1
|
Barnieh FM, Morais GR, Loadman PM, Falconer RA, El‐Khamisy SF. Hypoxia-Responsive Prodrug of ATR Inhibitor, AZD6738, Selectively Eradicates Treatment-Resistant Cancer Cells. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2403831. [PMID: 38976561 PMCID: PMC11425890 DOI: 10.1002/advs.202403831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/31/2024] [Indexed: 07/10/2024]
Abstract
Targeted therapy remains the future of anti-cancer drug development, owing to the lack of specificity of current treatments which lead to damage in healthy normal tissues. ATR inhibitors have in recent times demonstrated promising clinical potential, and are currently being evaluated in the clinic. However, despite the considerable optimism for clinical success of these inhibitors, reports of associated normal tissues toxicities remain a concern and can compromise their utility. Here, ICT10336 is reported, a newly developed hypoxia-responsive prodrug of ATR inhibitor, AZD6738, which is hypoxia-activated and specifically releases AZD6738 only in hypoxic conditions, in vitro. This hypoxia-selective release of AZD6738 inhibited ATR activation (T1989 and S428 phosphorylation) and subsequently abrogated HIF1a-mediated adaptation of hypoxic cancers cells, thus selectively inducing cell death in 2D and 3D cancer models. Importantly, in normal tissues, ICT10336 is demonstrated to be metabolically stable and less toxic to normal cells than its active parent agent, AZD6738. In addition, ICT10336 exhibited a superior and efficient multicellular penetration ability in 3D tumor models, and selectively eradicated cells at the hypoxic core compared to AZD6738. In summary, the preclinical data demonstrate a new strategy of tumor-targeted delivery of ATR inhibitors with significant potential of enhancing the therapeutic index.
Collapse
Affiliation(s)
- Francis M. Barnieh
- Institute of Cancer TherapeuticsFaculty of Life SciencesUniversity of BradfordRichmond RoadBradfordBD7 1DPUnited Kingdom
| | - Goreti Ribeiro Morais
- Institute of Cancer TherapeuticsFaculty of Life SciencesUniversity of BradfordRichmond RoadBradfordBD7 1DPUnited Kingdom
| | - Paul M. Loadman
- Institute of Cancer TherapeuticsFaculty of Life SciencesUniversity of BradfordRichmond RoadBradfordBD7 1DPUnited Kingdom
| | - Robert A. Falconer
- Institute of Cancer TherapeuticsFaculty of Life SciencesUniversity of BradfordRichmond RoadBradfordBD7 1DPUnited Kingdom
| | - Sherif F. El‐Khamisy
- Institute of Cancer TherapeuticsFaculty of Life SciencesUniversity of BradfordRichmond RoadBradfordBD7 1DPUnited Kingdom
- School of Biosciences, the Healthy Lifespan Institute and the Institute of NeuroscienceUniversity of SheffieldSheffieldS10 2TNUnited Kingdom
| |
Collapse
|
2
|
Walter Jackson Iii, Yang Y, Salman S, Dordai D, Lyu Y, Datan E, Drehmer D, Huang TYT, Hwang Y, Semenza GL. Pharmacologic HIF stabilization activates costimulatory receptor expression to increase antitumor efficacy of adoptive T cell therapy. SCIENCE ADVANCES 2024; 10:eadq2366. [PMID: 39196939 DOI: 10.1126/sciadv.adq2366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 07/23/2024] [Indexed: 08/30/2024]
Abstract
Adoptive cell transfer (ACT) is a therapeutic strategy to augment antitumor immunity. Here, we report that ex vivo treatment of mouse CD8+ T cells with dimethyloxalylglycine (DMOG), a stabilizer of hypoxia-inducible factors (HIFs), induced HIF binding to the genes encoding the costimulatory receptors CD81, GITR, OX40, and 4-1BB, leading to increased expression. DMOG treatment increased T cell killing of melanoma cells, which was further augmented by agonist antibodies targeting each costimulatory receptor. In tumor-bearing mice, ACT using T cells treated ex vivo with DMOG and agonist antibodies resulted in decreased tumor growth compared to ACT using control T cells and increased intratumoral markers of CD8+ T cells (CD7, CD8A, and CD8B1), natural killer cells (NCR1 and KLRK1), and cytolytic activity (perforin-1 and tumor necrosis factor-α). Costimulatory receptor gene expression was also induced when CD8+ T cells were treated with three highly selective HIF stabilizers that are currently in clinical use.
Collapse
MESH Headings
- Animals
- Mice
- Immunotherapy, Adoptive/methods
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/metabolism
- CD8-Positive T-Lymphocytes/drug effects
- Amino Acids, Dicarboxylic/pharmacology
- Cell Line, Tumor
- Receptors, OX40/metabolism
- Glucocorticoid-Induced TNFR-Related Protein/metabolism
- Tumor Necrosis Factor Receptor Superfamily, Member 9/metabolism
- Mice, Inbred C57BL
- Melanoma, Experimental/therapy
- Melanoma, Experimental/immunology
- Hypoxia-Inducible Factor 1, alpha Subunit/metabolism
- Hypoxia-Inducible Factor 1, alpha Subunit/genetics
- Cytotoxicity, Immunologic/drug effects
Collapse
Affiliation(s)
- Walter Jackson Iii
- Armstrong Oxygen Biology Research Center and Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Yongkang Yang
- Armstrong Oxygen Biology Research Center and Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD 21205, USA
| | - Shaima Salman
- Armstrong Oxygen Biology Research Center and Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Dominic Dordai
- Armstrong Oxygen Biology Research Center and Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Yajing Lyu
- Armstrong Oxygen Biology Research Center and Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Emmanuel Datan
- Armstrong Oxygen Biology Research Center and Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Daiana Drehmer
- Armstrong Oxygen Biology Research Center and Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Tina Yi-Ting Huang
- Armstrong Oxygen Biology Research Center and Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Yousang Hwang
- Armstrong Oxygen Biology Research Center and Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Gregg L Semenza
- Armstrong Oxygen Biology Research Center and Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD 21205, USA
| |
Collapse
|
3
|
Capatina AL, Malcolm JR, Stenning J, Moore RL, Bridge KS, Brackenbury WJ, Holding AN. Hypoxia-induced epigenetic regulation of breast cancer progression and the tumour microenvironment. Front Cell Dev Biol 2024; 12:1421629. [PMID: 39282472 PMCID: PMC11392762 DOI: 10.3389/fcell.2024.1421629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 08/19/2024] [Indexed: 09/19/2024] Open
Abstract
The events that control breast cancer progression and metastasis are complex and intertwined. Hypoxia plays a key role both in oncogenic transformation and in fueling the metastatic potential of breast cancer cells. Here we review the impact of hypoxia on epigenetic regulation of breast cancer, by interfering with multiple aspects of the tumour microenvironment. The co-dependent relationship between oxygen depletion and metabolic shift to aerobic glycolysis impacts on a range of enzymes and metabolites available in the cell, promoting posttranslational modifications of histones and chromatin, and changing the gene expression landscape to facilitate tumour development. Hormone signalling, particularly through ERα, is also tightly regulated by hypoxic exposure, with HIF-1α expression being a prognostic marker for therapeutic resistance in ER+ breast cancers. This highlights the strong need to understand the hypoxia-endocrine signalling axis and exploit it as a therapeutic target. Furthermore, hypoxia has been shown to enhance metastasis in TNBC cells, as well as promoting resistance to taxanes, radiotherapy and even immunotherapy through microRNA regulation and changes in histone packaging. Finally, several other mediators of the hypoxic response are discussed. We highlight a link between ionic dysregulation and hypoxia signalling, indicating a potential connection between HIF-1α and tumoural Na+ accumulation which would be worth further exploration; we present the role of Ca2+ in mediating hypoxic adaptation via chromatin remodelling, transcription factor recruitment and changes in signalling pathways; and we briefly summarise some of the findings regarding vesicle secretion and paracrine induced epigenetic reprogramming upon hypoxic exposure in breast cancer. By summarising these observations, this article highlights the heterogeneity of breast cancers, presenting a series of pathways with potential for therapeutic applications.
Collapse
Affiliation(s)
| | - Jodie R Malcolm
- Department of Biology, University of York, York, United Kingdom
| | - Jack Stenning
- Department of Biology, University of York, York, United Kingdom
| | - Rachael L Moore
- York Biomedical Research Institute, University of York, York, United Kingdom
| | - Katherine S Bridge
- Department of Biology, University of York, York, United Kingdom
- York Biomedical Research Institute, University of York, York, United Kingdom
| | - William J Brackenbury
- Department of Biology, University of York, York, United Kingdom
- York Biomedical Research Institute, University of York, York, United Kingdom
| | - Andrew N Holding
- Department of Biology, University of York, York, United Kingdom
- York Biomedical Research Institute, University of York, York, United Kingdom
| |
Collapse
|
4
|
Kang Z, Yu Y. Research progress on the application of Chinese herbal medicine in anal fistula surgery. Am J Transl Res 2024; 16:3519-3533. [PMID: 39262715 PMCID: PMC11384414 DOI: 10.62347/dzhk5180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 07/07/2024] [Indexed: 09/13/2024]
Abstract
Anal fistula is a rapidly developing anorectal disease that can lead to anal dysfunction if left untreated. Minimally invasive surgery is an important treatment option for anal fistula, as it can reduce the risk of anal sphincter injury and protect anal function. However, postoperative complications such as infection, pain, bleeding, edema, and fat liquefaction can occur, resulting in slow wound healing thus negatively impacting the patient's quality of life. Recent studies have shown that Chinese herbal therapy has distinct pharmacological effects and is more effective in treating postoperative complications in anal fistula patients compared to conventional drug therapy. It not only promotes wound healing but also reduces the occurrence of complications. Chinese herbs can also modulate relevant signaling pathways such as PI3K/Akt, HIF-1, and TGF-β/Smad to enhance the wound healing process. Various methods of Chinese herbal medicine (CHM) have been used to treat post-anal fistula operation wounds, including traditional Chinese medicine (TCM) sitz baths, external application of TCM, internal administration of TCM, anal absorption, and acupuncture, all of which have shown promising therapeutic effects in clinical practice. This article aims to review the theory and clinical application of CHM in anal fistula surgery in recent years and provide valuable references for its treatment.
Collapse
Affiliation(s)
- Zhanshuo Kang
- First Clinical College, Liaoning University of Traditional Chinese Medicine Shenyang 110032, Liaoning, China
| | - Yongduo Yu
- The Second Affiliated Hospital of Liaoning University of Traditional Chinese Medicine Shenyang 110034, Liaoning, China
| |
Collapse
|
5
|
Camfield S, Chakraborty S, Dwivedi SKD, Pramanik PK, Mukherjee P, Bhattacharya R. Secrets of DNA-PKcs beyond DNA repair. NPJ Precis Oncol 2024; 8:154. [PMID: 39043779 PMCID: PMC11266574 DOI: 10.1038/s41698-024-00655-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 07/15/2024] [Indexed: 07/25/2024] Open
Abstract
The canonical role of the DNA-dependent protein kinase catalytic subunit (DNA-PKcs) in repairing DNA double-strand breaks combined with its reported dysregulation in several malignancies has driven the development of DNA-PKcs inhibitors as therapeutics. However, until recently the relationship between DNA-PKcs and tumorigenesis has been primarily investigated with regard to its role in non-homologous end joining (NHEJ) repair. Emerging research has uncovered non-canonical DNA-PKcs functions involved with transcriptional regulation, telomere maintenance, metabolic regulation, and immune signaling all of which may also impinge on tumorigenesis. This review mainly discusses these non-canonical roles of DNA-PKcs in cellular biology and their potential contribution to tumorigenesis, as well as evaluating the implications of targeting DNA-PKcs for cancer therapy.
Collapse
Affiliation(s)
- Sydney Camfield
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Sayan Chakraborty
- Department of Obstetrics and Gynecology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Shailendra Kumar Dhar Dwivedi
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Department of Obstetrics and Gynecology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Pijush Kanti Pramanik
- Department of Obstetrics and Gynecology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Priyabrata Mukherjee
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Resham Bhattacharya
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
- Department of Obstetrics and Gynecology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
- Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
| |
Collapse
|
6
|
Li K, Wang H, Jiang B, Jin X. TRIM28 in cancer and cancer therapy. Front Genet 2024; 15:1431564. [PMID: 39100077 PMCID: PMC11294089 DOI: 10.3389/fgene.2024.1431564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 07/01/2024] [Indexed: 08/06/2024] Open
Abstract
TRIM28 (tripartite motif protein 28) was initially believed to be a transcription inhibitor that plays an important role in DNA damage repair (DDR) and in maintaining cancer cellular stemness. As research has continued to deepen, several studies have found that TRIM28 not only has ubiquitin E3 ligase activity to promote degradation of substrates, but also can promote SUMOylation of substrates. Although TRIM28 is highly expressed in various cancer tissues and has oncogenic effects, there are still a few studies indicating that TRIM28 has certain anticancer effects. Additionally, TRIM28 is subject to complex upstream regulation. In this review, we have elaborated on the structure and regulation of TRIM28. At the same time, highlighting the functional role of TRIM28 in tumor development and emphasizing its impact on cancer treatment provides a new direction for future clinical antitumor treatment.
