1
|
Wang Y, Guo H, Lu Y, Yang W, Li T, Ji X. Crystal structure and nucleic acid binding mode of CPV NSP9: implications for viroplasm in Reovirales. Nucleic Acids Res 2024; 52:11115-11127. [PMID: 39287123 PMCID: PMC11472163 DOI: 10.1093/nar/gkae803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 08/28/2024] [Accepted: 09/03/2024] [Indexed: 09/19/2024] Open
Abstract
Cytoplasmic polyhedrosis viruses (CPVs), like other members of the order Reovirales, produce viroplasms, hubs of viral assembly that shield them from host immunity. Our study investigates the potential role of NSP9, a nucleic acid-binding non-structural protein encoded by CPVs, in viroplasm biogenesis. We determined the crystal structure of the NSP9 core (NSP9ΔC), which shows a dimeric organization topologically similar to the P9-1 homodimers of plant reoviruses. The disordered C-terminal region of NSP9 facilitates oligomerization but is dispensable for nucleic acid binding. NSP9 robustly binds to single- and double-stranded nucleic acids, regardless of RNA or DNA origin. Mutagenesis studies further confirmed that the dimeric form of NSP9 is critical for nucleic acid binding due to positively charged residues that form a tunnel during homodimerization. Gel migration assays reveal a unique nucleic acid binding pattern, with the sequential appearance of two distinct complexes dependent on protein concentration. The similar gel migration pattern shared by NSP9 and rotavirus NSP3, coupled with its structural resemblance to P9-1, hints at a potential role in translational regulation or viral genome packaging, which may be linked to viroplasm. This study advances our understanding of viroplasm biogenesis and Reovirales replication, providing insights into potential antiviral drug targets.
Collapse
Affiliation(s)
- Yeda Wang
- Department of Infectious Diseases, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Institute of Viruses and Infectious Diseases, Chemistry and Biomedicine Innovation Center (ChemBIC), Institute of Artificial Intelligence Biomedicine, Nanjing University, Nanjing, China
| | - Hangtian Guo
- Department of Infectious Diseases, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Institute of Viruses and Infectious Diseases, Chemistry and Biomedicine Innovation Center (ChemBIC), Institute of Artificial Intelligence Biomedicine, Nanjing University, Nanjing, China
| | - Yuhao Lu
- Department of Infectious Diseases, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Institute of Viruses and Infectious Diseases, Chemistry and Biomedicine Innovation Center (ChemBIC), Institute of Artificial Intelligence Biomedicine, Nanjing University, Nanjing, China
| | - Wanbin Yang
- Department of Infectious Diseases, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Institute of Viruses and Infectious Diseases, Chemistry and Biomedicine Innovation Center (ChemBIC), Institute of Artificial Intelligence Biomedicine, Nanjing University, Nanjing, China
| | - Tinghan Li
- Department of Infectious Diseases, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Institute of Viruses and Infectious Diseases, Chemistry and Biomedicine Innovation Center (ChemBIC), Institute of Artificial Intelligence Biomedicine, Nanjing University, Nanjing, China
| | - Xiaoyun Ji
- Department of Infectious Diseases, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Institute of Viruses and Infectious Diseases, Chemistry and Biomedicine Innovation Center (ChemBIC), Institute of Artificial Intelligence Biomedicine, Nanjing University, Nanjing, China
- Engineering Research Center of Protein and Peptide Medicine, Ministry of Education, China
| |
Collapse
|
2
|
Štěrbová P, Wang CH, Carillo KJD, Lou YC, Kato T, Namba K, Tzou DLM, Chang WH. Molecular Mechanism of pH-Induced Protrusion Configuration Switching in Piscine Betanodavirus Implies a Novel Antiviral Strategy. ACS Infect Dis 2024; 10:3304-3319. [PMID: 39087906 PMCID: PMC11406519 DOI: 10.1021/acsinfecdis.4c00407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
Many viruses contain surface spikes or protrusions that are essential for virus entry. These surface structures can thereby be targeted by antiviral drugs to treat viral infections. Nervous necrosis virus (NNV), a simple nonenveloped virus in the genus of betanodavirus, infects fish and damages aquaculture worldwide. NNV has 60 conspicuous surface protrusions, each comprising three protrusion domains (P-domain) of its capsid protein. NNV uses protrusions to bind to common receptors of sialic acids on the host cell surface to initiate its entry via the endocytic pathway. However, structural alterations of NNV in response to acidic conditions encountered during this pathway remain unknown, while detailed interactions of protrusions with receptors are unclear. Here, we used cryo-EM to discover that Grouper NNV protrusions undergo low-pH-induced compaction and resting. NMR and molecular dynamics (MD) simulations were employed to probe the atomic details. A solution structure of the P-domain at pH 7.0 revealed a long flexible loop (amino acids 311-330) and a pocket outlined by this loop. Molecular docking analysis showed that the N-terminal moiety of sialic acid inserted into this pocket to interact with conserved residues inside. MD simulations demonstrated that part of this loop converted to a β-strand under acidic conditions, allowing for P-domain trimerization and compaction. Additionally, a low-pH-favored conformation is attained for the linker connecting the P-domain to the NNV shell, conferring resting protrusions. Our findings uncover novel pH-dependent conformational switching mechanisms underlying NNV protrusion dynamics potentially utilized for facilitating NNV entry, providing new structural insights into complex NNV-host interactions with the identification of putative druggable hotspots on the protrusion.
