1
|
Sang Y, Li H, Sun M, Ren J, Qu X. Persistent Luminescence-Based Nanoreservoir for Benign Photothermal-Reinforced Nanozymatic Therapy. ACS APPLIED MATERIALS & INTERFACES 2024; 16:49114-49123. [PMID: 39241120 DOI: 10.1021/acsami.4c10214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/08/2024]
Abstract
Adjusting the catalytic activity of nanozymes for enhanced oncotherapy has attracted significant interest. However, it remains challenging to engineer regulatory tactics with a minimal impact on normal tissues. By exploiting the advantages of energy storage, photostimulated, and long afterglow luminescence of persistent nanoparticles (PLNPs), a persistent luminescence-based nanoreservoir was produced to improve its catalytic activity for benign oncotherapy. In the study, PLNPs in a nanoreservoir with the ability to store photons served as a self-illuminant to promote its peroxidase-like activity and therapeutic efficacy by persistently motivating its photothermal effect before and after external irradiation ceased. The photostimulated and persistent luminescence of PLNPs and spatiotemporal controllability of exogenous light jointly alleviated adverse effects induced by prolonged irradiation and elevated the catalytic capability of the nanoreservoir. Ultimately, the system fulfilled benign photothermal-intensive nanozymatic therapy. This work provides new insights into boosting the catalytic activity of nanozymes for secure disease treatment.
Collapse
Affiliation(s)
- Yanjuan Sang
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Huimin Li
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
| | - Mengyu Sun
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Jinsong Ren
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Xiaogang Qu
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| |
Collapse
|
2
|
Wang L, Huang X, Xu S, An Y, Lv X, Zhu W, Xu S, Tu Y, Chen S, Lv Q, Zheng P. Fused in silico and bioactivity evaluation method for drug discovery: T001-10027877 was identified as an antiproliferative agent that targets EGFR T790M/C797S/L858R and EGFR T790M/L858R. BMC Chem 2024; 18:159. [PMID: 39192294 DOI: 10.1186/s13065-024-01279-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Accepted: 08/22/2024] [Indexed: 08/29/2024] Open
Abstract
BACKGROUND Facing the significant challenge of overcoming drug resistance in cancer treatment, particularly resistance caused by mutations in epidermal growth factor receptor (EGFR), the aim of our study was to identify potent EGFR inhibitors effective against the T790M/C797S/L858R mutant, a key player in resistance mechanisms. METHODS Our integrated in silico approach harnessed machine learning, virtual screening, and activity evaluation techniques to screen 5105 compounds from three libraries, aiming to find candidates capable of overcoming the resistance conferred by the T790M and C797S mutations within EGFR. This methodical process narrowed the search down to six promising compounds for further examination. RESULTS Kinase assays identified three compounds to which the T790M/C797S/L858R mutant exhibited increased sensitivity compared to the T790M/L858R mutant, highlighting the potential efficacy of these compounds against resistance mechanisms. Among them, T001-10027877 exhibited dual inhibitory effects, with IC50 values of 4.34 µM against EGFRT790M/C797S/L858R and 1.27 µM against EGFRT790M/L858R. Further investigations into the antiproliferative effects in H1975, A549, H460 and Ba/F3-EGFRL858/T790M/C797S cancer cells revealed that T001-10027877 was the most potent anticancer agent among the tested compounds. Additionally, the induction of H1975 cell apoptosis and cell cycle arrest by T001-10027877 were confirmed, elucidating its mechanism of action. CONCLUSIONS This study highlights the efficacy of combining computational techniques with bioactivity assessments in the quest for novel antiproliferative agents targeting complex EGFR mutations. In particular, T001-10027877 has great potential for overcoming EGFR-mediated resistance and merits further in vivo exploration. Our findings contribute valuable insights into the development of next-generation anticancer therapies, demonstrating the power of an integrated drug discovery approach.