Collapse
Affiliation(s)
- Kailang Li
- Department of Oncology and Hematology, Beilun District People’s Hospital, Ningbo, China
| | - Haifeng Wang
- Department of Oncology and Hematology, Beilun District People’s Hospital, Ningbo, China
| | - Bitao Jiang
- Department of Oncology and Hematology, Beilun District People’s Hospital, Ningbo, China
| | - Xiaofeng Jin
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathphysiology, Medical School of Ningbo University, Ningbo, China
| |
Collapse
|
7
|
Hyder U, Challa A, Thornton M, Nandu T, Kraus WL, D'Orso I. KAP1 negatively regulates RNA polymerase II elongation kinetics to activate signal-induced transcription. Nat Commun 2024; 15:5859. [PMID: 38997286 PMCID: PMC11245487 DOI: 10.1038/s41467-024-49905-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 06/20/2024] [Indexed: 07/14/2024] Open
Abstract
Signal-induced transcriptional programs regulate critical biological processes through the precise spatiotemporal activation of Immediate Early Genes (IEGs); however, the mechanisms of transcription induction remain poorly understood. By combining an acute depletion system with several genomics approaches to interrogate synchronized, temporal transcription, we reveal that KAP1/TRIM28 is a first responder that fulfills the temporal and heightened transcriptional demand of IEGs. Acute KAP1 loss triggers an increase in RNA polymerase II elongation kinetics during early stimulation time points. This elongation defect derails the normal progression through the transcriptional cycle during late stimulation time points, ultimately leading to decreased recruitment of the transcription apparatus for re-initiation thereby dampening IEGs transcriptional output. Collectively, KAP1 plays a counterintuitive role by negatively regulating transcription elongation to support full activation across multiple transcription cycles of genes critical for cell physiology and organismal functions.
Collapse
Affiliation(s)
- Usman Hyder
- Department of Microbiology, The University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Ashwini Challa
- Department of Microbiology, The University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Micah Thornton
- Laboratory of Signaling and Gene Regulation, Cecil H. and Ida Green Center for Reproductive Biology Sciences, The University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Tulip Nandu
- Laboratory of Signaling and Gene Regulation, Cecil H. and Ida Green Center for Reproductive Biology Sciences, The University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - W Lee Kraus
- Laboratory of Signaling and Gene Regulation, Cecil H. and Ida Green Center for Reproductive Biology Sciences, The University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Iván D'Orso
- Department of Microbiology, The University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
| |
Collapse
|
8
|
Bhaduri-McIntosh S, Rousseau BA. KAP1/TRIM28 - antiviral and proviral protagonist of herpesvirus biology. Trends Microbiol 2024:S0966-842X(24)00138-0. [PMID: 38871562 DOI: 10.1016/j.tim.2024.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/19/2024] [Accepted: 05/21/2024] [Indexed: 06/15/2024]
Abstract
Dysregulation of the constitutive heterochromatin machinery (HCM) that silences pericentromeric regions and endogenous retroviral elements in the human genome has consequences for aging and cancer. By recruiting epigenetic regulators, Krüppel-associated box (KRAB)-associated protein 1 (KAP1/TRIM28/TIF1β) is integral to the function of the HCM. Epigenetically silencing DNA genomes of incoming herpesviruses to enforce latency, KAP1 and HCM also serve in an antiviral capacity. In addition to gene silencing, newer reports highlight KAP1's ability to directly activate cellular gene transcription. Here, we discuss the many facets of KAP1, including recent findings that unexpectedly connect KAP1 to the inflammasome, reveal KAP1 cleavage as a novel mode of regulation, and argue for a pro-herpesviral KAP1 function that ensures transition from transcription to replication of the herpesvirus genome.
Collapse
Affiliation(s)
- Sumita Bhaduri-McIntosh
- Division of Infectious Diseases, Department of Pediatrics, University of Florida, Gainesville, FL, USA; Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL, USA.
| | - Beth A Rousseau
- Division of Infectious Diseases, Department of Pediatrics, University of Florida, Gainesville, FL, USA
| |
Collapse
|
9
|
Li D, Cheng J, Zhang W, Zhang L, Maghsoudloo M, Fu J, Liu X, Xiao X, Wei C, Fu J. Tripartite motif-containing 28 (TRIM28) expression and cordycepin inhibition in progression, prognosis, and therapeutics of patients with breast invasive carcinoma. J Cancer 2024; 15:4374-4385. [PMID: 38947392 PMCID: PMC11212093 DOI: 10.7150/jca.95876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 05/12/2024] [Indexed: 07/02/2024] Open
Abstract
Breast cancer (BC) is the most common tumor in women worldwide. TRIM28 (RNF96) plays pleiotropic biological functions, such as silencing target genes, facilitating DNA repair, stimulating cellular proliferation and differentiation, and contributing to cancer progression. TRIM28 plays an increasingly crucial role in cancer, but its impact on BC, including breast invasive carcinoma, remains poorly understood. In the current study, analyses of online databases, quantitative real-time quantitative PCR, immunohistochemistry, and western blotting were performed on patients with breast invasive carcinoma (BRCA). Cordycepin (CD) was used to monitor BC progression and TRIM28 expression in vivo. As a result, we observed that TRIM28 is highly expressed in breast invasive carcinoma tissues compared with the corresponding normal tissues and is correlated with metastatic / invasive progression. High expression of TRIM28 might serve as a prognostic marker for long-term survival in triple-negative BC, advanced BC, or breast invasive carcinoma. Although TRIM28 methylation in tumor tissues of breast invasive carcinoma is not significantly changed compared to the matched normal tissues, the expressions and methylation of TRIM28 are significantly reversely correlated. TRIM28 expression was inhibited by CD in the mouse model, indicating its role in preventing BC progression. Thus, TRIM28 might be a potentially valuable molecular target for forecasting the progression / prognosis of patients with breast invasive carcinoma. CD, which represses BC growth/metastasis, may be involved partially through suppressing TRIM28 expression.
Collapse
Affiliation(s)
- Dabing Li
- Key Laboratory of Epigenetics and Oncology, the Research Center for Preclinical Medicine, Southwest Medical University, Luzhou 646000, Sichuan Province, China
- School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, Sichuan Province, China
| | - Jingliang Cheng
- Key Laboratory of Epigenetics and Oncology, the Research Center for Preclinical Medicine, Southwest Medical University, Luzhou 646000, Sichuan Province, China
| | - Wenqian Zhang
- Key Laboratory of Epigenetics and Oncology, the Research Center for Preclinical Medicine, Southwest Medical University, Luzhou 646000, Sichuan Province, China
| | - Lianmei Zhang
- Key Laboratory of Epigenetics and Oncology, the Research Center for Preclinical Medicine, Southwest Medical University, Luzhou 646000, Sichuan Province, China
- Department of Pathology, The Affiliated Huai'an No. 1 People's Hospital of Nanjing Medical University, Huai'an 223300, Jiangsu Province, China
| | - Mazaher Maghsoudloo
- Key Laboratory of Epigenetics and Oncology, the Research Center for Preclinical Medicine, Southwest Medical University, Luzhou 646000, Sichuan Province, China
| | - Jiewen Fu
- Key Laboratory of Epigenetics and Oncology, the Research Center for Preclinical Medicine, Southwest Medical University, Luzhou 646000, Sichuan Province, China
- School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, Sichuan Province, China
| | - Xiaoyan Liu
- Key Laboratory of Epigenetics and Oncology, the Research Center for Preclinical Medicine, Southwest Medical University, Luzhou 646000, Sichuan Province, China
| | - Xiuli Xiao
- Key Laboratory of Epigenetics and Oncology, the Research Center for Preclinical Medicine, Southwest Medical University, Luzhou 646000, Sichuan Province, China
- Department of Pathology, the Affiliated Hospital, Southwest Medical University, Luzhou 646000, Sichuan Province, China
| | - Chunli Wei
- Key Laboratory of Epigenetics and Oncology, the Research Center for Preclinical Medicine, Southwest Medical University, Luzhou 646000, Sichuan Province, China
| | - Junjiang Fu
- Key Laboratory of Epigenetics and Oncology, the Research Center for Preclinical Medicine, Southwest Medical University, Luzhou 646000, Sichuan Province, China
| |
Collapse
|
10
|
Seasons GM, Pellow C, Kuipers HF, Pike GB. Ultrasound and neuroinflammation: immune modulation via the heat shock response. Theranostics 2024; 14:3150-3177. [PMID: 38855178 PMCID: PMC11155413 DOI: 10.7150/thno.96270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 05/09/2024] [Indexed: 06/11/2024] Open
Abstract
Current pharmacological therapeutic approaches targeting chronic inflammation exhibit transient efficacy, often with adverse effects, limiting their widespread use - especially in the context of neuroinflammation. Effective interventions require the consideration of homeostatic function, pathway dysregulation, and pleiotropic effects when evaluating therapeutic targets. Signalling molecules have multiple functions dependent on the immune context, and this complexity results in therapeutics targeting a single signalling molecule often failing in clinical translation. Additionally, the administration of non-physiologic levels of neurotrophic or anti-inflammatory factors can alter endogenous signalling, resulting in unanticipated effects. Exacerbating these challenges, the central nervous system (CNS) is isolated by the blood brain barrier (BBB), restricting the infiltration of many pharmaceutical compounds into the brain tissue. Consequently, there has been marked interest in therapeutic techniques capable of modulating the immune response in a pleiotropic manner; ultrasound remains on this frontier. While ultrasound has been used therapeutically in peripheral tissues - accelerating healing in wounds, bone fractures, and reducing inflammation - it is only recently that it has been applied to the CNS. The transcranial application of low intensity pulsed ultrasound (LIPUS) has successfully mitigated neuroinflammation in vivo, in models of neurodegenerative disease across a broad spectrum of ultrasound parameters. To date, the underlying biological effects and signalling pathways modulated by ultrasound are poorly understood, with a diverse array of reported molecules implicated. The distributed nature of the beneficial response to LIPUS implies the involvement of an, as yet, undetermined upstream signalling pathway, homologous to the protective effect of febrile range hyperthermia in chronic inflammation. As such, we review the heat shock response (HSR), a protective signalling pathway activated by thermal and mechanical stress, as the possible upstream regulator of the anti-inflammatory effects of ultrasound.
Collapse
Affiliation(s)
- Graham M. Seasons
- Hotchkiss Brain Institute, University of Calgary, Alberta, T2N 4N1, Canada
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Alberta, T2N 1N4, Canada
| | - Carly Pellow
- Hotchkiss Brain Institute, University of Calgary, Alberta, T2N 4N1, Canada
- Department of Radiology, Cumming School of Medicine, University of Calgary, Alberta, T2N 1N4, Canada
| | - Hedwich F. Kuipers
- Hotchkiss Brain Institute, University of Calgary, Alberta, T2N 4N1, Canada
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Alberta, T2N 1N4, Canada
- Department of Cell Biology & Anatomy, Hotchkiss Brain Institute and Snyder Institute for Chronic Diseases, University of Calgary, Alberta, T2N 1N4, Canada
| | - G. Bruce Pike
- Hotchkiss Brain Institute, University of Calgary, Alberta, T2N 4N1, Canada
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Alberta, T2N 1N4, Canada
- Department of Radiology, Cumming School of Medicine, University of Calgary, Alberta, T2N 1N4, Canada
| |
Collapse
|
11
|
Hyder U, Challa A, Thornton M, Nandu T, Kraus WL, D’Orso I. KAP1 negatively regulates RNA polymerase II elongation kinetics to activate signal-induced transcription. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.05.592422. [PMID: 38746145 PMCID: PMC11092767 DOI: 10.1101/2024.05.05.592422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Signal-induced transcriptional programs regulate critical biological processes through the precise spatiotemporal activation of Immediate Early Genes (IEGs); however, the mechanisms of transcription induction remain poorly understood. By combining an acute depletion system with high resolution genomics approaches to interrogate synchronized, temporal transcription, we reveal that KAP1/TRIM28 is a first responder that fulfills the temporal and heightened transcriptional demand of IEGs. Unexpectedly, acute KAP1 loss triggers an increase in RNA polymerase II elongation kinetics during early stimulation time points. This elongation defect derails the normal progression through the transcriptional cycle during late stimulation time points, ultimately leading to decreased recruitment of the transcription apparatus for re-initiation thereby dampening IEGs transcriptional output. Collectively, KAP1 plays a counterintuitive role by negatively regulating transcription elongation to support full activation across multiple transcription cycles of genes critical for cell physiology and organismal functions.