Collapse
Affiliation(s)
- Petra Štěrbová
- Chemical Biology and Molecular Biophysics Program, Taiwan International Graduate Program, Academia Sinica, Taipei 11529, Taiwan
- College of Life Science, National Tsing Hua University, Hsinchu 30044, Taiwan
- Institute of Chemistry, Academia Sinica, Taipei 11529, Taiwan
| | | | | | - Yuan-Chao Lou
- Biomedical Translation Research Center, Academia Sinica, Taipei 11529, Taiwan
| | - Takayuki Kato
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Keiichi Namba
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Der-Lii M Tzou
- Institute of Chemistry, Academia Sinica, Taipei 11529, Taiwan
| | - Wei-Hau Chang
- Chemical Biology and Molecular Biophysics Program, Taiwan International Graduate Program, Academia Sinica, Taipei 11529, Taiwan
- Institute of Chemistry, Academia Sinica, Taipei 11529, Taiwan
- Genomics Research Center, Academia Sinica, Taipei 11529, Taiwan
- Institute of Physics, Academia Sinica, Taipei 11529, Taiwan
| |
Collapse
|
3
|
Tsukamoto Y, Igarashi M, Kato H. Targeting cap1 RNA methyltransferases as an antiviral strategy. Cell Chem Biol 2024; 31:86-99. [PMID: 38091983 DOI: 10.1016/j.chembiol.2023.11.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 10/30/2023] [Accepted: 11/20/2023] [Indexed: 01/21/2024]
Abstract
Methylation is one of the critical modifications that regulates numerous biological processes. Guanine capping and methylation at the 7th position (m7G) have been shown to mature mRNA for increased RNA stability and translational efficiency. The m7G capped cap0 RNA remains immature and requires additional methylation at the first nucleotide (N1-2'-O-Me), designated as cap1, to achieve full maturation. This cap1 RNA with N1-2'-O-Me prevents its recognition by innate immune sensors as non-self. Viruses have also evolved various strategies to produce self-like capped RNAs with the N1-2'-O-Me that potentially evades the antiviral response and establishes an efficient replication. In this review, we focus on the importance of the presence of N1-2'-O-Me in viral RNAs and discuss the potential for drug development by targeting host and viral N1-2'-O-methyltransferases.
Collapse
Affiliation(s)
- Yuta Tsukamoto
- Institute of Cardiovascular Immunology, Medical Faculty, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Manabu Igarashi
- Division of Global Epidemiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan; International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Hiroki Kato
- Institute of Cardiovascular Immunology, Medical Faculty, University Hospital Bonn, University of Bonn, Bonn, Germany.