Collapse
Affiliation(s)
- Linxiao Wang
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang, 330013, China.
| | - Xiaoling Huang
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang, 330013, China
| | - Shidi Xu
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang, 330013, China
| | - Yufeng An
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang, 330013, China
| | - Xinya Lv
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang, 330013, China
| | - Wufu Zhu
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang, 330013, China.
| | - Shan Xu
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang, 330013, China
| | - Yuanbiao Tu
- Cancer Research Center, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, China
| | - Shuhui Chen
- Jiangxi Provincial Cancer Hospital, Nanchang, Jiangxi, 330029, P. R. China.
| | - Qiaoli Lv
- Jiangxi Provincial Cancer Hospital, Nanchang, Jiangxi, 330029, P. R. China
| | - Pengwu Zheng
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang, 330013, China
| |
Collapse
|
3
|
Xu S, Meng L, Hu Q, Li F, Zhang J, Kong N, Xing Z, Hong G, Zhu X. Closed-Loop Control of Macrophage Engineering Enabled by Focused-Ultrasound Responsive Mechanoluminescence Nanoplatform for Precise Cancer Immunotherapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2401398. [PMID: 39101277 DOI: 10.1002/smll.202401398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 07/14/2024] [Indexed: 08/06/2024]
Abstract
Macrophage engineering has emerged as a promising approach for modulating the anti-tumor immune response in cancer therapy. However, the spatiotemporal control and real-time feedback of macrophage regulatory process is still challenging, leading to off-targeting effect and delayed efficacy monitoring therefore raising risk of immune overactivation and serious side effects. Herein, a focused ultrasound responsive immunomodulator-loaded optical nanoplatform (FUSION) is designed to achieve spatiotemporal control and status reporting of macrophage engineering in vivo. Under the stimulation of focused ultrasound (FUS), the immune agonist encapsulated in FUSION can be released to induce selective macrophage M1 phenotype differentiation at tumor site and the near-infrared mechanoluminescence of FUSION is generated simultaneously to indicate the initiation of immune activation. Meanwhile, the persistent luminescence of FUSION is enhanced due to hydroxyl radical generation in the pro-inflammatory M1 macrophages, which can report the effectiveness of macrophage regulation. Then, macrophages labeled with FUSION as a living immunotherapeutic agent (FUSION-M) are utilized for tumor targeting and focused ultrasound activated, immune cell-based cancer therapy. By combining the on-demand activation and feedback to form a closed loop, the nanoplatform in this work holds promise in advancing the controllability of macrophage engineering and cancer immunotherapy for precision medicine.
Collapse
Affiliation(s)
- Sixin Xu
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai, 201210, China
| | - Lingkai Meng
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai, 201210, China
| | - Qian Hu
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai, 201210, China
| | - Fang Li
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai, 201210, China
| | - Jieying Zhang
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai, 201210, China
| | - Na Kong
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai, 201210, China
| | - Zhenyu Xing
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai, 201210, China
| | - Guosong Hong
- Department of Materials Science and Engineering, Stanford University, 496 Lomita Mall, Stanford, CA, 94305, USA
| | - Xingjun Zhu
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai, 201210, China
- State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai, 201210, China
- Shanghai Clinical Research and Trial Center, Shanghai, China
| |
Collapse
|
4
|
Zhang Y, Kang X, Li J, Song J, Li X, Li W, Qi J. Inflammation-Responsive Nanoagents for Activatable Photoacoustic Molecular Imaging and Tandem Therapies in Rheumatoid Arthritis. ACS NANO 2024; 18:2231-2249. [PMID: 38189230 DOI: 10.1021/acsnano.3c09870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Rheumatoid arthritis (RA) severely lowers the life quality by progressively destructing joint functions and eventually causing permanent disability, representing a pressing public health concern. The pathogenesis of RA includes the excessive production of proinflammatory cytokines and harmful oxygen-derived free radicals, such as nitric oxide (NO), which constitute vital targets for precise diagnosis and effective treatment of RA. In this study, we introduce an advanced nanoagent that integrates the RA microenvironment-activatable photoacoustic (PA) imaging with multitarget synergistic treatment for RA. A highly sensitive organic probe with NO-tunable energy transformation and molecular geometry is developed, which enables strong near-infrared absorption with a turn-on PA signal, and the active intramolecular motion could further boost PA conversion. The probe is coassembled with an inflammation-responsive prodrug to construct the theranostic nanoagent, on which a macrophage-derived cell membrane with natural tropism to the inflammatory sites is camouflaged to improve the targeting ability to inflamed joints. The nanoagent could not only sensitively detect RA and differentiate the severity but also efficiently alleviate RA symptoms and improve joint function. The combination of activatable probe-mediated NO scavenging and on-demand activation of anti-inflammatory prodrug significantly inhibits the proinflammatory factors and promotes macrophage repolarization from M1 to M2 phenotype. This meticulously designed nanoagent ingeniously integrates RA-specific PA molecular imaging with synergistic multitarget therapy, rendering tremendous promise for precise intervention of RA-related diseases.