Collapse
Affiliation(s)
- Usman Hyder
- Department of Microbiology, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Ashwini Challa
- Department of Microbiology, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Micah Thornton
- Laboratory of Signaling and Gene Regulation, Cecil H. and Ida Green Center for Reproductive Biology Sciences, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Tulip Nandu
- Laboratory of Signaling and Gene Regulation, Cecil H. and Ida Green Center for Reproductive Biology Sciences, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - W. Lee Kraus
- Laboratory of Signaling and Gene Regulation, Cecil H. and Ida Green Center for Reproductive Biology Sciences, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Iván D’Orso
- Department of Microbiology, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
12
|
Lyu Y, Yang Y, Talwar V, Lu H, Chen C, Salman S, Wicks EE, Huang TYT, Drehmer D, Wang Y, Zuo Q, Datan E, Jackson W, Dordai D, Wang R, Semenza GL. Hypoxia-inducible factor 1 recruits FACT and RNF20/40 to mediate histone ubiquitination and transcriptional activation of target genes. Cell Rep 2024; 43:113972. [PMID: 38517892 DOI: 10.1016/j.celrep.2024.113972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 02/01/2024] [Accepted: 03/01/2024] [Indexed: 03/24/2024] Open
Abstract
Hypoxia-inducible factor 1 (HIF-1) is a transcriptional activator that mediates cellular adaptation to decreased oxygen availability. HIF-1 recruits chromatin-modifying enzymes leading to changes in histone acetylation, citrullination, and methylation at target genes. Here, we demonstrate that hypoxia-inducible gene expression in estrogen receptor (ER)-positive MCF7 and ER-negative SUM159 human breast cancer cells requires the histone H2A/H2B chaperone facilitates chromatin transcription (FACT) and the H2B ubiquitin ligase RING finger protein 20/40 (RNF20/40). Knockdown of FACT or RNF20/40 expression leads to decreased transcription initiation and elongation at HIF-1 target genes. Mechanistically, FACT and RNF20/40 are recruited to hypoxia response elements (HREs) by HIF-1 and stabilize binding of HIF-1 (and each other) at HREs. Hypoxia induces the monoubiquitination of histone H2B at lysine 120 at HIF-1 target genes in an HIF-1-dependent manner. Together, these findings delineate a cooperative molecular mechanism by which FACT and RNF20/40 stabilize multiprotein complex formation at HREs and mediate histone ubiquitination to facilitate HIF-1 transcriptional activity.
Collapse
Affiliation(s)
- Yajing Lyu
- Armstrong Oxygen Biology Research Center and Vascular Program, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Yongkang Yang
- Armstrong Oxygen Biology Research Center and Vascular Program, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD 21205, USA
| | - Varen Talwar
- Johns Hopkins University, Baltimore, MD 21218, USA
| | - Haiquan Lu
- Armstrong Oxygen Biology Research Center and Vascular Program, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD 21205, USA
| | - Chelsey Chen
- Armstrong Oxygen Biology Research Center and Vascular Program, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Shaima Salman
- Armstrong Oxygen Biology Research Center and Vascular Program, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Elizabeth E Wicks
- Armstrong Oxygen Biology Research Center and Vascular Program, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Tina Yi-Ting Huang
- Armstrong Oxygen Biology Research Center and Vascular Program, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Daiana Drehmer
- Armstrong Oxygen Biology Research Center and Vascular Program, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Yufeng Wang
- Armstrong Oxygen Biology Research Center and Vascular Program, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Qiaozhu Zuo
- Armstrong Oxygen Biology Research Center and Vascular Program, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Emmanuel Datan
- Armstrong Oxygen Biology Research Center and Vascular Program, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Walter Jackson
- Armstrong Oxygen Biology Research Center and Vascular Program, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Dominic Dordai
- Armstrong Oxygen Biology Research Center and Vascular Program, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Ru Wang
- Armstrong Oxygen Biology Research Center and Vascular Program, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Gregg L Semenza
- Armstrong Oxygen Biology Research Center and Vascular Program, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD 21205, USA.
| |
Collapse
|
13
|
Soliman SHA, Iwanaszko M, Zheng B, Gold S, Howard BC, Das M, Chakrabarty RP, Chandel NS, Shilatifard A. Transcriptional elongation control of hypoxic response. Proc Natl Acad Sci U S A 2024; 121:e2321502121. [PMID: 38564636 PMCID: PMC11009653 DOI: 10.1073/pnas.2321502121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 02/23/2024] [Indexed: 04/04/2024] Open
Abstract
The release of paused RNA polymerase II (RNAPII) from promoter-proximal regions is tightly controlled to ensure proper regulation of gene expression. The elongation factor PTEF-b is known to release paused RNAPII via phosphorylation of the RNAPII C-terminal domain by its cyclin-dependent kinase component, CDK9. However, the signal and stress-specific roles of the various RNAPII-associated macromolecular complexes containing PTEF-b/CDK9 are not yet clear. Here, we identify and characterize the CDK9 complex required for transcriptional response to hypoxia. Contrary to previous reports, our data indicate that a CDK9 complex containing BRD4 but not AFF1/4 is essential for this hypoxic stress response. We demonstrate that BRD4 bromodomains (BET) are dispensable for the release of paused RNAPII at hypoxia-activated genes and that BET inhibition by JQ1 is insufficient to impair hypoxic gene response. Mechanistically, we demonstrate that the C-terminal region of BRD4 is required for Polymerase-Associated Factor-1 Complex (PAF1C) recruitment to establish an elongation-competent RNAPII complex at hypoxia-responsive genes. PAF1C disruption using a small-molecule inhibitor (iPAF1C) impairs hypoxia-induced, BRD4-mediated RNAPII release. Together, our results provide insight into potentially targetable mechanisms that control the hypoxia-responsive transcriptional elongation.
Collapse
Affiliation(s)
- Shimaa Hassan AbdelAziz Soliman
- Simpson Querrey Institute for Epigenetics, Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL60611
| | - Marta Iwanaszko
- Simpson Querrey Institute for Epigenetics, Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL60611
| | - Bin Zheng
- Simpson Querrey Institute for Epigenetics, Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL60611
| | - Sarah Gold
- Simpson Querrey Institute for Epigenetics, Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL60611
| | - Benjamin Charles Howard
- Simpson Querrey Institute for Epigenetics, Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL60611
| | - Madhurima Das
- Simpson Querrey Institute for Epigenetics, Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL60611
| | - Ram Prosad Chakrabarty
- Simpson Querrey Institute for Epigenetics, Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL60611
- Division of Pulmonary and Critical Care, Department of Medicine, Northwestern University, Chicago, IL60611
| | - Navdeep S. Chandel
- Simpson Querrey Institute for Epigenetics, Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL60611
- Division of Pulmonary and Critical Care, Department of Medicine, Northwestern University, Chicago, IL60611
| | - Ali Shilatifard
- Simpson Querrey Institute for Epigenetics, Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL60611
| |
Collapse
|
14
|
Jeong J, Kang BH, Ju S, Park NY, Kim D, Dinh NTB, Lee J, Rhee CY, Cho DH, Kim H, Chung DK, Bunch H. Lactiplantibacillus plantarum K8 lysates regulate hypoxia-induced gene expression. Sci Rep 2024; 14:6275. [PMID: 38491188 PMCID: PMC10943017 DOI: 10.1038/s41598-024-56958-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 03/13/2024] [Indexed: 03/18/2024] Open
Abstract
Hypoxic responses have been implicated in critical pathologies, including inflammation, immunity, and tumorigenesis. Recently, efforts to identify effective natural remedies and health supplements are increasing. Previous studies have reported that the cell lysates and the cell wall-bound lipoteichoic acids of Lactiplantibacillus plantarum K8 (K8) exert anti-inflammatory and immunomodulative effects. However, the effect of K8 on cellular hypoxic responses remains unknown. In this study, we found that K8 lysates had a potent suppressive effect on gene expression under hypoxia. K8 lysates markedly downregulated hypoxia-induced HIF1α accumulation in the human bone marrow and lung cancer cell lines, SH-SY5Y and H460. Consequently, the transcription of known HIF1α target genes, such as p21, GLUT1, and ALDOC, was notably suppressed in the K8 lysate supplement and purified lipoteichoic acids of K8, upon hypoxic induction. Intriguingly, K8 lysates decreased the expression of PHD2 and VHL proteins, which are responsible for HIF1α destabilization under normoxic conditions, suggesting that K8 may regulate HIF1α stability in a non-canonical pathway. Overall, our results suggest that K8 lysates desensitize the cells to hypoxic stresses and suppress HIF1α-mediated hypoxic gene activation.
Collapse
Affiliation(s)
- Jaehyeon Jeong
- Department of Applied Biosciences, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Byeong-Hee Kang
- School of Applied Biosciences, College of Agriculture and Life Sciences, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Sangmin Ju
- School of Applied Biosciences, College of Agriculture and Life Sciences, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Na Yeon Park
- School of Life Sciences, BK21 FOUR KNU Creative BioRearch Group, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Deukyeong Kim
- School of Applied Biosciences, College of Agriculture and Life Sciences, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Ngoc Thi Bao Dinh
- Department of Applied Biosciences, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Jeongho Lee
- School of Applied Biosciences, College of Agriculture and Life Sciences, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Chang Yun Rhee
- School of Applied Biosciences, College of Agriculture and Life Sciences, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Dong-Hyung Cho
- School of Life Sciences, BK21 FOUR KNU Creative BioRearch Group, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Hangeun Kim
- Research and Development Center, Skin Biotechnology Center Co. Ltd., Yongin, 17104, Republic of Korea
| | - Dae Kyun Chung
- Graduate School of Biotechnology, Kyung Hee University, Yongin, 17104, Republic of Korea
| | - Heeyoun Bunch
- Department of Applied Biosciences, Kyungpook National University, Daegu, 41566, Republic of Korea.
- School of Applied Biosciences, College of Agriculture and Life Sciences, Kyungpook National University, Daegu, 41566, Republic of Korea.
| |
Collapse
|
15
|
Lewis BA. The role of O-GlcNAcylation in RNA polymerase II transcription. J Biol Chem 2024; 300:105705. [PMID: 38311176 PMCID: PMC10906531 DOI: 10.1016/j.jbc.2024.105705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 01/18/2024] [Accepted: 01/22/2024] [Indexed: 02/10/2024] Open
Abstract
Eukaryotic RNA polymerase II (RNAPII) is responsible for the transcription of the protein-coding genes in the cell. Enormous progress has been made in discovering the protein activities that are required for transcription to occur, but the effects of post-translational modifications (PTMs) on RNAPII transcriptional regulation are much less understood. Most of our understanding relates to the cyclin-dependent kinases (CDKs), which appear to act relatively early in transcription. However, it is becoming apparent that other PTMs play a crucial role in the transcriptional cycle, and it is doubtful that any sort of complete understanding of this regulation is attainable without understanding the spectra of PTMs that occur on the transcriptional machinery. Among these is O-GlcNAcylation. Recent experiments have shown that the O-GlcNAc PTM likely has a prominent role in transcription. This review will cover the role of the O-GlcNAcylation in RNAPII transcription during initiation, pausing, and elongation, which will hopefully be of interest to both O-GlcNAc and RNAPII transcription researchers.