| |
Collapse
|
4
|
Pan J, Qiu Q, Kumar D, Xu J, Tong X, Shen Z, Zhu M, Hu X, Gong C. Interaction between Bombyx mori Cytoplasmic Polyhedrosis Virus NSP8 and BmAgo2 Inhibits RNA Interference and Enhances Virus Proliferation. Microbiol Spectr 2023; 11:e0493822. [PMID: 37341621 PMCID: PMC10434170 DOI: 10.1128/spectrum.04938-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 05/28/2023] [Indexed: 06/22/2023] Open
Abstract
Some insect viruses encode suppressors of RNA interference (RNAi) to counteract the antiviral RNAi pathway. However, it is unknown whether Bombyx mori cytoplasmic polyhedrosis virus (BmCPV) encodes an RNAi suppressor. In this study, the presence of viral small interfering RNA (vsiRNA) in BmN cells infected with BmCPV was confirmed by small RNA sequencing. The Dual-Luciferase reporter test demonstrated that BmCPV infection may prevent firefly luciferase (Luc) gene silencing caused by particular short RNA. It was also established that the inhibition relied on the nonstructural protein NSP8, which suggests that NSP8 was a possible RNAi suppressor. In cultured BmN cells, the expressions of viral structural protein 1 (vp1) and NSP9 were triggered by overexpression of nsp8, suggesting that BmCPV proliferation was enhanced by NSP8. A pulldown assay was conducted with BmCPV genomic double-stranded RNA (dsRNA) labeled with biotin. The mass spectral detection of NSP8 in the pulldown complex suggests that NSP8 is capable of direct binding to BmCPV genomic dsRNA. The colocalization of NSP8 and B. mori Argonaute 2 (BmAgo2) was detected by an immunofluorescence assay, leading to the hypothesis that NSP8 interacts with BmAgo2. Coimmunoprecipitation further supported the present investigation. Moreover, vasa intronic protein, a component of RNA-induced silencing complex (RISC), could be detected in the coprecipitation complex of NSP8 by mass spectrum analysis. NSP8 and the mRNA decapping protein (Dcp2) were also discovered to colocalize to processing bodies (P bodies) for RNAi-mediated gene silencing in Saccharomyces cerevisiae. These findings revealed that by interacting with BmAgo2 and suppressing RNAi, NSP8 promoted BmCPV growth. IMPORTANCE It has been reported that the RNAi pathway is inhibited by binding RNAi suppressors encoded by some insect-specific viruses belonging to Dicistroviridae, Nodaviridae, or Birnaviridae to dsRNAs to protect dsRNAs from being cut by Dicer-2. However, it is unknown whether BmCPV, belonging to Spinareoviridae, encodes an RNAi suppressor. In this study, we found that nonstructural protein NSP8 encoded by BmCPV inhibits small interfering RNA (siRNA)-induced RNAi and that NSP8, as an RNAi suppressor, can bind to viral dsRNAs and interact with BmAgo2. Moreover, vasa intronic protein, a component of RISC, was found to interact with NSP8. Heterologously expressed NSP8 and Dcp2 were colocalized to P bodies in yeast. These results indicated that NSP8 promoted BmCPV proliferation by binding itself to BmCPV genomic dsRNAs and interacting with BmAgo2 through suppression of siRNA-induced RNAi. Our findings deepen our understanding of the game between BmCPV and silkworm in regulating viral infection.
Collapse
Affiliation(s)
- Jun Pan
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Qunnan Qiu
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Dhiraj Kumar
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou, Jiangsu, China
- Department of Zoology, Hansraj College, University of Delhi, Delhi, India
| | - Jian Xu
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Xinyu Tong
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Zeen Shen
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Min Zhu
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Xiaolong Hu
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou, Jiangsu, China
- Agricultural Biotechnology Research Institute, Agricultural Biotechnology and Ecological Research Institute, Soochow University, Suzhou, China
| | - Chengliang Gong
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou, Jiangsu, China
- Agricultural Biotechnology Research Institute, Agricultural Biotechnology and Ecological Research Institute, Soochow University, Suzhou, China
| |
Collapse
|
5
|
Konevtsova OV, Golushko IY, Podgornik R, Rochal SB. Integration of Cypoviruses into polyhedrin matrix. NANOSCALE ADVANCES 2023; 5:4140-4148. [PMID: 37560430 PMCID: PMC10408579 DOI: 10.1039/d3na00393k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 07/14/2023] [Indexed: 08/11/2023]
Abstract
Unlike in other viruses, in Cypoviruses the genome is doubly protected since their icosahedral capsids are embedded into a perfect polyhedrin crystal. Current experimental methods cannot resolve the resulting interface structure and we propose a symmetry-based approach to predict it. We reveal a remarkable match between the surfaces of Cypovirus and the outer polyhedrin matrix. The match arises due to the preservation of the common tetragonal symmetry, allowing perfect contacts of polyhedrin trimers with VP1 and VP5 capsid proteins. We highlight a crucial role of the VP5 proteins in embedding the Cypovirus into the polyhedrin matrix and discuss the relationship between the nucleoside triphosphatase activity of the proteins and their role in the superstructure formation. Additionally, we propose an electrostatic mechanism that drives the viral superstructure disassembly occurring in the alkaline environment of the insect intestines. Our study may underpin novel strategies for engineering proteinaceous nanocontainers in diverse biotechnological and chemical applications.
