1
|
Powell J, Jolly SW, Vallières S, Fillion-Gourdeau F, Payeur S, Fourmaux S, Lytova M, Piché M, Ibrahim H, MacLean S, Légaré F. Relativistic Electrons from Vacuum Laser Acceleration Using Tightly Focused Radially Polarized Beams. PHYSICAL REVIEW LETTERS 2024; 133:155001. [PMID: 39454181 DOI: 10.1103/physrevlett.133.155001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 06/26/2024] [Accepted: 08/07/2024] [Indexed: 10/27/2024]
Abstract
We generate a tabletop pulsed relativistic electron beam at 100 Hz repetition rate from vacuum laser acceleration by tightly focusing a radially polarized beam into a low-density gas. We demonstrate that strong longitudinal electric fields at the focus can accelerate electrons up to 1.43 MeV by using only 98 GW of peak laser power. The electron energy is measured as a function of laser intensity and gas species, revealing a strong dependence on the atomic ionization dynamics. These experimental results are supported by numerical simulations of particle dynamics in a tightly focused configuration that take ionization into consideration. For the range of intensities considered, it is demonstrated that atoms with higher atomic numbers like krypton can favorably inject electrons at the peak of the laser field, resulting in higher energies and an efficient acceleration mechanism that reaches a significant fraction (≈14%) of the theoretical energy gain limit.
Collapse
Affiliation(s)
- Jeffrey Powell
- Advanced Laser Light Source (ALLS) at INRS-EMT, 1650 boulevard Lionel-Boulet, Varennes, QC J3X 1P7, Canada
| | | | - Simon Vallières
- Advanced Laser Light Source (ALLS) at INRS-EMT, 1650 boulevard Lionel-Boulet, Varennes, QC J3X 1P7, Canada
| | - François Fillion-Gourdeau
- Advanced Laser Light Source (ALLS) at INRS-EMT, 1650 boulevard Lionel-Boulet, Varennes, QC J3X 1P7, Canada
- Infinite Potential Laboratories, Waterloo, Ontario N2L 0A9, Canada
| | - Stéphane Payeur
- Advanced Laser Light Source (ALLS) at INRS-EMT, 1650 boulevard Lionel-Boulet, Varennes, QC J3X 1P7, Canada
| | - Sylvain Fourmaux
- Advanced Laser Light Source (ALLS) at INRS-EMT, 1650 boulevard Lionel-Boulet, Varennes, QC J3X 1P7, Canada
| | - Marianna Lytova
- Advanced Laser Light Source (ALLS) at INRS-EMT, 1650 boulevard Lionel-Boulet, Varennes, QC J3X 1P7, Canada
| | | | - Heide Ibrahim
- Advanced Laser Light Source (ALLS) at INRS-EMT, 1650 boulevard Lionel-Boulet, Varennes, QC J3X 1P7, Canada
| | - Steve MacLean
- Advanced Laser Light Source (ALLS) at INRS-EMT, 1650 boulevard Lionel-Boulet, Varennes, QC J3X 1P7, Canada
- Infinite Potential Laboratories, Waterloo, Ontario N2L 0A9, Canada
| | - François Légaré
- Advanced Laser Light Source (ALLS) at INRS-EMT, 1650 boulevard Lionel-Boulet, Varennes, QC J3X 1P7, Canada
| |
Collapse
|
2
|
Valenta P, Maslarova D, Babjak R, Martinez B, Bulanov SV, Vranić M. Direct laser acceleration: A model for the electron injection from the walls of a cylindrical guiding structure. Phys Rev E 2024; 109:065204. [PMID: 39020949 DOI: 10.1103/physreve.109.065204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 05/08/2024] [Indexed: 07/20/2024]
Abstract
We use analytical methods and particle-in-cell simulation to investigate the origin of electrons accelerated by the process of direct laser acceleration driven by high-power laser pulses in preformed narrow cylindrical plasma channels. The simulation shows that the majority of accelerated electrons are originally located along the interface between the channel wall and the channel interior. The analytical model based on the electron hydrodynamics illustrates the underlying physical mechanism of the release of electrons from the channel wall when irradiated by an intense laser, the subsequent electron dynamics, and the corresponding evolution of the channel density profile. The quantitative predictions of the total charge of released electrons and the average electron density inside the channel are validated by comparison with the simulation results.