Collapse
Affiliation(s)
- Brian A Lewis
- Gene Regulation Section/LP, Center for Cancer Research, National Cancer Institute/NIH, Bethesda, Maryland, USA.
| |
Collapse
|
16
|
Wang D, Liu X, Li M, Ning J. HIF-1α regulates the cell viability in radioiodine-resistant papillary thyroid carcinoma cells induced by hypoxia through PKM2/NF-κB signaling pathway. Mol Carcinog 2024; 63:238-252. [PMID: 37861358 DOI: 10.1002/mc.23648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 09/05/2023] [Accepted: 10/01/2023] [Indexed: 10/21/2023]
Abstract
The curative treatment options for papillary thyroid cancer (PTC) encompass surgical intervention, radioactive iodine administration, and chemotherapy. However, the challenges of radioiodine (RAI) resistance, metastasis, and chemotherapy resistance remain inadequately addressed. The objective of this study was to investigate the protective role of hypoxia-inducible factor-1α (HIF-1α) in 131 I-resistant cells and a xenograft model under hypoxic conditions, as well as to explore potential mechanisms. The effects of HIF-1α on 131 I-resistant BCPAP and TPC-1 cells, as well as the xenograft model, were assessed in this study. Cell viability, migration, invasion, and apoptosis rates were measured using Cell Counting Kit-8, wound-healing, Transwell, and flow cytometry assays. Additionally, the expressions of Ki67, matrix metalloproteinase-9 (MMP-9), and pyruvate kinase M2 (PKM2) were examined using immunofluorescence or immunohistochemistry assays. Sodium iodide symporter and PKM2/NF-κBp65 relative protein levels were detected by western blot analysis. The findings of our study indicate that siHIF-1α effectively inhibits cell proliferation, cell migration, and invasion in 131 I-resistant cells under hypoxic conditions. Additionally, the treatment of siHIF-1α leads to alterations in the relative protein levels of Ki67, MMP-9, PKM2, and PKM2/NF-κBp65, both in vivo and in vitro. Notably, the effects of siHIF-1α are modified when DASA-58, an activator of PKM2, is administered. These results collectively demonstrate that siHIF-1α reduces cell viability in PTC cells and rat models, while also mediating the nuclear factor-κB (NF-κB)/PKM2 signaling pathway. Our findings provide a new rationale for further academic and clinical research on RAI-resistant PTC.
Collapse
Affiliation(s)
- Dong Wang
- Thyroid Surgery Ward, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, China
| | - Xiaoqian Liu
- Department of Hematology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, China
| | - Meijing Li
- Second Department of Hepatobiliary Surgery, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, China
| | - Jinyao Ning
- Thyroid Surgery Ward, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, China
| |
Collapse
|
17
|
Zhou X, Liu X, Wan X, Xu M, Wang R, Yang D, Peng M, Jin T, Tang R, Liu M, Hou Y. Oxidized ATM governs stemness of breast cancer stem cell through regulating ubiquitylation and acetylation switch. Biochem Biophys Res Commun 2024; 691:149243. [PMID: 38016338 DOI: 10.1016/j.bbrc.2023.149243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 11/05/2023] [Accepted: 11/09/2023] [Indexed: 11/30/2023]
Abstract
Cancer stem cells (CSCs), as parts of tumor initiation cells, play a crucial role to tumorigenesis, development and recurrence. However, the complicated mechanisms of CSCs to adapt to tumor microenvironment and its stemness maintenance remains unclear. Here, we show that oxidized ATM, a hypoxia-activated cytoplasm ATM, acts a novel function to maintain CSC stemness in triple-negative breast cancer cells (BCSCs) via regulating histone H4 acetylation. Mechanistically, oxidized ATM phosphorylates TRIM21 (a E3 ubiquitin ligase) serine 80 and serine 469. Serine 80 phosphorylation of TRIM21 is essential for the ubiquitination activity of TRIM21. TRIM21 binds with SIRT1 (one of deacetylase), resulting in ubiquitylation-mediated degradation of SIRT1. The reduced SIRT1 leads to increase of histone H4 acetylation, thus facilitating CSC-related gene expression. Clinical data verify that high level of ATM in breast tumors is positively correlated with malignant grade, and is closely related with low SIRT1, high p-TRIM21, and high CD44 expression. In conclusion, our study provides a novel mechanism by which oxidized ATM governing BCSCs stemness and reveals an important link among oxidized ATM, histone acetylation, and BCSCs maintenance.
Collapse
Affiliation(s)
- Xinyue Zhou
- Key Laboratory of Laboratory Medical Diagnostics, Chinese Ministry of Education, Chongqing Medical University, Chongqing, 400016, China
| | - Xiaoqi Liu
- Pediatric Research Institute, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, 400014, China
| | - Xueying Wan
- Key Laboratory of Laboratory Medical Diagnostics, Chinese Ministry of Education, Chongqing Medical University, Chongqing, 400016, China
| | - Ming Xu
- Key Laboratory of Laboratory Medical Diagnostics, Chinese Ministry of Education, Chongqing Medical University, Chongqing, 400016, China
| | - Rui Wang
- Key Laboratory of Laboratory Medical Diagnostics, Chinese Ministry of Education, Chongqing Medical University, Chongqing, 400016, China
| | - Dan Yang
- Key Laboratory of Laboratory Medical Diagnostics, Chinese Ministry of Education, Chongqing Medical University, Chongqing, 400016, China
| | - Meixi Peng
- Key Laboratory of Laboratory Medical Diagnostics, Chinese Ministry of Education, Chongqing Medical University, Chongqing, 400016, China
| | - Ting Jin
- Key Laboratory of Laboratory Medical Diagnostics, Chinese Ministry of Education, Chongqing Medical University, Chongqing, 400016, China
| | - Rui Tang
- Key Laboratory of Laboratory Medical Diagnostics, Chinese Ministry of Education, Chongqing Medical University, Chongqing, 400016, China
| | - Manran Liu
- Key Laboratory of Laboratory Medical Diagnostics, Chinese Ministry of Education, Chongqing Medical University, Chongqing, 400016, China
| | - Yixuan Hou
- Experimental Teaching Center of Basic Medicine Science, Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
18
|
Bunch H, Kim D, Naganuma M, Nakagawa R, Cong A, Jeong J, Ehara H, Vu H, Chang JH, Schellenberg MJ, Sekine SI. ERK2-topoisomerase II regulatory axis is important for gene activation in immediate early genes. Nat Commun 2023; 14:8341. [PMID: 38097570 PMCID: PMC10721843 DOI: 10.1038/s41467-023-44089-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 11/29/2023] [Indexed: 12/17/2023] Open
Abstract
The function of the mitogen-activated protein kinase signaling pathway is required for the activation of immediate early genes (IEGs), including EGR1 and FOS, for cell growth and proliferation. Recent studies have identified topoisomerase II (TOP2) as one of the important regulators of the transcriptional activation of IEGs. However, the mechanism underlying transcriptional regulation involving TOP2 in IEG activation has remained unknown. Here, we demonstrate that ERK2, but not ERK1, is important for IEG transcriptional activation and report a critical ELK1 binding sequence for ERK2 function at the EGR1 gene. Our data indicate that both ERK1 and ERK2 extensively phosphorylate the C-terminal domain of TOP2B at mutual and distinctive residues. Although both ERK1 and ERK2 enhance the catalytic rate of TOP2B required to relax positive DNA supercoiling, ERK2 delays TOP2B catalysis of negative DNA supercoiling. In addition, ERK1 may relax DNA supercoiling by itself. ERK2 catalytic inhibition or knock-down interferes with transcription and deregulates TOP2B in IEGs. Furthermore, we present the first cryo-EM structure of the human cell-purified TOP2B and etoposide together with the EGR1 transcriptional start site (-30 to +20) that has the strongest affinity to TOP2B within -423 to +332. The structure shows TOP2B-mediated breakage and dramatic bending of the DNA. Transcription is activated by etoposide, while it is inhibited by ICRF193 at EGR1 and FOS, suggesting that TOP2B-mediated DNA break to favor transcriptional activation. Taken together, this study suggests that activated ERK2 phosphorylates TOP2B to regulate TOP2-DNA interactions and favor transcriptional activation in IEGs. We propose that TOP2B association, catalysis, and dissociation on its substrate DNA are important processes for regulating transcription and that ERK2-mediated TOP2B phosphorylation may be key for the catalysis and dissociation steps.
Collapse
Affiliation(s)
- Heeyoun Bunch
- Department of Applied Biosciences, Kyungpook National University, Daegu, 41566, Republic of Korea.
- School of Applied Biosciences, College of Agriculture & Life Sciences, Kyungpook National University, Daegu, 41566, Republic of Korea.
| | - Deukyeong Kim
- School of Applied Biosciences, College of Agriculture & Life Sciences, Kyungpook National University, Daegu, 41566, Republic of Korea
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Masahiro Naganuma
- Laboratory for Transcription Structural Biology, RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan
| | - Reiko Nakagawa
- RIKEN BDR Laboratory for Phyloinformatics, Hyogo, 650-0047, Japan
| | - Anh Cong
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Jaehyeon Jeong
- Department of Applied Biosciences, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Haruhiko Ehara
- Laboratory for Transcription Structural Biology, RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan
| | - Hongha Vu
- Department of Biology Education, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Jeong Ho Chang
- Department of Biology Education, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Matthew J Schellenberg
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Shun-Ichi Sekine
- Laboratory for Transcription Structural Biology, RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan
| |
Collapse
|
19
|
Li Z, Zhu J, Ouyang H. Research progress of traditional Chinese medicine in improving hepatic fibrosis based on inhibiting pathological angiogenesis. Front Pharmacol 2023; 14:1303012. [PMID: 38155904 PMCID: PMC10754536 DOI: 10.3389/fphar.2023.1303012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 11/28/2023] [Indexed: 12/30/2023] Open
Abstract
Hepatic fibrosis is the formation of scar tissue in the liver. This scar tissue replaces healthy liver tissue and can lead to liver dysfunction and failure if left untreated. It is usually caused by chronic liver disease, such as hepatitis B or C, alcohol abuse, or non-alcoholic fatty liver disease. Pathological angiogenesis plays a crucial role in the development of hepatic fibrosis by promoting the growth of new blood vessels in the liver. These new vessels increase blood flow to the damaged areas of the liver, which triggers the activation of hepatic stellate cells (HSCs). HSCs are responsible for producing excess collagen and other extracellular matrix proteins that contribute to the development of fibrosis. Pathological angiogenesis plays a crucial role in the development of hepatic fibrosis by promoting the growth of new blood vessels in the liver. These new vessels increase blood flow to the damaged areas of the liver, which triggers the activation of HSCs. HSCs are responsible for producing excess collagen and other extracellular matrix proteins that contribute to the development of fibrosis. Traditional Chinese medicine (TCM) has been found to target pathological angiogenesis, thereby providing a potential treatment option for hepatic fibrosis. Several studies have demonstrated that TCM exhibits anti-angiogenic effects by inhibiting the production of pro-angiogenic factors, such as vascular endothelial growth factor and angiopoietin-2, and by reducing the proliferation of endothelial cells. Reviewing and highlighting the unique TCM recognition of treating hepatic fibrosis by targeting pathological angiogenesis may shed light on future hepatic fibrosis research.
Collapse
|
20
|
Gao F, Hayashi Y, Saravanaperumal SA, Gajdos GB, Syed SA, Bhagwate AV, Ye Z, Zhong J, Zhang Y, Choi EL, Kvasha SM, Kaur J, Paradise BD, Cheng L, Simone BW, Wright AM, Kellogg TA, Kendrick ML, McKenzie TJ, Sun Z, Yan H, Yu C, Bharucha AE, Linden DR, Lee JH, Ordog T. Hypoxia-Inducible Factor 1α Stabilization Restores Epigenetic Control of Nitric Oxide Synthase 1 Expression and Reverses Gastroparesis in Female Diabetic Mice. Gastroenterology 2023; 165:1458-1474. [PMID: 37597632 PMCID: PMC10840755 DOI: 10.1053/j.gastro.2023.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 07/18/2023] [Accepted: 08/09/2023] [Indexed: 08/21/2023]
Abstract
BACKGROUND & AIMS Although depletion of neuronal nitric oxide synthase (NOS1)-expressing neurons contributes to gastroparesis, stimulating nitrergic signaling is not an effective therapy. We investigated whether hypoxia-inducible factor 1α (HIF1A), which is activated by high O2 consumption in central neurons, is a Nos1 transcription factor in enteric neurons and whether stabilizing HIF1A reverses gastroparesis. METHODS Mice with streptozotocin-induced diabetes, human and mouse tissues, NOS1+ mouse neuroblastoma cells, and isolated nitrergic neurons were studied. Gastric emptying of solids and volumes were determined by breath test and single-photon emission computed tomography, respectively. Gene expression was analyzed by RNA-sequencing, microarrays, immunoblotting, and immunofluorescence. Epigenetic assays included chromatin immunoprecipitation sequencing (13 targets), chromosome conformation capture sequencing, and reporter assays. Mechanistic studies used Cre-mediated recombination, RNA interference, and clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated protein 9 (Cas9)-mediated epigenome editing. RESULTS HIF1A signaling from physiological intracellular hypoxia was active in mouse and human NOS1+ myenteric neurons but reduced in diabetes. Deleting Hif1a in Nos1-expressing neurons reduced NOS1 protein by 50% to 92% and delayed gastric emptying of solids in female but not male mice. Stabilizing HIF1A with roxadustat (FG-4592), which is approved for human use, restored NOS1 and reversed gastroparesis in female diabetic mice. In nitrergic neurons, HIF1A up-regulated Nos1 transcription by binding and activating proximal and distal cis-regulatory elements, including newly discovered super-enhancers, facilitating RNA polymerase loading and pause-release, and by recruiting cohesin to loop anchors to alter chromosome topology. CONCLUSIONS Pharmacologic HIF1A stabilization is a novel, translatable approach to restoring nitrergic signaling and treating diabetic gastroparesis. The newly recognized effects of HIF1A on chromosome topology may provide insights into physioxia- and ischemia-related organ function.
