1
|
Lei J, Xu ZG. Reaction strategies for the meta-selective functionalization of pyridine through dearomatization. Mol Divers 2024:10.1007/s11030-024-10861-5. [PMID: 38647989 DOI: 10.1007/s11030-024-10861-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 03/25/2024] [Indexed: 04/25/2024]
Abstract
The pyridine moiety is a crucial structural component in various pharmaceuticals. While the direct ortho- and para-functionalization of pyridines is relatively straightforward, the meta-selective C-H functionalization remains a significant challenge. This review highlights dearomatization strategies as a key area of interest in expanding the application of meta-C-H functionalization of pyridines. Dearomatization enables the meta-functionalization through various catalytic methods that directly generate dearomatization products, and some products can be rearomatized back to pyridine derivatives. Furthermore, this article also covers the dearomatization of multiple positions of pyridine in the synthesis of polycyclic compounds. It offers a comprehensive overview of the latest advancements in dearomatization at different positions of pyridine, aiming to provide a valuable resource for researchers in this field. It also highlights the advantages and limitations of existing technologies, aiming to inform a broader audience about this important field and foster its future development.
Collapse
Affiliation(s)
- Jie Lei
- College of Pharmacy, National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, IATTI, Chongqing University of Arts and Sciences, Chongqing, 402160, China
| | - Zhi-Gang Xu
- College of Pharmacy, National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, IATTI, Chongqing University of Arts and Sciences, Chongqing, 402160, China.
| |
Collapse
|
2
|
Escolano M, Gaviña D, Alzuet-Piña G, Díaz-Oltra S, Sánchez-Roselló M, Pozo CD. Recent Strategies in the Nucleophilic Dearomatization of Pyridines, Quinolines, and Isoquinolines. Chem Rev 2024; 124:1122-1246. [PMID: 38166390 PMCID: PMC10902862 DOI: 10.1021/acs.chemrev.3c00625] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
Dearomatization reactions have become fundamental chemical transformations in organic synthesis since they allow for the generation of three-dimensional complexity from two-dimensional precursors, bridging arene feedstocks with alicyclic structures. When those processes are applied to pyridines, quinolines, and isoquinolines, partially or fully saturated nitrogen heterocycles are formed, which are among the most significant structural components of pharmaceuticals and natural products. The inherent challenge of those transformations lies in the low reactivity of heteroaromatic substrates, which makes the dearomatization process thermodynamically unfavorable. Usually, connecting the dearomatization event to the irreversible formation of a strong C-C, C-H, or C-heteroatom bond compensates the energy required to disrupt the aromaticity. This aromaticity breakup normally results in a 1,2- or 1,4-functionalization of the heterocycle. Moreover, the combination of these dearomatization processes with subsequent transformations in tandem or stepwise protocols allows for multiple heterocycle functionalizations, giving access to complex molecular skeletons. The aim of this review, which covers the period from 2016 to 2022, is to update the state of the art of nucleophilic dearomatizations of pyridines, quinolines, and isoquinolines, showing the extraordinary ability of the dearomative methodology in organic synthesis and indicating their limitations and future trends.
Collapse
Affiliation(s)
- Marcos Escolano
- Department of Organic Chemistry, Faculty of Pharmacy, University of Valencia, 46100 Burjassot, Valencia, Spain
| | - Daniel Gaviña
- Department of Organic Chemistry, Faculty of Pharmacy, University of Valencia, 46100 Burjassot, Valencia, Spain
| | - Gloria Alzuet-Piña
- Department of Inorganic Chemistry, Faculty of Pharmacy, University of Valencia, 46100 Burjassot, Valencia, Spain
| | - Santiago Díaz-Oltra
- Department of Organic Chemistry, Faculty of Pharmacy, University of Valencia, 46100 Burjassot, Valencia, Spain
| | - María Sánchez-Roselló
- Department of Organic Chemistry, Faculty of Pharmacy, University of Valencia, 46100 Burjassot, Valencia, Spain
| | - Carlos Del Pozo
- Department of Organic Chemistry, Faculty of Pharmacy, University of Valencia, 46100 Burjassot, Valencia, Spain
| |
Collapse
|
3
|
Comparini LM, Pineschi M. Recent Progresses in the Catalytic Stereoselective Dearomatization of Pyridines. Molecules 2023; 28:6186. [PMID: 37687015 PMCID: PMC10488975 DOI: 10.3390/molecules28176186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/14/2023] [Accepted: 08/18/2023] [Indexed: 09/10/2023] Open
Abstract
1,2- and 1,4-dihydropyridines and N-substituted 2-pyridones are very important structural motifs due to their synthetic versatility and vast presence in a variety of alkaloids and bioactive molecules. In this article, we gather and summarize the catalytic and stereoselective synthesis of partially hydrogenated pyridines and pyridones via the dearomative reactions of pyridine derivatives up to mid-2023. The material is fundamentally organized according to the type of reactivity (electrophilic/nucleophilic) of the pyridine nucleus. The material is further sub-divided taking into account the nucleophilic species when dealing with electrophilic pyridines and considering the reactivity manifold of pyridine derivatives behaving as nucleophiles at the nitrogen site. The latter more recent approach allows for an unconventional entry to chiral N-substituted 2- and 4-pyridones in non-racemic form.