Collapse
Affiliation(s)
- Yuan Zhang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, Frontiers Science Center for Cell Responses, and College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Xiaoying Kang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, Frontiers Science Center for Cell Responses, and College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Jia Li
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, Frontiers Science Center for Cell Responses, and College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Jianwen Song
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, Frontiers Science Center for Cell Responses, and College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Xueping Li
- Tianjin Key Laboratory of Biomedical Materials and Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
| | - Wen Li
- Tianjin Key Laboratory of Biomedical Materials and Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
| | - Ji Qi
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, Frontiers Science Center for Cell Responses, and College of Life Sciences, Nankai University, Tianjin 300071, China
| |
Collapse
|
5
|
Ji C, Wei J, Zhang L, Hou X, Tan J, Yuan Q, Tan W. Aptamer-Protein Interactions: From Regulation to Biomolecular Detection. Chem Rev 2023; 123:12471-12506. [PMID: 37931070 DOI: 10.1021/acs.chemrev.3c00377] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Abstract
Serving as the basis of cell life, interactions between nucleic acids and proteins play essential roles in fundamental cellular processes. Aptamers are unique single-stranded oligonucleotides generated by in vitro evolution methods, possessing the ability to interact with proteins specifically. Altering the structure of aptamers will largely modulate their interactions with proteins and further affect related cellular behaviors. Recently, with the in-depth research of aptamer-protein interactions, the analytical assays based on their interactions have been widely developed and become a powerful tool for biomolecular detection. There are some insightful reviews on aptamers applied in protein detection, while few systematic discussions are from the perspective of regulating aptamer-protein interactions. Herein, we comprehensively introduce the methods for regulating aptamer-protein interactions and elaborate on the detection techniques for analyzing aptamer-protein interactions. Additionally, this review provides a broad summary of analytical assays based on the regulation of aptamer-protein interactions for detecting biomolecules. Finally, we present our perspectives regarding the opportunities and challenges of analytical assays for biological analysis, aiming to provide guidance for disease mechanism research and drug discovery.
Collapse
Affiliation(s)
- Cailing Ji
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Junyuan Wei
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Lei Zhang
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Xinru Hou
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Jie Tan
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Quan Yuan
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Weihong Tan
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| |
Collapse
|
6
|
Wang H, Ding Y, Zhang Y, Shi X, Liu H. In situ decrypting plasmonic nanoparticle size-controlled phosphorylation of epidermal growth factor receptor in living cells. Chem Commun (Camb) 2023. [PMID: 37439663 DOI: 10.1039/d3cc02154h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Abstract
Recently, interaction between epidermal growth factor receptor (EGFR) and EGFR-targeted nanoprobes is a hot topic. Here, we use dark field microscope (DFM) observe different aggregations of EGFR-targeted nanoprobes in diverticulum. Different aggregation states are related to phosphorylation of EGFR. EGFR phosphorylation can be adjusted by gold nanoparticles (GNPs) size.
Collapse
Affiliation(s)
- Hongyan Wang
- First Affiliated Hospital of Anhui Medical University, Hefei 230000, China
| | - Yan Ding
- First Affiliated Hospital of Anhui Medical University, Hefei 230000, China
| | - Yu Zhang
- China Light Industry Key Laboratory of Meat Microbial Control and Utilization, School of Food and Biological Engineering, Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230601, China.
| | - Xiaoqi Shi
- First Affiliated Hospital of Anhui Medical University, Hefei 230000, China
| | - Honglin Liu
- China Light Industry Key Laboratory of Meat Microbial Control and Utilization, School of Food and Biological Engineering, Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230601, China.