Collapse
Affiliation(s)
- Fei Gao
- Enteric NeuroScience Program and Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota; Gastroenterology Research Unit, Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, Minnesota; Department of Gastroenterology, First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Yujiro Hayashi
- Enteric NeuroScience Program and Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota; Gastroenterology Research Unit, Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, Minnesota
| | - Siva Arumugam Saravanaperumal
- Enteric NeuroScience Program and Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota; Gastroenterology Research Unit, Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, Minnesota
| | - Gabriella B Gajdos
- Enteric NeuroScience Program and Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota; Gastroenterology Research Unit, Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, Minnesota
| | - Sabriya A Syed
- Enteric NeuroScience Program and Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota; Gastroenterology Research Unit, Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, Minnesota; Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, Minnesota
| | - Aditya V Bhagwate
- Division of Computational Biology, Department of Quantitative Health Sciences, Mayo Clinic, Rochester, Minnesota
| | - Zhenqing Ye
- Division of Computational Biology, Department of Quantitative Health Sciences, Mayo Clinic, Rochester, Minnesota
| | - Jian Zhong
- Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota
| | - Yuebo Zhang
- Enteric NeuroScience Program and Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota; Gastroenterology Research Unit, Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, Minnesota
| | - Egan L Choi
- Enteric NeuroScience Program and Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota; Gastroenterology Research Unit, Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, Minnesota
| | - Sergiy M Kvasha
- Enteric NeuroScience Program and Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota; Gastroenterology Research Unit, Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, Minnesota
| | - Jagneet Kaur
- Enteric NeuroScience Program and Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota; Gastroenterology Research Unit, Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, Minnesota
| | - Brooke D Paradise
- Enteric NeuroScience Program and Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota; Gastroenterology Research Unit, Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, Minnesota; Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, Minnesota
| | - Liang Cheng
- Enteric NeuroScience Program and Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota; Gastroenterology Research Unit, Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, Minnesota; Division of Computational Biology, Department of Quantitative Health Sciences, Mayo Clinic, Rochester, Minnesota
| | - Brandon W Simone
- Enteric NeuroScience Program and Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota; Gastroenterology Research Unit, Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, Minnesota; Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, Minnesota
| | - Alec M Wright
- Enteric NeuroScience Program and Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| | - Todd A Kellogg
- Department of Surgery, Mayo Clinic, Rochester, Minnesota
| | | | | | - Zhifu Sun
- Division of Computational Biology, Department of Quantitative Health Sciences, Mayo Clinic, Rochester, Minnesota; Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota
| | - Huihuang Yan
- Division of Computational Biology, Department of Quantitative Health Sciences, Mayo Clinic, Rochester, Minnesota; Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota
| | - Chuanhe Yu
- Enteric NeuroScience Program and Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota; Gastroenterology Research Unit, Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, Minnesota
| | - Adil E Bharucha
- Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, Minnesota
| | - David R Linden
- Enteric NeuroScience Program and Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| | - Jeong-Heon Lee
- Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota; Division of Experimental Pathology and Laboratory Medicine, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Tamas Ordog
- Enteric NeuroScience Program and Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota; Gastroenterology Research Unit, Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, Minnesota; Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota.
| |
Collapse
|
21
|
Wu X, Xu Z, Li W, Lu Y, Pu J. HIF‑1α and RACGAP1 promote the progression of hepatocellular carcinoma in a mutually regulatory way. Mol Med Rep 2023; 28:218. [PMID: 37772389 PMCID: PMC10568255 DOI: 10.3892/mmr.2023.13105] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 09/12/2023] [Indexed: 09/30/2023] Open
Abstract
Hypoxia, a condition characterized by low oxygen levels, serves an important role in the progression of hepatocellular carcinoma (HCC). However, the precise molecular mechanisms underlying hypoxia‑induced HCC progression are yet to be fully elucidated. The present study assessed the involvement of two key factors, hypoxia‑inducible factor‑1α (HIF‑1α) and Rac GTPase activating protein 1 (RACGAP1), in HCC development under hypoxic conditions. HIF‑1α and RACGAP1 genes were overexpressed and knocked down in Hep3B and Huh7 cells using lentiviral transduction and the levels of HIF‑1α and RACGAP1 in the cells were assessed using quantitative PCR, western blotting and immunofluorescence. Co‑immunoprecipitation experiments were performed to evaluate the interaction between HIF‑1α and RACGAP1. Subsequently, the proliferation, apoptosis, migration and invasion of Hep3B and Huh7 cells were assessed using the Cell Counting Kit‑8 assay, flow cytometry, Transwell assay and migration experiments. The expression levels of HIF‑1α and RACGAP1 in normal and HCC tumor samples were analyzed utilizing the Gene Expression Profiling Interactive Analysis database. Furthermore, correlations between HIF‑1α/RACGAP1 gene expression levels and patient survival outcomes were evaluated using the Kaplan‑Meier plotter. Knockdown of HIF‑1α resulted in a significant decrease in RACGAP1 expression, whilst overexpression of HIF‑1α resulted in a significant increase in RACGAP1 expression. Moreover, overexpression and knockdown of RACGAP1 had the same effect on HIF‑1α expression. Additionally, it was demonstrated that HIF‑1α and RACGAP1 interacted directly within a complex. Overexpression of HIF‑1α or RACGAP1 significantly increased proliferation, invasion and migration, and significantly decreased the proportion of apoptotic Hep3B and Huh7 cells. Conversely, knockdown of HIF‑1α or RACGAP1 significantly decreased proliferation, invasion and migration, and significantly increased the proportion of apoptotic Hep3B and Huh7 cells. In addition, the combined knockdown or overexpression of HIF‑1α and RACGAP1 had a more pronounced effect on HCC cell migration compared with knockdown of HIF‑1α alone. Furthermore, there was a significant positive correlation between the expression levels of HIF‑1α and RACGAP1 in HCC tissues and patients with HCC and upregulation of both HIF‑1α and RACGAP1 demonstrated a lower overall survival probability. In conclusion, HIF‑1α and RACGAP1 may synergistically contribute to the development of HCC, highlighting their potential as valuable targets for HCC therapy.
Collapse
Affiliation(s)
- Xianjian Wu
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi 533000, P.R. China
| | - Zuoming Xu
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi 533000, P.R. China
| | - Wenchuan Li
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi 533000, P.R. China
| | - Yuan Lu
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi 533000, P.R. China
| | - Jian Pu
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi 533000, P.R. China
| |
Collapse
|
22
|
Ha J, Park M, Lee Y, Choi SH, Kim BS, Ha H, Jeong YK. AZD7648, a DNA-PKcs inhibitor, overcomes radioresistance in Hep3B xenografts and cells under tumor hypoxia. Am J Cancer Res 2023; 13:4918-4930. [PMID: 37970336 PMCID: PMC10636658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 09/29/2023] [Indexed: 11/17/2023] Open
Abstract
Radiation therapy is one of the most commonly used cancer treatments. However, it has important concerns such as damage to normal tissues around cancers and radioresistance. To overcome these problems, combination therapy using radiosensitizer and radiotherapy will be a good alternative. The present study investigated the effects of AZD7648 on overcoming radioresistance as well as radiosensitizing in Hep3B xenografts and cells. The results showed that AZD7648 enhanced ionizing radiation (IR)-induced tumor growth not only in radiosensitive but also radioresistant tumors. In particular, the combination of AZD7648 with radiation reduced the expression of hypoxia induce factor-1α (HIF-1α) in radioresistant tumors. In vitro studies, AZD7648 plus IR increased IR-induced G2/M arrest and regulated cell cycle checkpoints such as cyclinB1, p-cdc2 in normoxia but not in hypoxia. AZD7648 induced more radiation-mediated ROS than radiation only under normoxia, but these ROS were not altered by AZD7648 under hypoxia. Interestingly, AZD7648 downregulated HIF-1α expression level under CoCl2-treated hypoxic condition but not in normoxic condition. In conclusion, AZD7648 synergistically increased radiosensitivity through accumulating IR-induced G2/M arrest and further improved radioresistance via regulation of HIF-1α. The present data suggest that AZD7648 may be a strong radiosensitizer in radioresistant as well as radiosensitive cancers.
Collapse
Affiliation(s)
- Jimin Ha
- Radiological and Medical Support Center, Korea Institute of Radiological and Medical Sciences (KIRAMS)Seoul, Republic of Korea
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans UniversitySeoul, Republic of Korea
| | - Mijeong Park
- Radiological and Medical Support Center, Korea Institute of Radiological and Medical Sciences (KIRAMS)Seoul, Republic of Korea
| | - Yuri Lee
- Radiological and Medical Support Center, Korea Institute of Radiological and Medical Sciences (KIRAMS)Seoul, Republic of Korea
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans UniversitySeoul, Republic of Korea
| | - Sang Hyun Choi
- Research Team of Medical Physics and Engineering, Korea Institute of Radiological and Medical SciencesSeoul, Republic of Korea
| | - Byoung Soo Kim
- Division of Applied RI, Korea Institute of Radiological and Medical SciencesSeoul, Republic of Korea
| | - Hunjoo Ha
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans UniversitySeoul, Republic of Korea
| | - Youn Kyoung Jeong
- Radiological and Medical Support Center, Korea Institute of Radiological and Medical Sciences (KIRAMS)Seoul, Republic of Korea
| |
Collapse
|
23
|
He H, Li J, Wang W, Cheng J, Zhou J, Li Q, Jin J, Chen L. The SIRT7-mediated deacetylation of CHD1L amplifies HIF-2α-dependent signal that drives renal cell carcinoma progression and sunitinib resistance. Cell Biosci 2023; 13:166. [PMID: 37691108 PMCID: PMC10493023 DOI: 10.1186/s13578-023-01113-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 08/24/2023] [Indexed: 09/12/2023] Open
Abstract
BACKGROUND Aberrant interplay between epigenetic reprogramming and hypoxia signaling contributes to renal cell carcinoma progression and drug resistance, which is an essential hallmark. How the chromatin remodelers enhance RCC malignancy remains to be poorly understood. We aimed to elucidate the roles of CHD1L in determining hypoxia signaling activation and sunitinib resistance. METHODS The qRT-PCR, western blotting, and immunohistochemistry technologies were used to detect CHD1L expressions. Lentivirus transfection was used to generate stable CHD1L-KD cells. The roles of SIRT7/CHD1L were evaluated by CCK-8, wound healing, transwell assays, xenograft models, and tail-vein metastasis models. Co-immunoprecipitation, Chromatin Immunoprecipitation (ChIP), and luciferase reporter assays were conducted to explore epigenetic regulations. RESULTS We screened and validated that CHD1L is up-regulated in RCC and correlates with poorer prognosis of patients. CHD1L overexpression notably enhances cell proliferation, migration, and self-renewal capacities in vitro and in vivo. Mechanistically, SIRT7 physically interacts with CHDL1 and mediates the deacetylation of CHD1L. Wild-type SIRT7, but not H187Y dead mutant, stabilizes CHD1L protein levels via attenuating its ubiquitination levels. SIRT7 is increased in RCC and correlates with hazardous RCC clinical characteristics. SIRT7 depends on CHD1L to exert its tumor-promoting functions. Accumulated CHD1L amplifies HIF-2α-driven transcriptional programs via interacting with HIF-2α. CHD1L recruits BRD4 and increases the RNA polymerase II S2P loading. CHD1L ablation notably abolishes HIF-2α binding and subsequent transcriptional activation. CHD1L overexpression mediates the sunitinib resistance via sustaining VEGFA and targeting CHD1L reverses this effect. Specific CHD1L inhibitor (CHD1Li) shows a synergistic effect with sunitinib and strengthens its pharmaceutical effect. CONCLUSIONS These results uncover a CHD1L-mediated epigenetic mechanism of HIF-2α activation and downstream sunitinib resistance. The SIRT7-CHD1L-HIF-2α axis is highlighted to predict RCC prognosis and endows potential targets.