Collapse
Affiliation(s)
| | - Mauro Pineschi
- Department of Pharmacy, University of Pisa, Via Bonanno 33, 56126 Pisa, Italy;
| |
Collapse
|
4
|
Zhang XL, Gu J, Cui WH, Ye Z, Yi W, Zhang Q, He Y. Stepwise Asymmetric Allylic Substitution-Isomerization Enabled Mimetic Synthesis of Axially Chiral B,N-Heterocycles. Angew Chem Int Ed Engl 2022; 61:e202210456. [PMID: 36281992 DOI: 10.1002/anie.202210456] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Indexed: 11/07/2022]
Abstract
Axially chiral molecules bearing multiple stereogenic axes are of great importance in the field of organic chemistry. However, the efficient construction of atropisomers featuring two different types of stereogenic axes has rarely been explored. Herein, we report the novel atroposelective synthesis of configurationally stable axially chiral B,N-heterocycles. By using stepwise asymmetric allylic substitution-isomerization (AASI) strategy, diaxially chiral B,N-heterocycles bearing B-C and C-N axes that are related to the moieties of axially chiral enamines and arylborons were also obtained. In this case, all four stereoisomers of diaxially chiral B,N-heterocycles were stereodivergently afforded in high enantioselectivities. Density functional theory (DFT) studies demonstrated that the NH⋅⋅⋅π interactions played a unique role in the promotion of stereospecific isomerization, thereby leading to the highly efficient central-to-axial chirality transfer.
Collapse
Affiliation(s)
- Xiu-Lian Zhang
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Jun Gu
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Wen-Hao Cui
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Zhiwen Ye
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Wenbin Yi
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Qiang Zhang
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Ying He
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| |
Collapse
|
5
|
Zhang X, Liu YZ, Shao H, Ma X. Advances in Atroposelectively De Novo Synthesis of Axially Chiral Heterobiaryl Scaffolds. Molecules 2022; 27:8517. [PMID: 36500610 PMCID: PMC9739056 DOI: 10.3390/molecules27238517] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 11/25/2022] [Accepted: 11/27/2022] [Indexed: 12/12/2022] Open
Abstract
Axially chiral heterobiaryl frameworks are privileged structures in many natural products, pharmaceutically active molecules, and chiral ligands. Therefore, a variety of approaches for constructing these skeletons have been developed. Among them, de novo synthesis, due to its highly convergent and superior atom economy, serves as a promising strategy to access these challenging scaffolds including C-N, C-C, and N-N chiral axes. So far, several elegant reviews on the synthesis of axially chiral heterobiaryl skeletons have been disclosed, however, atroposelective construction of the heterobiaryl subunits by de novo synthesis was rarely covered. Herein, we summarized the recent advances in the catalytic asymmetric synthesis of the axially chiral heterobiaryl scaffold via de novo synthetic strategies. The related mechanism, scope, and applications were also included.
Collapse
Affiliation(s)
- Xiaoke Zhang
- Natural Products Research Centre, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
- Central Laboratory, Chongqing University Fu Ling Hospital, Chongqing 408000, China
| | - Ya-Zhou Liu
- Natural Products Research Centre, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Huawu Shao
- Natural Products Research Centre, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Xiaofeng Ma
- Natural Products Research Centre, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| |
Collapse
|
6
|
Zhang E, Chen C, Wang X, Wang J, Shang Y. Palladium-catalyzed dearomative 1,4-arylmethylenation of naphthalenes. Org Chem Front 2022. [DOI: 10.1039/d2qo00266c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An efficient palladium-catalyzed construction of E-exocyclic-double-bond-containing spirooxindoles through 1,4-arylmethylenation of naphthalenes has been developed. Aryl aldehyde-derived N‑tosylhydrazones were successfully applied as carbene precursors to capture the endocyclic π-allylpalladium intermediate, which...
Collapse
|