15
|
Combined Large Cell Neuroendocrine Carcinomas of the Lung: Integrative Molecular Analysis Identifies Subtypes with Potential Therapeutic Implications. Cancers (Basel) 2022; 14:cancers14194653. [PMID: 36230576 PMCID: PMC9562868 DOI: 10.3390/cancers14194653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 09/18/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary In this manuscript, we offer an integrated molecular analysis of 44 combined large cell neuroendocrine carcinomas (CoLCNECs) in order to deepen the knowledge about these rare histotypes and to clarify their relationship with lung cancers. In the present state of research, molecular studies are still scant, consisting of small and heterogeneous cohorts, and the genomic landscape is poorly characterized. This study shows that CoLCNECs constitute a standalone group of neuroendocrine neoplasm, with three different molecular profiles, two of which overlap with pure LCNEC or adenocarcinoma. CoLCNECs can be considered an independent histologic category with specific genomic and transcriptomic features, different and therefore not comparable to other lung cancers. Indeed, in addition to a histological re-evaluation of lung cancer classification, our study may help to develop a new diagnostic approach for novel and personalized treatments in CoLCNECs. Abstract Background: Combined large cell neuroendocrine carcinoma (CoLCNEC) is given by the association of LCNEC with adeno or squamous or any non-neuroendocrine carcinoma. Molecular bases of CoLCNEC pathogenesis are scant and no standardized therapies are defined. Methods: 44 CoLCNECs: 26 with adenocarcinoma (CoADC), 7 with squamous cell carcinoma (CoSQC), 3 with small cell carcinoma (CoSCLC), 4 with atypical carcinoid (CoAC) and 4 napsin-A positive LCNEC (NapA+), were assessed for alterations in 409 genes and transcriptomic profiling of 20,815 genes. Results: Genes altered included TP53 (n = 30), RB1 (n = 14) and KRAS (n = 13). Targetable alterations included six KRAS G12C mutations and ALK-EML4 fusion gene. Comparison of CoLCNEC transcriptomes with 86 lung cancers of pure histology (8 AC, 19 ADC, 19 LCNEC, 11 SCLC and 29 SQC) identified CoLCNEC as a separate entity of neuroendocrine tumours with three different molecular profiles, two of which showed a non-neuroendocrine lineage. Hypomethylation, activation of MAPK signalling and association to immunotherapy signature specifically characterized each of three CoLCNEC molecular clusters. Prognostic stratification was also provided. Conclusions: CoLCNECs are an independent histologic category. Our findings support the extension of routine evaluation of KRAS mutations, fusion genes and immune-related markers to offer new perspectives in the therapeutic management of CoLCNEC.
Collapse
|
16
|
Elsakka A, Petre EN, Ridouani F, Ghosn M, Bott MJ, Husta BC, Arcila ME, Alexander E, Solomon SB, Ziv E. Percutaneous Image-Guided Biopsy for a Comprehensive Hybridization Capture-Based Next-Generation Sequencing in Primary Lung Cancer: Safety, Efficacy, and Predictors of Outcome. JTO Clin Res Rep 2022; 3:100342. [PMID: 35711720 PMCID: PMC9194869 DOI: 10.1016/j.jtocrr.2022.100342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 05/09/2022] [Accepted: 05/11/2022] [Indexed: 11/28/2022] Open
Abstract
Introduction To evaluate factors associated with successful comprehensive genomic sequencing of image-guided percutaneous needle biopsies in patients with lung cancer using a broad hybrid capture-based next-generation sequencing assay (CHCA). Methods We conducted a single-institution retrospective review of image-guided percutaneous transthoracic needle biopsies from January 2018 to December 2019. Samples with confirmed diagnosis of primary lung cancer and for which CHCA had been attempted were identified. Pathologic, clinical data and results of the CHCA were reviewed. Covariates associated with CHCA success were tested for using Fisher's exact test or Wilcoxon ranked sum test. Logistic regression was used to identify factors independently associated with likelihood of CHCA success. Results CHCA was requested for 479 samples and was successful for 433 (91%), with a median coverage depth of 659X. Factors independently associated with lower likelihood of CHCA success included small tumor size (OR = 0.26 [95% confidence interval (CI): 0.11-0.62, p = 0.002]), intraoperative inadequacy on cytologic assessment (OR = 0.18 [95% CI: 0.06-0.63, p = 0.005]), small caliber needles (≥20-gauge) (OR = 0.22 [95% CI: 0.10-0.45, p < 0.001]), and presence of lung parenchymal abnormalities (OR = 0.12 [95% CI: 0.05-0.25, p < 0.001]). Pneumothorax requiring chest tube insertion occurred in 6% of the procedures. No grade IV complications or procedure-related deaths were reported. Conclusions Percutaneous image-guided transthoracic needle biopsy is safe and has 91% success rate for CHCA in primary lung cancer. Intraoperative inadequacy, small caliber needle, presence of parenchymal abnormalities, and small tumor size (≤1 cm) are independently associated with likelihood of failure.