Collapse
Affiliation(s)
- Hongchao He
- Department of Urology, Shanghai Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China
| | - Jie Li
- Department of Oncology, Second Affiliated Hospital, Nanjing Medical University, Nanjing, 210000, China
| | - Wei Wang
- Department of Clinical Laboratory, Lianshui County People's Hospital, Huai'an, 223400, China
| | - Jie Cheng
- Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Shanghai Xuhui Central Hospital, Shanghai, 200031, China
| | - Jian Zhou
- Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Shanghai Xuhui Central Hospital, Shanghai, 200031, China
| | - Qunyi Li
- Department of Pharmacy, Huashan Hospital, Fudan University, Shanghai, 200040, China.
| | - Juan Jin
- Department of Nephrology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, 310000, Zhejiang, China.
| | - Li Chen
- Department of Pharmacy, Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, Fudan University, Shanghai, 200031, China.
| |
Collapse
|
24
|
Shi J, Miao D, Lv Q, Tan D, Xiong Z, Zhang X. ENO2 as a Biomarker Regulating Energy Metabolism to Promote Tumor Progression in Clear Cell Renal Cell Carcinoma. Biomedicines 2023; 11:2499. [PMID: 37760940 PMCID: PMC10525605 DOI: 10.3390/biomedicines11092499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 08/18/2023] [Accepted: 09/01/2023] [Indexed: 09/29/2023] Open
Abstract
BACKGROUND Clear cell renal cell carcinoma (ccRCC) is the most common and metastatic type of renal cell carcinoma. Despite significant advancements, the current diagnostic biomarkers for ccRCC lack the desired specificity and sensitivity, necessitating the identification of novel biomarkers and elucidation of their underlying mechanisms. METHODS Three gene expression profile datasets were obtained from the GEO database, and differentially expressed genes (DEGs) were screened. Gene Ontology and KEGG pathway analysis were conducted in ccRCC. To clarify the diagnosis and prognostic role of ENO2, Kaplan-Meier analysis and Cox proportional hazards regression analysis were performed. Functional experiments were also carried out to verify the significant role of ENO2 in ccRCC. Finally, tumor mutational burden analysis was utilized to investigate the potential role of ENO2 in gene mutations in ccRCC. RESULTS The study showed that ENO2 is a potential biomarker for the diagnosis of ccRCC and can independently predict the clinical prognosis of ccRCC. Furthermore, we found that ENO2 can promote the occurrence and progression of ccRCC by affecting the glycolysis level of cells through the "Warburg effect". CONCLUSIONS These findings provide new theories for the occurrence and development of ccRCC and can help formulate new strategies for its diagnosis and treatment.
Collapse
Affiliation(s)
- Jian Shi
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China (D.M.); (D.T.)
- Institute of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Daojia Miao
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China (D.M.); (D.T.)
- Institute of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Qingyang Lv
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China (D.M.); (D.T.)
- Institute of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Diaoyi Tan
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China (D.M.); (D.T.)
- Institute of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Zhiyong Xiong
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China (D.M.); (D.T.)
- Institute of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xiaoping Zhang
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China (D.M.); (D.T.)
- Institute of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
25
|
Einig E, Jin C, Andrioletti V, Macek B, Popov N. RNAPII-dependent ATM signaling at collisions with replication forks. Nat Commun 2023; 14:5147. [PMID: 37620345 PMCID: PMC10449895 DOI: 10.1038/s41467-023-40924-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 08/16/2023] [Indexed: 08/26/2023] Open
Abstract
Deregulation of RNA Polymerase II (RNAPII) by oncogenic signaling leads to collisions of RNAPII with DNA synthesis machinery (transcription-replication conflicts, TRCs). TRCs can result in DNA damage and are thought to underlie genomic instability in tumor cells. Here we provide evidence that elongating RNAPII nucleates activation of the ATM kinase at TRCs to stimulate DNA repair. We show the ATPase WRNIP1 associates with RNAPII and limits ATM activation during unperturbed cell cycle. WRNIP1 binding to elongating RNAPII requires catalytic activity of the ubiquitin ligase HUWE1. Mutation of HUWE1 induces TRCs, promotes WRNIP1 dissociation from RNAPII and binding to the replisome, stimulating ATM recruitment and activation at RNAPII. TRCs and translocation of WRNIP1 are rapidly induced in response to hydroxyurea treatment to activate ATM and facilitate subsequent DNA repair. We propose that TRCs can provide a controlled mechanism for stalling of replication forks and ATM activation, instrumental in cellular response to replicative stress.
Collapse
Affiliation(s)
- Elias Einig
- Department of Medical Oncology and Pulmonology, University Hospital Tübingen, Otfried-Mueller-Str 14, 72076, Tübingen, Germany
| | - Chao Jin
- Department of Medical Oncology and Pulmonology, University Hospital Tübingen, Otfried-Mueller-Str 14, 72076, Tübingen, Germany
| | - Valentina Andrioletti
- Department of Medical Oncology and Pulmonology, University Hospital Tübingen, Otfried-Mueller-Str 14, 72076, Tübingen, Germany
- enGenome S.R.L., Via Fratelli Cuzio 42, 27100, Pavia, Italy
| | - Boris Macek
- Interfaculty Institute of Cell Biology, Eberhard Karls University of Tübingen, Auf d. Morgenstelle 15, 72076, Tübingen, Germany
| | - Nikita Popov
- Department of Medical Oncology and Pulmonology, University Hospital Tübingen, Otfried-Mueller-Str 14, 72076, Tübingen, Germany.
| |
Collapse
|
26
|
Chen Z, Song J, Xie L, Xu G, Zheng C, Xia X, Lu F, Ma X, Zou F, Jiang J, Wang H. N6-methyladenosine hypomethylation of circGPATCH2L regulates DNA damage and apoptosis through TRIM28 in intervertebral disc degeneration. Cell Death Differ 2023; 30:1957-1972. [PMID: 37438603 PMCID: PMC10406905 DOI: 10.1038/s41418-023-01190-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 05/31/2023] [Accepted: 06/29/2023] [Indexed: 07/14/2023] Open
Abstract
Circular RNAs (circRNAs) are a class of noncoding RNAs that have been found to be involved in intervertebral disc degeneration (IVDD) progression, and N6-methyladenosine (m6A) broadly exists in circRNAs. Here, we identified circGPATCH2L with a low m6A methylation level to be upregulated in degenerative nucleus pulposus tissues. Mechanistically, as a protein decoy for tripartite motif containing 28 (TRIM28) within aa 402-452 region, circGPATCH2L abrogates the phosphorylation of TRIM28 and inhibits P53 degradation, which contributes to DNA damage accumulation and cellular apoptosis and leads to IVDD progression. Moreover, m6A-methylated circGPATCH2L is recognised and endoribonucleolytically cleaved by a YTHDF2-RPL10-RNase P/MRP complex to maintain the physiological state of nucleus pulposus cells. Thus, our data show the physiological significance of m6A modification in regulating circRNA abundance and provide a potentially effective therapeutic target for the treatment of IVDD.
Collapse
Affiliation(s)
- Zhenhao Chen
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai, 200000, China
| | - Jian Song
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai, 200000, China
| | - Lin Xie
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, China
| | - Guangyu Xu
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai, 200000, China
| | - Chaojun Zheng
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai, 200000, China
| | - Xinlei Xia
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai, 200000, China
| | - Feizhou Lu
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai, 200000, China
- Department of Orthopedics, Shanghai Fifth People's Hospital, Fudan University, Shanghai, 200000, China
| | - Xiaosheng Ma
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai, 200000, China
| | - Fei Zou
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai, 200000, China.
| | - Jianyuan Jiang
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai, 200000, China.
| | - Hongli Wang
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai, 200000, China.
| |
Collapse
|
27
|
Yang Q, Lei X, He J, Peng Y, Zhang Y, Ling R, Wu C, Zhang G, Zheng B, Chen X, Zou B, Fu Z, Zhao L, Liu H, Hu Y, Yu J, Li F, Ye G, Li G. N4-Acetylcytidine Drives Glycolysis Addiction in Gastric Cancer via NAT10/SEPT9/HIF-1α Positive Feedback Loop. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2300898. [PMID: 37328448 PMCID: PMC10427357 DOI: 10.1002/advs.202300898] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 04/11/2023] [Indexed: 06/18/2023]
Abstract
Anti-angiogenic therapy has long been considered a promising strategy for solid cancers. Intrinsic resistance to hypoxia is a major cause for the failure of anti-angiogenic therapy, but the underlying mechanism remains unclear. Here, it is revealed that N4-acetylcytidine (ac4C), a newly identified mRNA modification, enhances hypoxia tolerance in gastric cancer (GC) cells by promoting glycolysis addiction. Specifically, acetyltransferase NAT10 transcription is regulated by HIF-1α, a key transcription factor of the cellular response to hypoxia. Further, acRIP-sequencing, Ribosome profiling sequencing, RNA-sequencing, and functional studies confirm that NAT10 in turn activates the HIF-1 pathway and subsequent glucose metabolism reprogramming by mediating SEPT9 mRNA ac4C modification. The formation of the NAT10/SEPT9/HIF-1α positive feedback loop leads to excessive activation of the HIF-1 pathway and induces glycolysis addiction. Combined anti-angiogenesis and ac4C inhibition attenuate hypoxia tolerance and inhibit tumor progression in vivo. This study highlights the critical roles of ac4C in the regulation of glycolysis addiction and proposes a promising strategy to overcome resistance to anti-angiogenic therapy by combining apatinib with ac4C inhibition.