Collapse
|
3
|
Dover NP, Ziegler T, Assenbaum S, Bernert C, Bock S, Brack FE, Cowan TE, Ditter EJ, Garten M, Gaus L, Goethel I, Hicks GS, Kiriyama H, Kluge T, Koga JK, Kon A, Kondo K, Kraft S, Kroll F, Lowe HF, Metzkes-Ng J, Miyatake T, Najmudin Z, Püschel T, Rehwald M, Reimold M, Sakaki H, Schlenvoigt HP, Shiokawa K, Umlandt MEP, Schramm U, Zeil K, Nishiuchi M. Enhanced ion acceleration from transparency-driven foils demonstrated at two ultraintense laser facilities. LIGHT, SCIENCE & APPLICATIONS 2023; 12:71. [PMID: 36914618 PMCID: PMC10011581 DOI: 10.1038/s41377-023-01083-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 01/16/2023] [Accepted: 01/30/2023] [Indexed: 06/18/2023]
Abstract
Laser-driven ion sources are a rapidly developing technology producing high energy, high peak current beams. Their suitability for applications, such as compact medical accelerators, motivates development of robust acceleration schemes using widely available repetitive ultraintense femtosecond lasers. These applications not only require high beam energy, but also place demanding requirements on the source stability and controllability. This can be seriously affected by the laser temporal contrast, precluding the replication of ion acceleration performance on independent laser systems with otherwise similar parameters. Here, we present the experimental generation of >60 MeV protons and >30 MeV u-1 carbon ions from sub-micrometre thickness Formvar foils irradiated with laser intensities >1021 Wcm2. Ions are accelerated by an extreme localised space charge field ≳30 TVm-1, over a million times higher than used in conventional accelerators. The field is formed by a rapid expulsion of electrons from the target bulk due to relativistically induced transparency, in which relativistic corrections to the refractive index enables laser transmission through normally opaque plasma. We replicate the mechanism on two different laser facilities and show that the optimum target thickness decreases with improved laser contrast due to reduced pre-expansion. Our demonstration that energetic ions can be accelerated by this mechanism at different contrast levels relaxes laser requirements and indicates interaction parameters for realising application-specific beam delivery.
Collapse
Affiliation(s)
- Nicholas P Dover
- Kansai Photon Science Institute, National Institutes for Quantum Science and Technology, 8-1-7 Umemidai, Kizugawa, Kyoto, 619-0215, Japan
- The John Adams Institute for Accelerator Science, Blackett Laboratory, Imperial College London, London, SW7 2AZ, United Kingdom
| | - Tim Ziegler
- Helmholtz-Zentrum Dresden-Rossendorf, 01328, Dresden, Germany
- Technische Universität Dresden, 01069, Dresden, Germany
| | - Stefan Assenbaum
- Helmholtz-Zentrum Dresden-Rossendorf, 01328, Dresden, Germany
- Technische Universität Dresden, 01069, Dresden, Germany
| | - Constantin Bernert
- Helmholtz-Zentrum Dresden-Rossendorf, 01328, Dresden, Germany
- Technische Universität Dresden, 01069, Dresden, Germany
| | - Stefan Bock
- Helmholtz-Zentrum Dresden-Rossendorf, 01328, Dresden, Germany
| | - Florian-Emanuel Brack
- Helmholtz-Zentrum Dresden-Rossendorf, 01328, Dresden, Germany
- Technische Universität Dresden, 01069, Dresden, Germany
| | - Thomas E Cowan
- Helmholtz-Zentrum Dresden-Rossendorf, 01328, Dresden, Germany
- Technische Universität Dresden, 01069, Dresden, Germany
| | - Emma J Ditter
- The John Adams Institute for Accelerator Science, Blackett Laboratory, Imperial College London, London, SW7 2AZ, United Kingdom