| |
Collapse
|
7
|
Electron transfer in protein modifications: from detection to imaging. Sci China Chem 2023. [DOI: 10.1007/s11426-022-1417-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
8
|
Zhang L, Chu M, Ji C, Wei J, Yang Y, Huang Z, Tan W, Tan J, Yuan Q. In Situ Visualization of Epidermal Growth Factor Receptor Nuclear Translocation with Circular Bivalent Aptamer. Anal Chem 2022; 94:17413-17421. [PMID: 36469021 DOI: 10.1021/acs.analchem.2c02762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Epidermal growth factor receptor (EGFR) nuclear translocation correlates with the abnormal proliferation, migration, and anti-apoptosis of tumor cells. Monitoring EGFR nuclear translocation provides insights into the molecular mechanisms underlying cancers. EGFR nuclear translocation includes two processes, EGFR phosphorylation and phosphorylated EGFR translocation to the nucleus. With the help of aptamers, probes that can achieve the first step of anchoring phosphorylated EGFR have been developed. However, the EGFR nuclear translocation can last for hours, posing a challenge to monitor the entire nuclear translocation in living cells. Herein, we designed a circular bivalent aptamer-functionalized optical probe with greatly enhanced stability for long-term visualization of EGFR nuclear translocation in situ. The results of cell experiments show that the probe could monitor the entire nuclear translocation of EGFR. The findings of tissue and in vivo experiments demonstrate that the probe can evaluate the development and progression of tumors by imaging EGFR nuclear translocation in situ. The proposed approach allows us to monitor EGFR nuclear translocation in the long term, indicating its great potential in investigating the mechanisms of cancers and guiding for tumor treatment.
Collapse
Affiliation(s)
- Lei Zhang
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Mengge Chu
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Cailing Ji
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Junyuan Wei
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Yanbing Yang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Zhongnan Huang
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Weihong Tan
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China.,The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China.,Institute of Molecular Medicine (IMM), Renji Hospital, Shanghai Jiao Tong University School of Medicine, and College of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jie Tan
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Quan Yuan
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China.,College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| |
Collapse
|
9
|
Feng Y, Chen T, Rao Q, Xie X, Zhang L, Lv Y. Time-Resolved Persistent Luminescence Encoding for Multiplexed Severe Acute Respiratory Syndrome Coronavirus 2 Detection. Anal Chem 2022; 94:16967-16974. [DOI: 10.1021/acs.analchem.2c04788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Yang Feng
- Analytical & Testing Center, Sichuan University, Chengdu, Sichuan610064, China
| | - Tingyan Chen
- College of Mathematics, Sichuan University, Chengdu, Sichuan610064, China
| | - Qianli Rao
- Analytical & Testing Center, Sichuan University, Chengdu, Sichuan610064, China
| | - Xiaobo Xie
- Analytical & Testing Center, Sichuan University, Chengdu, Sichuan610064, China
| | - Lichun Zhang
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan610064, China
| | - Yi Lv
- Analytical & Testing Center, Sichuan University, Chengdu, Sichuan610064, China
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan610064, China
| |
Collapse
|
10
|
Ma X, Zhang MJ, Wang J, Zhang T, Xue P, Kang Y, Sun ZJ, Xu Z. Emerging Biomaterials Imaging Antitumor Immune Response. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2204034. [PMID: 35728795 DOI: 10.1002/adma.202204034] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 06/19/2022] [Indexed: 06/15/2023]
Abstract
Immunotherapy is one of the most promising clinical modalities for the treatment of malignant tumors and has shown excellent therapeutic outcomes in clinical settings. However, it continues to face several challenges, including long treatment cycles, high costs, immune-related adverse events, and low response rates. Thus, it is critical to predict the response rate to immunotherapy by using imaging technology in the preoperative and intraoperative. Here, the latest advances in nanosystem-based biomaterials used for predicting responses to immunotherapy via the imaging of immune cells and signaling molecules in the immune microenvironment are comprehensively summarized. Several imaging methods, such as fluorescence imaging, magnetic resonance imaging, positron emission tomography imaging, ultrasound imaging, and photoacoustic imaging, used in immune predictive imaging, are discussed to show the potential of nanosystems for distinguishing immunotherapy responders from nonresponders. Nanosystem-based biomaterials aided by various imaging technologies are expected to enable the effective prediction and diagnosis in cases of tumors, inflammation, and other public diseases.