Collapse
Affiliation(s)
- Qingbin Yang
- Department of General SurgeryNanfang HospitalSouthern Medical UniversityGuangdong Provincial Engineering Technology Research Center of Minimally Invasive SurgeryGuangzhouGuangdong510515P. R. China
- Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal TumorGuangzhouGuangdong510515P. R. China
| | - Xuetao Lei
- Department of General SurgeryNanfang HospitalSouthern Medical UniversityGuangdong Provincial Engineering Technology Research Center of Minimally Invasive SurgeryGuangzhouGuangdong510515P. R. China
- Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal TumorGuangzhouGuangdong510515P. R. China
| | - Jiayong He
- Department of General SurgeryNanfang HospitalSouthern Medical UniversityGuangdong Provincial Engineering Technology Research Center of Minimally Invasive SurgeryGuangzhouGuangdong510515P. R. China
- Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal TumorGuangzhouGuangdong510515P. R. China
| | - Yanmei Peng
- Department of General SurgeryNanfang HospitalSouthern Medical UniversityGuangdong Provincial Engineering Technology Research Center of Minimally Invasive SurgeryGuangzhouGuangdong510515P. R. China
- Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal TumorGuangzhouGuangdong510515P. R. China
| | - Yihao Zhang
- Department of General SurgeryNanfang HospitalSouthern Medical UniversityGuangdong Provincial Engineering Technology Research Center of Minimally Invasive SurgeryGuangzhouGuangdong510515P. R. China
- Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal TumorGuangzhouGuangdong510515P. R. China
| | - Ruoyu Ling
- Department of General SurgeryNanfang HospitalSouthern Medical UniversityGuangdong Provincial Engineering Technology Research Center of Minimally Invasive SurgeryGuangzhouGuangdong510515P. R. China
- Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal TumorGuangzhouGuangdong510515P. R. China
| | - Chaorui Wu
- Department of General SurgeryNanfang HospitalSouthern Medical UniversityGuangdong Provincial Engineering Technology Research Center of Minimally Invasive SurgeryGuangzhouGuangdong510515P. R. China
- Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal TumorGuangzhouGuangdong510515P. R. China
| | - Guofan Zhang
- Department of General SurgeryNanfang HospitalSouthern Medical UniversityGuangdong Provincial Engineering Technology Research Center of Minimally Invasive SurgeryGuangzhouGuangdong510515P. R. China
- Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal TumorGuangzhouGuangdong510515P. R. China
| | - Boyang Zheng
- Department of General SurgeryNanfang HospitalSouthern Medical UniversityGuangdong Provincial Engineering Technology Research Center of Minimally Invasive SurgeryGuangzhouGuangdong510515P. R. China
- Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal TumorGuangzhouGuangdong510515P. R. China
| | - Xinhua Chen
- Department of General SurgeryNanfang HospitalSouthern Medical UniversityGuangdong Provincial Engineering Technology Research Center of Minimally Invasive SurgeryGuangzhouGuangdong510515P. R. China
- Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal TumorGuangzhouGuangdong510515P. R. China
| | - Boya Zou
- Department of General SurgeryNanfang HospitalSouthern Medical UniversityGuangdong Provincial Engineering Technology Research Center of Minimally Invasive SurgeryGuangzhouGuangdong510515P. R. China
- Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal TumorGuangzhouGuangdong510515P. R. China
| | - Ziyi Fu
- Department of General SurgeryNanfang HospitalSouthern Medical UniversityGuangdong Provincial Engineering Technology Research Center of Minimally Invasive SurgeryGuangzhouGuangdong510515P. R. China
- Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal TumorGuangzhouGuangdong510515P. R. China
| | - Liying Zhao
- Department of General SurgeryNanfang HospitalSouthern Medical UniversityGuangdong Provincial Engineering Technology Research Center of Minimally Invasive SurgeryGuangzhouGuangdong510515P. R. China
- Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal TumorGuangzhouGuangdong510515P. R. China
| | - Hao Liu
- Department of General SurgeryNanfang HospitalSouthern Medical UniversityGuangdong Provincial Engineering Technology Research Center of Minimally Invasive SurgeryGuangzhouGuangdong510515P. R. China
- Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal TumorGuangzhouGuangdong510515P. R. China
| | - Yanfeng Hu
- Department of General SurgeryNanfang HospitalSouthern Medical UniversityGuangdong Provincial Engineering Technology Research Center of Minimally Invasive SurgeryGuangzhouGuangdong510515P. R. China
- Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal TumorGuangzhouGuangdong510515P. R. China
| | - Jiang Yu
- Department of General SurgeryNanfang HospitalSouthern Medical UniversityGuangdong Provincial Engineering Technology Research Center of Minimally Invasive SurgeryGuangzhouGuangdong510515P. R. China
- Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal TumorGuangzhouGuangdong510515P. R. China
| | - Fengping Li
- Department of General SurgeryNanfang HospitalSouthern Medical UniversityGuangdong Provincial Engineering Technology Research Center of Minimally Invasive SurgeryGuangzhouGuangdong510515P. R. China
- Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal TumorGuangzhouGuangdong510515P. R. China
| | - Gengtai Ye
- Department of General SurgeryNanfang HospitalSouthern Medical UniversityGuangdong Provincial Engineering Technology Research Center of Minimally Invasive SurgeryGuangzhouGuangdong510515P. R. China
- Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal TumorGuangzhouGuangdong510515P. R. China
| | - Guoxin Li
- Department of General SurgeryNanfang HospitalSouthern Medical UniversityGuangdong Provincial Engineering Technology Research Center of Minimally Invasive SurgeryGuangzhouGuangdong510515P. R. China
- Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal TumorGuangzhouGuangdong510515P. R. China
| |
Collapse
|
28
|
Tai Y, Zheng L, Liao J, Wang Z, Zhang L. Roles of the HIF-1α pathway in the development and progression of keloids. Heliyon 2023; 9:e18651. [PMID: 37636362 PMCID: PMC10448433 DOI: 10.1016/j.heliyon.2023.e18651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 07/17/2023] [Accepted: 07/24/2023] [Indexed: 08/29/2023] Open
Abstract
Keloids, a pathological scar that is induced by the consequence of aberrant wound healing, is still a major global health concern for its unsatisfactory treatment outcomes. HIF-1α, a main regulator of hypoxia, mainly acts through some proteins or signaling pathways and plays important roles in a variety of biological processes. Accumulating evidence has shown that HIF-1α played a crucial role in the process of keloid formation. In this review, we attempted to summarize the current knowledge on the association between HIF-1α expression and the development and progression of keloids. Through a comprehensive analysis, the molecular mechanisms underlying HIF-1α in keloids were shown to be correlated to the proliferation of fibroblasts, angiogenesis, and collagen deposits. The affected proteins and the signaling pathways were multiple. For instance, HIF-1α was reported to promote keloids formation by enhancing angiogenesis, fibroblast proliferation, and collagen deposition through the activation of periostin PI3K/Akt, TGF-β/Smad and TLR4/MyD88/NF-κB pathway. However, the specific effects of HIF-1α on keloids keloid illnesses in clinical practice is are entirely unclear, and further studies in clinical trials are still warranted. Therefore, an in-depth understanding of the biological mechanisms of HIF-1α in keloid formation is significant to develop promising therapeutic targets for the treatment of keloids in clinical practice.
Collapse
Affiliation(s)
- Yuncheng Tai
- Department of Burn Surgery, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, 318000, Zhejiang, China
| | - Liying Zheng
- Postgraduate Department, First Affiliated Hospital of Gannan Medical College, Ganzhou, China
| | - Jiao Liao
- Department of Nephrology, Jiaxing Hospital of Traditional Chinese Medicine, Jiaxing, 314000, Zhejiang, China
| | - Zixiong Wang
- Department of Burn and Plastic Surgery, Xinjiang Military General Hospital, Urumqi, 830063, Xinjiang, China
| | - Lai Zhang
- Department of Orthopedics, Taizhou Municipal Hospital, Taizhou, 318000, Zhejiang, China
| |
Collapse
|
29
|
Lu G, Du R, Dong J, Sun Y, Zhou F, Feng F, Feng B, Han Y, Shang Y. Cancer associated fibroblast derived SLIT2 drives gastric cancer cell metastasis by activating NEK9. Cell Death Dis 2023; 14:421. [PMID: 37443302 PMCID: PMC10344862 DOI: 10.1038/s41419-023-05965-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 06/29/2023] [Accepted: 07/06/2023] [Indexed: 07/15/2023]
Abstract
The secretory properties of cancer-associated fibroblasts (CAFs) play predominant roles in shaping a pro-metastatic tumor microenvironment. The present study demonstrated that SLIT2, an axon guidance protein, produced by CAFs and promoted gastric cancer (GC) metastasis in two gastric cancer cell lines (AGS and MKN45) by binding to roundabout guidance receptor 1 (ROBO1). Mass-spectrometry analysis revealed that ROBO1 could interact with NEK9, a serine/threonine kinase. And their mutual binding activities were further enhanced by SLIT2. Domain analysis revealed the kinase domain of NEK9 was critical in its interaction with the intracellular domain (ICD) of ROBO1, and it also directly phosphorylated tripartite motif containing 28 (TRIM28) and cortactin (CTTN) in AGS and MKN45 cells. TRIM28 function as a transcriptional elongation factor, which directly facilitate CTTN activation. In addition, Bioinformatics analysis and experimental validation identified transcriptional regulation of STAT3 and NF-κB p100 by TRIM28, and a synergetic transcription of CTTN by STAT3 and NF-κB p100 was also observed in AGS and MKN45. Therefore, CAF-derived SLIT2 increased the expression and phosphorylation levels of CTTN, which induced cytoskeletal reorganization and GC cells metastasis. A simultaneous increase in the expression levels of NEK9, TRIM28 and CTTN was found in metastatic GC lesions compared with paired non-cancerous tissues and primary cancer lesions via IHC and Multiplex IHC. The analysis of the data from a cohort of patients with GC revealed that increased levels of NEK9, TRIM28 and CTTN were associated with a decreased overall survival rate. On the whole, these findings revealed the connections of CAFs and cancer cells through SLIT2/ROBO1 and inflammatory signaling, and the key molecules involved in this process may serve as potential biomarkers and therapeutic targets for GC.
Collapse
Affiliation(s)
- Guofang Lu
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, China
- Department of Physiology and Pathophysiology, National Key Discipline of Cell Biology, Fourth Military Medical University, Xi'an, 710032, China
| | - Rui Du
- Institute for Biomedical Sciences of Pain, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, China
| | - Jiaqiang Dong
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, China
| | - Yi Sun
- Department of Ultrasound Diagnostics, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, China
| | - Fenli Zhou
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, China
| | - Fan Feng
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, China
| | - Bin Feng
- Department of Radiation Oncology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China.
| | - Ying Han
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, China.
| | - Yulong Shang
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, China.
| |
Collapse
|
30
|
Liu T, Liu Y, Zhang F, Gao Y. Copper homeostasis dysregulation promoting cell damage and the association with liver diseases. Chin Med J (Engl) 2023:00029330-990000000-00652. [PMID: 37284739 DOI: 10.1097/cm9.0000000000002697] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Indexed: 06/08/2023] Open
Abstract
ABSTRACT Copper plays an important role in many metabolic activities in the human body. Copper level in the human body is in a state of dynamic equilibrium. Recent research on copper metabolism has revealed that copper dyshomeostasis can cause cell damage and induce or aggravate some diseases by affecting oxidative stress, proteasome, cuprotosis, and angiogenesis. The liver plays a central role in copper metabolism in the human body. Research conducted in recent years has unraveled the relationship between copper homeostasis and liver diseases. In this paper, we review the available evidence of the mechanism by which copper dyshomeostasis promotes cell damage and the development of liver diseases, and identify the future research priorities.
Collapse
Affiliation(s)
- Tao Liu
- Department of Hepatology, The First Hospital of Jilin University, Jilin University, Changchun, Jilin 130021, China
| | | | | | | |
Collapse
|
31
|
Lee YR, Kang GS, Oh T, Jo HJ, Park HJ, Ahn GO. DNA-Dependent Protein Kinase Catalytic Subunit (DNA-PKcs): Beyond the DNA Double-Strand Break Repair. Mol Cells 2023; 46:200-205. [PMID: 36756777 PMCID: PMC10086554 DOI: 10.14348/molcells.2023.2164] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/09/2022] [Accepted: 11/09/2022] [Indexed: 02/10/2023] Open
Abstract
DNA-dependent protein kinase catalytic subunit (DNA-PKcs), a member of the phosphatidylinositol 3-kinase related kinase family is a well-known player in repairing DNA double strand break through non-homologous end joining pathway. This mechanism has allowed us to understand its critical role in T and B cell development through V(D)J recombination and class switch recombination, respectively. We have also learned that the defects in these mechanisms lead to severely combined immunodeficiency (SCID). Here we highlight some of the latest evidence where DNA-PKcs has been shown to localize not only in the nucleus but also in the cytoplasm, phosphorylating various proteins involved in cellular metabolism and cytokine production. While it is an exciting time to unveil novel functions of DNA-PKcs, one should carefully choose experimental models to study DNA-PKcs as the experimental evidence has been shown to differ between cells of defective DNA-PKcs and those of DNA-PKcs knockout. Moreover, while there are several DNA-PK inhibitors currently being evaluated in the clinical trials in attempt to increase the efficacy of radiotherapy or chemotherapy, multiple functions and subcellular localization of DNA-PKcs in various types of cells may further complicate the effects at the cellular and organismal level.
Collapse
Affiliation(s)
- Ye-Rim Lee
- College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea
| | - Gi-Sue Kang
- College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea
| | - Taerim Oh
- College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea
| | - Hye-Ju Jo
- College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea
| | - Hye-Joon Park
- College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea
| | - G-One Ahn
- College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
32
|
TRIM28 promotes luminal cell plasticity in a mouse model of prostate cancer. Oncogene 2023; 42:1347-1359. [PMID: 36882525 PMCID: PMC10122711 DOI: 10.1038/s41388-023-02655-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 02/22/2023] [Accepted: 02/27/2023] [Indexed: 03/09/2023]
Abstract
The Tripartite motif-containing 28 (TRIM28) transcriptional cofactor is significantly upregulated in high-grade and metastatic prostate cancers. To study the role of TRIM28 in prostate cancer progression in vivo, we generated a genetically-engineered mouse model, combining prostate-specific inactivation of Trp53, Pten and Trim28. Trim28 inactivated NPp53T mice developed an inflammatory response and necrosis in prostate lumens. By conducting single-cell RNA sequencing, we found that NPp53T prostates had fewer luminal cells resembling proximal luminal lineage cells, which are cells with progenitor activity enriched in proximal prostates and prostate invagination tips in wild-type mice with analogous populations in human prostates. However, despite increased apoptosis and reduction of cells expressing proximal luminal cell markers, we found that NPp53T mouse prostates evolved and progressed to invasive prostate carcinoma with a shortened overall survival. Altogether, our findings suggest that TRIM28 promotes expression of proximal luminal cell markers in prostate tumor cells and provides insights into TRIM28 function in prostate tumor plasticity.
Collapse
|
33
|
Yfantis A, Mylonis I, Chachami G, Nikolaidis M, Amoutzias GD, Paraskeva E, Simos G. Transcriptional Response to Hypoxia: The Role of HIF-1-Associated Co-Regulators. Cells 2023; 12:cells12050798. [PMID: 36899934 PMCID: PMC10001186 DOI: 10.3390/cells12050798] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 02/22/2023] [Accepted: 03/01/2023] [Indexed: 03/08/2023] Open
Abstract
The Hypoxia Inducible Factor 1 (HIF-1) plays a major role in the cellular response to hypoxia by regulating the expression of many genes involved in adaptive processes that allow cell survival under low oxygen conditions. Adaptation to the hypoxic tumor micro-environment is also critical for cancer cell proliferation and therefore HIF-1 is also considered a valid therapeutical target. Despite the huge progress in understanding regulation of HIF-1 expression and activity by oxygen levels or oncogenic pathways, the way HIF-1 interacts with chromatin and the transcriptional machinery in order to activate its target genes is still a matter of intense investigation. Recent studies have identified several different HIF-1- and chromatin-associated co-regulators that play important roles in the general transcriptional activity of HIF-1, independent of its expression levels, as well as in the selection of binding sites, promoters and target genes, which, however, often depends on cellular context. We review here these co-regulators and examine their effect on the expression of a compilation of well-characterized HIF-1 direct target genes in order to assess the range of their involvement in the transcriptional response to hypoxia. Delineating the mode and the significance of the interaction between HIF-1 and its associated co-regulators may offer new attractive and specific targets for anticancer therapy.