| | - Marco Garten
- Helmholtz-Zentrum Dresden-Rossendorf, 01328, Dresden, Germany
- Technische Universität Dresden, 01069, Dresden, Germany
| | - Lennart Gaus
- Helmholtz-Zentrum Dresden-Rossendorf, 01328, Dresden, Germany
- Technische Universität Dresden, 01069, Dresden, Germany
| | - Ilja Goethel
- Helmholtz-Zentrum Dresden-Rossendorf, 01328, Dresden, Germany
- Technische Universität Dresden, 01069, Dresden, Germany
| | - George S Hicks
- The John Adams Institute for Accelerator Science, Blackett Laboratory, Imperial College London, London, SW7 2AZ, United Kingdom
| | - Hiromitsu Kiriyama
- Kansai Photon Science Institute, National Institutes for Quantum Science and Technology, 8-1-7 Umemidai, Kizugawa, Kyoto, 619-0215, Japan
| | - Thomas Kluge
- Helmholtz-Zentrum Dresden-Rossendorf, 01328, Dresden, Germany
| | - James K Koga
- Kansai Photon Science Institute, National Institutes for Quantum Science and Technology, 8-1-7 Umemidai, Kizugawa, Kyoto, 619-0215, Japan
| | - Akira Kon
- Kansai Photon Science Institute, National Institutes for Quantum Science and Technology, 8-1-7 Umemidai, Kizugawa, Kyoto, 619-0215, Japan
| | - Kotaro Kondo
- Kansai Photon Science Institute, National Institutes for Quantum Science and Technology, 8-1-7 Umemidai, Kizugawa, Kyoto, 619-0215, Japan
| | - Stephan Kraft
- Helmholtz-Zentrum Dresden-Rossendorf, 01328, Dresden, Germany
| | - Florian Kroll
- Helmholtz-Zentrum Dresden-Rossendorf, 01328, Dresden, Germany
| | - Hazel F Lowe
- Kansai Photon Science Institute, National Institutes for Quantum Science and Technology, 8-1-7 Umemidai, Kizugawa, Kyoto, 619-0215, Japan
| | | | - Tatsuhiko Miyatake
- Kansai Photon Science Institute, National Institutes for Quantum Science and Technology, 8-1-7 Umemidai, Kizugawa, Kyoto, 619-0215, Japan
- Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, 6-1, Kasuga-Koen, Kasuga, Fukuoka, 816-8580, Japan
| | - Zulfikar Najmudin
- The John Adams Institute for Accelerator Science, Blackett Laboratory, Imperial College London, London, SW7 2AZ, United Kingdom
| | - Thomas Püschel
- Helmholtz-Zentrum Dresden-Rossendorf, 01328, Dresden, Germany
| | - Martin Rehwald
- Helmholtz-Zentrum Dresden-Rossendorf, 01328, Dresden, Germany
- Technische Universität Dresden, 01069, Dresden, Germany
| | - Marvin Reimold
- Helmholtz-Zentrum Dresden-Rossendorf, 01328, Dresden, Germany
- Technische Universität Dresden, 01069, Dresden, Germany
| | - Hironao Sakaki
- Kansai Photon Science Institute, National Institutes for Quantum Science and Technology, 8-1-7 Umemidai, Kizugawa, Kyoto, 619-0215, Japan
- Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, 6-1, Kasuga-Koen, Kasuga, Fukuoka, 816-8580, Japan
| | | | - Keiichiro Shiokawa
- Kansai Photon Science Institute, National Institutes for Quantum Science and Technology, 8-1-7 Umemidai, Kizugawa, Kyoto, 619-0215, Japan
- Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, 6-1, Kasuga-Koen, Kasuga, Fukuoka, 816-8580, Japan
| | - Marvin E P Umlandt
- Helmholtz-Zentrum Dresden-Rossendorf, 01328, Dresden, Germany
- Technische Universität Dresden, 01069, Dresden, Germany
| | - Ulrich Schramm
- Helmholtz-Zentrum Dresden-Rossendorf, 01328, Dresden, Germany
- Technische Universität Dresden, 01069, Dresden, Germany
| | - Karl Zeil
- Helmholtz-Zentrum Dresden-Rossendorf, 01328, Dresden, Germany.
| | - Mamiko Nishiuchi
- Kansai Photon Science Institute, National Institutes for Quantum Science and Technology, 8-1-7 Umemidai, Kizugawa, Kyoto, 619-0215, Japan.
| |
Collapse
|