Collapse
Affiliation(s)
| | - Ivan Yu Golushko
- Physics Faculty, Southern Federal University Rostov-on-Don Russia
| | - Rudolf Podgornik
- School of Physical Sciences and Kavli Institute for Theoretical Sciences, University of Chinese Academy of Sciences Beijing 100049 China
- CAS Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences Beijing 100190 China
- Wenzhou Institute of the University of Chinese Academy of Sciences Wenzhou Zhejiang 325000 China
| | - Sergei B Rochal
- Physics Faculty, Southern Federal University Rostov-on-Don Russia
| |
Collapse
|
6
|
Stevens A, Cui Y, Shivakoti S, Zhou ZH. Asymmetric reconstruction of the aquareovirus core at near-atomic resolution and mechanism of transcription initiation. Protein Cell 2023; 14:544-548. [PMID: 36856784 PMCID: PMC10305738 DOI: 10.1093/procel/pwad002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/30/2022] [Indexed: 02/05/2023] Open
Affiliation(s)
- Alexander Stevens
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles (UCLA), 609 Charles E Young Dr E, Los Angeles, CA 90095, USA
- California NanoSystems Institute, UCLA, 570 Westwood Plaza Building 114 | Mail Code: 722710, Los Angeles, CA 90095, USA
- Department of Chemistry and Biochemistry, UCLA, 607 Charles E. Young Drive East | Box 951569, Los Angeles, CA 90095-1569, USA
| | - Yanxiang Cui
- California NanoSystems Institute, UCLA, 570 Westwood Plaza Building 114 | Mail Code: 722710, Los Angeles, CA 90095, USA
| | - Sakar Shivakoti
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles (UCLA), 609 Charles E Young Dr E, Los Angeles, CA 90095, USA
| | - Z Hong Zhou
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles (UCLA), 609 Charles E Young Dr E, Los Angeles, CA 90095, USA
- California NanoSystems Institute, UCLA, 570 Westwood Plaza Building 114 | Mail Code: 722710, Los Angeles, CA 90095, USA
| |
Collapse
|
7
|
Martemyanov VV, Akhanaev YB, Belousova IA, Pavlusin SV, Yakimova ME, Kharlamova DD, Ageev AA, Golovina AN, Astapenko SA, Kolosov AV, Ananko GG, Taranov OS, Shvalov AN, Bodnev SA, Ershov NI, Grushevaya IV, Timofeyev MA, Tokarev YS. A New Cypovirus-1 Strain as a Promising Agent for Lepidopteran Pest Control. Microbiol Spectr 2023; 11:e0385522. [PMID: 37154690 PMCID: PMC10269911 DOI: 10.1128/spectrum.03855-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 04/12/2023] [Indexed: 05/10/2023] Open
Abstract
Now more than ever researchers provide more and more evidence that it is necessary to develop an ecologically friendly approach to pest control. This is reflected in a sharp increase in the value of the biological insecticide market in recent decades. In our study, we found a virus strain belonging to the genus Cypovirus (Reoviridae); the strain was isolated from Dendrolimus sibiricus, possessing attractive features as a candidate for mass production of biological agents for lepidopteran-pest control. We describe the morphological, molecular, and ecological features of the new Cypovirus strain. This strain was found to be highly virulent to D. sibiricus (the half-lethal dose is 25 occlusion bodies per second-instar larva) and to have a relatively wide host range (infecting representatives of five families of Lepidoptera: Erebidae, Sphingidae, Pieridae, Noctuidae, and Lasiocampidae). The virus strain showed a strong interaction with a nontoxic adjuvant (optical brightener), which decreased the lethal dose for both main and alternative hosts, decreased lethal time, and may expand the host range. Moreover, we demonstrated that the insecticidal features were preserved after passaging through the most economically suitable host. By providing strong arguments for the possible use of this strain in pest control, we call on virologists, pest control specialists, and molecular biologists to give more attention to the Cypovirus genus, which may lead to new insights in the field of pest control research and may provide significant advantages to compare with baculoviruses and Bacillus thuringiensis products which are nowadays main source of bioinsecticides. IMPORTANCE In this article, we describe a newly discovered cypovirus strain that displays features ideally suited for the development of a modern biological insecticide: high potency, relatively broad host range, true regulating effect, flexible production (possibility to choose host species for production), interaction with enhancing adjuvants, and ecologically friendly. Based on an alignment of CPV genomes, we suggest that the enhanced host range of this new strain is the sequence of evolutionary events that occurred after coinfections involving different CPV species within the same host. These findings suggest that we need to positively reconsider CPVs as prospective agents as biocontrol products.