Collapse
Affiliation(s)
- Ahmed Elsakka
- Interventional Radiology Service, Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
- Body Imaging Service, Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Elena N. Petre
- Interventional Radiology Service, Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Fourat Ridouani
- Interventional Radiology Service, Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Mario Ghosn
- Interventional Radiology Service, Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Matthew J. Bott
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Bryan C. Husta
- Pulmonary Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Maria E. Arcila
- Molecular Diagnostics Service, Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Erica Alexander
- Interventional Radiology Service, Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Stephen B. Solomon
- Interventional Radiology Service, Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Etay Ziv
- Interventional Radiology Service, Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| |
Collapse
|
17
|
Wang Y, Chen Y, Yang Z, Qian F, Hu M, Lu J, Zhang Y, Zhang W, Wang K, Han B. Different Characteristics and Survival between Surgically Resected Pure and Combined Pulmonary Large Cell Neuroendocrine Carcinoma. Ann Surg Oncol 2022; 29:5666-5678. [PMID: 35543906 DOI: 10.1245/s10434-022-11610-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 02/16/2022] [Indexed: 12/25/2022]
Abstract
BACKGROUND Large cell neuroendocrine carcinoma (LCNEC) is a rare high-grade neuroendocrine carcinoma of the lung. Little is known about the differences between the pure and combined LCNEC subtypes, and thus we conducted this study to provide more comprehensive insight into LCNEC. METHODS We reviewed 221 patients with pure LCNEC (P-LCNEC) and 120 patients with combined LCNEC (C-LCNEC) who underwent pulmonary surgery in our hospital to compare their clinical features, driven genes' status (EGFR/ALK/ROS1/KRAS/BRAF), and adjuvant chemotherapy regimens. Propensity score matching (PSM) was applied to reduce selection bias. RESULTS The P-LCNEC group included a higher proportion of males and smokers than the C-LCNEC group. Furthermore, the C-LCNEC group had higher incidences of visceral pleural invasion (VPI), EGFR mutation and ALK rearrangement compared with the P-LCNEC group. Expression of neuroendocrine markers (CD56, CGA, and SYN) and recurrence patterns were not significantly different between the two groups. The P-LCNEC group had better disease-free survival (DFS) and overall survival (OS) compared with the C-LCNEC group (median DFS: 67.0 vs. 28.1 months, p = 0.021; median OS: 72.0 vs. 45.0 months, p = 0.001), which was further confirmed by the PSM method (p = 0.004 and p < 0.001, respectively). Adjuvant chemotherapy was also an independent factor for DFS and OS. Subgroup analysis found that regardless of whether it was for the entire LCNEC group or the P- and C-LCNEC subtypes, the small cell lung cancer (SCLC) regimens presented with superior survival compared with the non-small cell lung cancer (NSCLC) regimens. CONCLUSION P-LCNEC was associated with more favorable prognosis compared with C-LCNEC. SCLC-based adjuvant chemotherapy was more appropriate for LCNEC patients than NSCLC-based regimens, regardless of whether they were the pure or combined LCNEC subtypes. C-LCNEC patients may be the potential beneficiary of targeted therapy.
Collapse
Affiliation(s)
- Yanan Wang
- Department of Pulmonary, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Ya Chen
- Department of Pulmonary, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Zhengyu Yang
- Department of Pulmonary, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Fangfei Qian
- Department of Pulmonary, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Minjuan Hu
- Department of Pulmonary, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Jun Lu
- Department of Pulmonary, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Yanwei Zhang
- Department of Pulmonary, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Wei Zhang
- Department of Pulmonary, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Kai Wang
- Central Laboratory, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China.
| | - Baohui Han
- Department of Pulmonary, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
18
|
Comprehensive Characterization of Human Lung Large Cell Carcinoma Identifies Transcriptomic Signatures with Potential Implications in Response to Immunotherapy. J Clin Med 2022; 11:jcm11061500. [PMID: 35329826 PMCID: PMC8953709 DOI: 10.3390/jcm11061500] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 03/02/2022] [Accepted: 03/04/2022] [Indexed: 01/27/2023] Open
Abstract
Lung cancer is the leading cause of cancer mortality worldwide, with non-small cell lung cancer (NSCLC) being the most prevalent histology. While immunotherapy with checkpoint inhibitors has shown outstanding results in NSCLC, the precise identification of responders remains a major challenge. Most studies attempting to overcome this handicap have focused on adenocarcinomas or squamous cell carcinomas. Among NSCLC subtypes, the molecular and immune characteristics of lung large cell carcinoma (LCC), which represents 10% of NSCLC cases, are not well defined. We hypothesized that specific molecular aberrations may impact the immune microenvironment in LCC and, consequently, the response to immunotherapy. To that end, it is particularly relevant to thoroughly describe the molecular genotype-immunophenotype association in LCC-to identify robust predictive biomarkers and improve potential benefits from immunotherapy. We established a cohort of 18 early-stage, clinically annotated, LCC cases. Their molecular and immune features were comprehensively characterized by genomic and immune-targeted sequencing panels along with immunohistochemistry of immune cell populations. Unbiased clustering defined two novel subgroups of LCC. Pro-immunogenic tumors accumulated certain molecular alterations, showed higher immune infiltration and upregulated genes involved in potentiating immune responses when compared to pro-tumorigenic samples, which favored tumoral progression. This classification identified a set of biomarkers that could potentially predict response to immunotherapy. These results could improve patient selection and expand potential benefits from immunotherapy.
Collapse
|