Collapse
Affiliation(s)
- Angelos Yfantis
- Laboratory of Biochemistry, Faculty of Medicine, University of Thessaly, BIOPOLIS, 41500 Larissa, Greece; (A.Y.); (I.M.); (G.C.)
| | - Ilias Mylonis
- Laboratory of Biochemistry, Faculty of Medicine, University of Thessaly, BIOPOLIS, 41500 Larissa, Greece; (A.Y.); (I.M.); (G.C.)
| | - Georgia Chachami
- Laboratory of Biochemistry, Faculty of Medicine, University of Thessaly, BIOPOLIS, 41500 Larissa, Greece; (A.Y.); (I.M.); (G.C.)
| | - Marios Nikolaidis
- Bioinformatics Laboratory, Department of Biochemistry and Biotechnology, University of Thessaly, BIOPOLIS, 41500 Larissa, Greece; (M.N.); (G.D.A.)
| | - Grigorios D. Amoutzias
- Bioinformatics Laboratory, Department of Biochemistry and Biotechnology, University of Thessaly, BIOPOLIS, 41500 Larissa, Greece; (M.N.); (G.D.A.)
| | - Efrosyni Paraskeva
- Laboratory of Physiology, Faculty of Medicine, University of Thessaly, BIOPOLIS, 41500 Larissa, Greece;
| | - George Simos
- Laboratory of Biochemistry, Faculty of Medicine, University of Thessaly, BIOPOLIS, 41500 Larissa, Greece; (A.Y.); (I.M.); (G.C.)
- Gerald Bronfman Department of Oncology, Faculty of Medicine, McGill University, Montreal, QC H4A 3T2, Canada
- Correspondence:
| |
Collapse
|
34
|
Zuo Q, Yang Y, Lyu Y, Yang C, Chen C, Salman S, Huang TYT, Wicks EE, Jackson W, Datan E, Qin W, Semenza GL. Plexin-B3 expression stimulates MET signaling, breast cancer stem cell specification, and lung metastasis. Cell Rep 2023; 42:112164. [PMID: 36857181 DOI: 10.1016/j.celrep.2023.112164] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 12/21/2022] [Accepted: 02/09/2023] [Indexed: 03/02/2023] Open
Abstract
Intratumoral hypoxia is a microenvironmental feature that promotes breast cancer progression and is associated with cancer mortality. Plexin B3 (PLXNB3) is highly expressed in estrogen receptor-negative breast cancer, but the underlying mechanisms and consequences have not been thoroughly investigated. Here, we report that PLXNB3 expression is increased in response to hypoxia and that PLXNB3 is a direct target gene of hypoxia-inducible factor 1 (HIF-1) in human breast cancer cells. PLXNB3 expression is correlated with HIF-1α immunohistochemistry, breast cancer grade and stage, and patient mortality. Mechanistically, PLXNB3 is required for hypoxia-induced MET/SRC/focal adhesion kinase (FAK) and MET/SRC/STAT3/NANOG signaling as well as hypoxia-induced breast cancer cell migration, invasion, and cancer stem cell specification. PLXNB3 knockdown impairs tumor formation and lung metastasis in orthotopic breast cancer mouse models.
Collapse
Affiliation(s)
- Qiaozhu Zuo
- Armstrong Oxygen Biology Research Center and Vascular Program, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200032, China
| | - Yongkang Yang
- Armstrong Oxygen Biology Research Center and Vascular Program, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD 21205, USA
| | - Yajing Lyu
- Armstrong Oxygen Biology Research Center and Vascular Program, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Chen Yang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200032, China
| | - Chelsey Chen
- Armstrong Oxygen Biology Research Center and Vascular Program, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Shaima Salman
- Armstrong Oxygen Biology Research Center and Vascular Program, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Tina Yi-Ting Huang
- Armstrong Oxygen Biology Research Center and Vascular Program, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Elizabeth E Wicks
- Armstrong Oxygen Biology Research Center and Vascular Program, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Walter Jackson
- Armstrong Oxygen Biology Research Center and Vascular Program, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Emmanuel Datan
- Armstrong Oxygen Biology Research Center and Vascular Program, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Wenxin Qin
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200032, China
| | - Gregg L Semenza
- Armstrong Oxygen Biology Research Center and Vascular Program, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD 21205, USA; Departments of Biological Chemistry, Medicine, Pediatrics, and Radiation Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
35
|
Understanding the Contribution of Lactate Metabolism in Cancer Progress: A Perspective from Isomers. Cancers (Basel) 2022; 15:cancers15010087. [PMID: 36612084 PMCID: PMC9817756 DOI: 10.3390/cancers15010087] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/13/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022] Open
Abstract
Lactate mediates multiple cell-intrinsic effects in cancer metabolism in terms of development, maintenance, and metastasis and is often correlated with poor prognosis. Its functions are undertaken as an energy source for neighboring carcinoma cells and serve as a lactormone for oncogenic signaling pathways. Indeed, two isomers of lactate are produced in the Warburg effect: L-lactate and D-lactate. L-lactate is the main end-production of glycolytic fermentation which catalyzes glucose, and tiny D-lactate is fabricated through the glyoxalase system. Their production inevitably affects cancer development and therapy. Here, we systematically review the mechanisms of lactate isomers production, and highlight emerging evidence of the carcinogenic biological effects of lactate and its isomers in cancer. Accordingly, therapy that targets lactate and its metabolism is a promising approach for anticancer treatment.
Collapse
|
36
|
Lu H, Yang M, Zhou Q. Reprogramming transcription after DNA damage: recognition, response, repair, and restart. Trends Cell Biol 2022:S0962-8924(22)00261-6. [PMID: 36513571 DOI: 10.1016/j.tcb.2022.11.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/20/2022] [Accepted: 11/24/2022] [Indexed: 12/14/2022]
Abstract
Genome integrity is constantly challenged by endogenous and exogenous insults that cause DNA damage. To cope with these threats, cells have a surveillance mechanism, known as the DNA damage response (DDR), to repair any lesions. Although transcription has long been implicated in DNA repair, how transcriptional reprogramming is coordinated with the DDR is just beginning to be understood. In this review, we highlight recent advances in elucidating the molecular mechanisms underlying major transcriptional events, including RNA polymerase (Pol) II stalling and transcriptional silencing and recovery, which occur in response to DNA damage. Furthermore, we discuss how such transcriptional adaptation contributes to sensing and eliminating damaged DNA and how it can jeopardize genome integrity when it goes awry.
Collapse
Affiliation(s)
- Huasong Lu
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China.
| | - Min Yang
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Qiang Zhou
- School of Biological Sciences, Faculty of Science, The University of Hong Kong, Hong Kong.
| |
Collapse
|
37
|
Yang Y, Chen C, Zuo Q, Lu H, Salman S, Lyu Y, Huang TYT, Wicks EE, Jackson W, Datan E, Wang R, Wang Y, Le N, Zhu Y, Qin W, Semenza GL. NARF is a hypoxia-induced coactivator for OCT4-mediated breast cancer stem cell specification. SCIENCE ADVANCES 2022; 8:eabo5000. [PMID: 36490339 PMCID: PMC9733926 DOI: 10.1126/sciadv.abo5000] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 10/27/2022] [Indexed: 06/17/2023]
Abstract
Hypoxia is a key characteristic of the breast cancer microenvironment that promotes expression of the transcriptional activator hypoxia-inducible factor 1 (HIF-1) and is associated with poor patient outcome. HIF-1 increases the expression or activity of stem cell pluripotency factors, which control breast cancer stem cell (BCSC) specification and are required for cancer metastasis. Here, we identify nuclear prelamin A recognition factor (NARF) as a hypoxia-inducible, HIF-1 target gene in human breast cancer cells. NARF functions as an essential coactivator by recruiting the histone demethylase KDM6A to OCT4 bound to genes encoding the pluripotency factors NANOG, KLF4, and SOX2, leading to demethylation of histone H3 trimethylated at lysine-27 (H3K27me3), thereby increasing the expression of NANOG, KLF4, and SOX2, which, together with OCT4, mediate BCSC specification. Knockdown of NARF significantly decreased the BCSC population in vitro and markedly impaired tumor initiation capacity and lung metastasis in orthotopic mouse models.
Collapse
Affiliation(s)
- Yongkang Yang
- Armstrong Oxygen Biology Research Center and Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD 21205, USA
| | - Chelsey Chen
- Armstrong Oxygen Biology Research Center and Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Qiaozhu Zuo
- Armstrong Oxygen Biology Research Center and Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200032, China
| | - Haiquan Lu
- Armstrong Oxygen Biology Research Center and Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD 21205, USA
| | - Shaima Salman
- Armstrong Oxygen Biology Research Center and Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Yajing Lyu
- Armstrong Oxygen Biology Research Center and Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Tina Yi-Ting Huang
- Armstrong Oxygen Biology Research Center and Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Elizabeth E. Wicks
- Armstrong Oxygen Biology Research Center and Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Walter Jackson
- Armstrong Oxygen Biology Research Center and Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Emmanuel Datan
- Armstrong Oxygen Biology Research Center and Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Ru Wang
- Armstrong Oxygen Biology Research Center and Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Yufeng Wang
- Armstrong Oxygen Biology Research Center and Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Nguyet Le
- Predoctoral Training Program in Human Genetics and Molecular Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Yayun Zhu
- Armstrong Oxygen Biology Research Center and Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Wenxin Qin
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200032, China
| | - Gregg L. Semenza
- Armstrong Oxygen Biology Research Center and Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD 21205, USA
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
38
|
Semenza GL. Hypoxia-inducible factors: roles in cardiovascular disease progression, prevention, and treatment. Cardiovasc Res 2022; 119:371-380. [PMID: 35687650 DOI: 10.1093/cvr/cvac089] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Indexed: 12/17/2022] Open
Abstract
Hypoxia-inducible factors (HIF)-1 and HIF-2 are master regulators of oxygen homeostasis that regulate the expression of thousands of genes in order to match O2 supply and demand. A large body of experimental data links HIF activity to protection against multiple disorders affecting the cardiovascular system: ischemic cardiovascular disease (including coronary artery disease and peripheral artery disease), through collateral blood vessel formation and preconditioning phenomena; emphysema; lymphedema; and lung transplant rejection. In these disorders, strategies to increase the expression of one or both HIFs may be of therapeutic utility. Conversely, extensive data link HIFs to the pathogenesis of pulmonary arterial hypertension and drugs that inhibit one or both HIFs may be useful in treating this disease.
Collapse
Affiliation(s)
- Gregg L Semenza
- Armstrong Oxygen Biology Research Center, Vascular Program, Institute for Cell Engineering; and Departments of Genetic Medicine, Pediatrics, Medicine, Oncology, Radiation Oncology, and Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
39
|
Randolph K, Hyder U, D’Orso I. KAP1/TRIM28: Transcriptional Activator and/or Repressor of Viral and Cellular Programs? Front Cell Infect Microbiol 2022; 12:834636. [PMID: 35281453 PMCID: PMC8904932 DOI: 10.3389/fcimb.2022.834636] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 02/03/2022] [Indexed: 01/01/2023] Open
Abstract
Several transcriptional and epigenetic regulators have been functionally linked to the control of viral and cellular gene expression programs. One such regulator is Krüppel-associated box (KRAB)-associated protein 1 (KAP1: also named TRIM28 or TIF1β), which has been extensively studied in the past three decades. Here we offer an up-to date review of its various functions in a diversity of contexts. We first summarize the discovery of KAP1 repression of endogenous retroviruses during development. We then deliberate evidence in the literature suggesting KAP1 is both an activator and repressor of HIV-1 transcription and discuss experimental differences and limitations of previous studies. Finally, we discuss KAP1 regulation of DNA and RNA viruses, and then expand on KAP1 control of cellular responses and immune functions. While KAP1 positive and negative regulation of viral and cellular transcriptional programs is vastly documented, our mechanistic understanding remains narrow. We thus propose that precision genetic tools to reveal direct KAP1 functions in gene regulation will be required to not only illuminate new biology but also provide the foundation to translate the basic discoveries from the bench to the clinics.
Collapse
|