1
|
Zhang M, Hong Q, Aocheng Y, Zhang Y, Huang X, Feng M, Mu J. Highly selective capture of Ni 2+ from complex environments by a sandwich-like layered metal sulfide ion exchanger. JOURNAL OF HAZARDOUS MATERIALS 2024; 482:136562. [PMID: 39581027 DOI: 10.1016/j.jhazmat.2024.136562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/31/2024] [Accepted: 11/16/2024] [Indexed: 11/26/2024]
Abstract
Radionickel ion (63Ni2+) remediation is critical for public health and the environment, but selectively capturing of Ni2+ from complex environments like seawater presents a challenge. Metal sulfide ion exchangers (MSIEs) are emerging as efficient adsorbents for radionuclides; however, the study of MSIEs for selectively removing Ni2+ is still in its infancy. Herein, the layered metal sulfide K2Cu2Sn2S6 (CTS-1) with a unique sandwich-like anionic framework was synthesized by the hydrothermal method for the first time, representing a novel approach in the selective capture of Ni2+ from complex environments. Single-crystal structural analysis confirmed the sandwich-like framework, in which a [Cu-S] sublayer is sandwiched by two [Sn-S] sublayers with parallel grooves. The charge-balancing K+ ions are located within these grooves. Due to its special structure, CTS-1 exhibits remarkable adsorption capacities for Ni2+ with rapid kinetics (a high rate constant k2 of 7.26 ×10-2 g/(mg·min)), broad pH durability (removal rates >97 % at pH 3-12), and high selectivity (separation factors for Ni2+ >700 against various cations). Impressively, it can efficiently remove Ni2+ from multiple complex environments, achieving a 90.28 % removal rate even in seawater (C0Ni ∼5 mg/L). CTS-1 is environmentally friendly and suitable for use in fixed-bed columns for the practical application. Moreover, Ni2+ ions are captured through ion exchange with K+, and the high selectivity stems from the strong affinity of S2- for Ni2+ and the trapping effect of the grooves within the structure. In summary, this pioneering study demonstrates the highly selective capture of Ni2+ by a sandwich-like layered MSIE, potentially inspiring the development of efficient scavengers for radionuclides.
Collapse
Affiliation(s)
- Mingdong Zhang
- College of Geography and Oceanography, Fuzhou Institute of Oceanography, Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Minjiang University, Fuzhou 350108, PR China; State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, PR China
| | - Qisheng Hong
- College of Geography and Oceanography, Fuzhou Institute of Oceanography, Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Minjiang University, Fuzhou 350108, PR China; College of Environment & Safety Engineering, Fuzhou University, Fuzhou 350028, PR China
| | - Yuan Aocheng
- College of Geography and Oceanography, Fuzhou Institute of Oceanography, Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Minjiang University, Fuzhou 350108, PR China; School of Civil and Transportation Engineering, Hebei University of Technology, Tianjin 300401, PR China
| | - Yan Zhang
- College of Geography and Oceanography, Fuzhou Institute of Oceanography, Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Minjiang University, Fuzhou 350108, PR China; College of Environment & Safety Engineering, Fuzhou University, Fuzhou 350028, PR China
| | - Xiaoying Huang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, PR China
| | - Meiling Feng
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, PR China.
| | - Jingli Mu
- College of Geography and Oceanography, Fuzhou Institute of Oceanography, Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Minjiang University, Fuzhou 350108, PR China.
| |
Collapse
|
2
|
Yaqub M, Mee-Ngern L, Lee W. Cesium adsorption from an aqueous medium for environmental remediation: A comprehensive analysis of adsorbents, sources, factors, models, challenges, and opportunities. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 950:175368. [PMID: 39122022 DOI: 10.1016/j.scitotenv.2024.175368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/07/2024] [Accepted: 08/05/2024] [Indexed: 08/12/2024]
Abstract
Considering the widespread and indispensable nature of nuclear energy for future power generation, there is a concurrent increase in the discharge of radioactive Cs into water streams. Recent studies have demonstrated that adsorption is crucial in removing Cs from wastewater for environmental remediation. However, the existing literature lacks comprehensive studies on various adsorption methods, the capacities or efficiencies of adsorbents, influencing factors, isotherm and kinetic models of the Cs adsorption process. A bibliometric and comprehensive analysis was conducted using 1179 publications from the Web of Science Core Collection spanning from 2014 to 2023. It reviews and summarizes current publication trends, active countries, adsorption methods, adsorption capacities or efficiencies of adsorbents, tested water sources, influencing factors, isotherm, and kinetic models of Cs adsorption. The selection of suitable adsorbents and operating parameters is identified as a crucial factor. Over the past decade, due to their notable capacity for Cs adsorption, considerable research has focused on novel adsorbents, such as Prussian blue, graphene oxide, hydrogel, and nanoadsorbents (NA). However, there remains a need for further development of application-oriented laboratory-scale experiments. Future research directions should encompass exploring adsorption mechanisms, developing new adsorbents or their combinations, practical applications of lab-scale studies, and recycling radioactive Cs from wastewater. Drawing upon this literature review, we present the most recent research patterns concerning adsorbents to remove Cs, outline potential avenues for future research, and delineate the obstacles hindering effective adsorption. This comprehensive bibliometric review provides valuable insights into prevalent research focal points and emerging trends, serving as a helpful resource for researchers and policymakers seeking to understand the dynamics of adsorbents for Cs removal from water.