Collapse
Affiliation(s)
- Xianbin Ma
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Materials and Energy and Chongqing Engineering Research Center for Micro-Nano Biomedical Materials and Devices, Southwest University, Chongqing, 400715, P. R. China
- Institute of Engineering Medicine, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Meng-Jie Zhang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, P. R. China
| | - Jingting Wang
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Materials and Energy and Chongqing Engineering Research Center for Micro-Nano Biomedical Materials and Devices, Southwest University, Chongqing, 400715, P. R. China
| | - Tian Zhang
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Materials and Energy and Chongqing Engineering Research Center for Micro-Nano Biomedical Materials and Devices, Southwest University, Chongqing, 400715, P. R. China
| | - Peng Xue
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Materials and Energy and Chongqing Engineering Research Center for Micro-Nano Biomedical Materials and Devices, Southwest University, Chongqing, 400715, P. R. China
| | - Yuejun Kang
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Materials and Energy and Chongqing Engineering Research Center for Micro-Nano Biomedical Materials and Devices, Southwest University, Chongqing, 400715, P. R. China
| | - Zhi-Jun Sun
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, P. R. China
| | - Zhigang Xu
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Materials and Energy and Chongqing Engineering Research Center for Micro-Nano Biomedical Materials and Devices, Southwest University, Chongqing, 400715, P. R. China
| |
Collapse
|
11
|
Zhang L, Chu M, Ji C, Tan J, Yuan Q. Preparation, applications, and challenges of functional DNA nanomaterials. NANO RESEARCH 2022; 16:3895-3912. [PMID: 36065175 PMCID: PMC9430014 DOI: 10.1007/s12274-022-4793-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/15/2022] [Accepted: 07/18/2022] [Indexed: 06/15/2023]
Abstract
As a carrier of genetic information, DNA is a versatile module for fabricating nanostructures and nanodevices. Functional molecules could be integrated into DNA by precise base complementary pairing, greatly expanding the functions of DNA nanomaterials. These functions endow DNA nanomaterials with great potential in the application of biomedical field. In recent years, functional DNA nanomaterials have been rapidly investigated and perfected. There have been reviews that classified DNA nanomaterials from the perspective of functions, while this review primarily focuses on the preparation methods of functional DNA nanomaterials. This review comprehensively introduces the preparation methods of DNA nanomaterials with functions such as molecular recognition, nanozyme catalysis, drug delivery, and biomedical material templates. Then, the latest application progress of functional DNA nanomaterials is systematically reviewed. Finally, current challenges and future prospects for functional DNA nanomaterials are discussed.
Collapse
Affiliation(s)
- Lei Zhang
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082 China
| | - Mengge Chu
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082 China
| | - Cailing Ji
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082 China
| | - Jie Tan
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082 China
| | - Quan Yuan
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082 China
| |
Collapse
|
12
|
Karthick V, Kumar Shrestha L, Kumar VG, Pranjali P, Kumar D, Pal A, Ariga K. Nanoarchitectonics horizons: materials for life sciences. NANOSCALE 2022; 14:10630-10647. [PMID: 35842941 DOI: 10.1039/d2nr02293a] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Nanoarchitectonics relies on the fabrication of materials at the atomic/molecular level to achieve the desired shape and function. Significant advances have been made in understanding the characteristics and spatial assemblies that contribute to material performance. Biomaterials undergo several changes when presented with various environmental cues. The ability to overcome such challenges, maintaining the integrity and effective functioning of native properties, can be regarded as a characteristic of a successful biomaterial. Control over the shape and efficacy of target materials can be tailored via various processes, like self-assembly, supramolecular chemistry, atomic/molecular manipulation, etc. Interplay between the physicochemical properties of materials and biomolecule recognition sites defines the structural rigidity in hierarchical structures. Materials including polymers, metal nanoparticles, nucleic acid systems, metal-organic frameworks, and carbon-based nanostructures can be viewed as promising prospects for developing biocompatible systems. This review discusses recent advances relating to such biomaterials for life science applications, where nanoarchitectonics plays a decisive role either directly or indirectly.
Collapse
Affiliation(s)
- V Karthick
- Centre for Ocean Research, Sathyabama Institute of Science and Technology, Jeppiaar Nagar, Rajiv Gandhi Salai, Chennai 600119, India.
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan.
| | - Lok Kumar Shrestha
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan.
- Department of Materials Science, Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573, Japan
| | - V Ganesh Kumar
- Centre for Ocean Research, Sathyabama Institute of Science and Technology, Jeppiaar Nagar, Rajiv Gandhi Salai, Chennai 600119, India.
| | - Pranjali Pranjali
- Department of Physics, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
- Centre of Biomedical Research, SGPGIMS Campus, Lucknow 226014, Uttar Pradesh, India
| | - Dinesh Kumar
- Centre of Biomedical Research, SGPGIMS Campus, Lucknow 226014, Uttar Pradesh, India
| | - Aniruddha Pal
- Nanomaterials Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| | - Katsuhiko Ariga
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan.
- Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561, Japan
| |
Collapse
|