Collapse
Affiliation(s)
- Vyacheslav V. Martemyanov
- Laboratory of Ecological Physiology, Institute of Systematics and Ecology of Animals SB RAS, Novosibirsk, Russia
- Institute of Biology, Irkutsk State University, Irkutsk, Russia
| | - Yuriy B. Akhanaev
- Laboratory of Ecological Physiology, Institute of Systematics and Ecology of Animals SB RAS, Novosibirsk, Russia
| | - Irina A. Belousova
- Laboratory of Ecological Physiology, Institute of Systematics and Ecology of Animals SB RAS, Novosibirsk, Russia
| | - Sergey V. Pavlusin
- Laboratory of Ecological Physiology, Institute of Systematics and Ecology of Animals SB RAS, Novosibirsk, Russia
- Biological Institute, National Research Tomsk State University, Tomsk, Russia
| | - Maria E. Yakimova
- Laboratory of Ecological Physiology, Institute of Systematics and Ecology of Animals SB RAS, Novosibirsk, Russia
- Department of Information Biology, Novosibirsk State University, Novosibirsk, Russia
| | - Daria D. Kharlamova
- Laboratory of Ecological Physiology, Institute of Systematics and Ecology of Animals SB RAS, Novosibirsk, Russia
- Institute of Biology, Irkutsk State University, Irkutsk, Russia
| | - Alexander A. Ageev
- Center of Forest Pyrology, Development of Forest Ecosystem Conservation, Forest Protection and Regeneration Technologies, branch of All-Russia Research Institute of Silviculture and Mechanization of Forestry, Krasnoyarsk, Russia
| | - Anna N. Golovina
- Center of Forest Pyrology, Development of Forest Ecosystem Conservation, Forest Protection and Regeneration Technologies, branch of All-Russia Research Institute of Silviculture and Mechanization of Forestry, Krasnoyarsk, Russia
| | - Sergey A. Astapenko
- Center of Forest Pyrology, Development of Forest Ecosystem Conservation, Forest Protection and Regeneration Technologies, branch of All-Russia Research Institute of Silviculture and Mechanization of Forestry, Krasnoyarsk, Russia
| | - Alexey V. Kolosov
- FBRI State Research Center of Virology and Biotechnology VECTOR, Koltsovo, Novosibirsk Region, Russia
| | - Grigory G. Ananko
- FBRI State Research Center of Virology and Biotechnology VECTOR, Koltsovo, Novosibirsk Region, Russia
| | - Oleg S. Taranov
- FBRI State Research Center of Virology and Biotechnology VECTOR, Koltsovo, Novosibirsk Region, Russia
| | - Alexander N. Shvalov
- FBRI State Research Center of Virology and Biotechnology VECTOR, Koltsovo, Novosibirsk Region, Russia
| | - Sergey A. Bodnev
- FBRI State Research Center of Virology and Biotechnology VECTOR, Koltsovo, Novosibirsk Region, Russia
| | | | - Inna V. Grushevaya
- All-Russian Institute of Plant Protection, Pushkin – St. Petersburg, Russia
| | | | - Yuri S. Tokarev
- All-Russian Institute of Plant Protection, Pushkin – St. Petersburg, Russia
| |
Collapse
|