Collapse
Affiliation(s)
- Muhammad Yaqub
- Department of Environmental Engineering, Kumoh National Institute of Technology, Gumi, Republic of Korea.
| | - Ladawan Mee-Ngern
- Department of Environmental Engineering, Kumoh National Institute of Technology, Gumi, Republic of Korea
| | - Wontae Lee
- Department of Environmental Engineering, Kumoh National Institute of Technology, Gumi, Republic of Korea.
| |
Collapse
|
3
|
Wang YN, Wu JT, Li BH, Yang Y, Li J, Zhang B. Ultrafast and Highly Selective Sequestration of Radioactive Barium Ions by a Layered Thiostannate. Inorg Chem 2024; 63:20664-20674. [PMID: 39428638 DOI: 10.1021/acs.inorgchem.4c03299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2024]
Abstract
As a simulant of hazardous 226Ra2+, the simultaneously selective and rapid elimination of radioactive 133Ba2+ ions from geothermal water is necessary but still challenging. In this paper, we demonstrated the usability of a layered thiostannate with facile synthesis and inexpensive cost, namely, K2xSn4-xS8-x (KTS-3, x = 0.65-1), for the remediation of radioactive 133Ba2+ in multiple conditions, including sorption isotherm, kinetics, and the influences of competitive inorganic/organic ions, pH values, and dosages. KTS-3 has a strong barium uptake ability (171.3 mg/g) and an ultrafast adsorption kinetics (about 2 min). Impressively, it can achieve a high preference for barium regardless of the excessive interference ions (Na+, K+, Mg2+, Ca2+, and humic acid) and acidic/alkaline environments, with the largest distribution coefficient Kd value reaching 6.89 × 105 mL/g. Also, the Ba2+-laden products can be easily eluted by a concentrated KCl solution, and its adsorption performances for barium resist well even after five consecutive cycles. In addition, owing to the regular appearance and excellent mechanical strength, the prepared KTS-3/PAN (PAN = polyacrylonitrile) granule displays a good removal efficiency in the flowing ion-exchange column. These advantages mentioned above render it very promising for the effective and efficient cleanup of radioactive 133Ba2+-contaminated wastewater.
Collapse
Affiliation(s)
- Ya-Ning Wang
- Department of Chemistry and Chemical Engineering, Liaocheng University, Shandong 252059, Liaocheng, China
| | - Jin-Ting Wu
- Department of Chemistry and Chemical Engineering, Liaocheng University, Shandong 252059, Liaocheng, China
| | - Bao-Han Li
- Department of Chemistry and Chemical Engineering, Liaocheng University, Shandong 252059, Liaocheng, China
| | - Yan Yang
- Department of Chemistry and Chemical Engineering, Liaocheng University, Shandong 252059, Liaocheng, China
| | - Jun Li
- Department of Chemistry and Chemical Engineering, Liaocheng University, Shandong 252059, Liaocheng, China
| | - Bo Zhang
- Department of Chemistry and Chemical Engineering, Liaocheng University, Shandong 252059, Liaocheng, China
| |
Collapse
|
4
|
Sun HY, Chen ZH, Hu B, Tang JH, Yang L, Guo YL, Yao YX, Feng ML, Huang XY. Boosting selective Cs + uptake through the modulation of stacking modes in layered niobate-based perovskites. Nat Commun 2024; 15:8681. [PMID: 39375328 PMCID: PMC11458626 DOI: 10.1038/s41467-024-52920-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 09/25/2024] [Indexed: 10/09/2024] Open
Abstract
Selective separation of 137Cs is significant for the sustainable development of nuclear energy and environmental protection, due to its strong radioactivity and long half-life. However, selective capture of 137Cs+ from radioactive liquid waste is challenging due to strong coulomb interactions between the adsorbents and high-valency metal ions. Herein, we propose a strategy to resolve this issue and achieve specific Cs+ ion recognition and separation by modulating the stacking modes of layered perovskites. We demonstrate that among niobate-based perovskites, ALaNb2O7 (A = Cs, H, K, and Li), HLaNb2O7 shows an outstanding selectivity for Cs+ even in the presence of a large amount of competing Mn+ ions (Mn+ = K+, Ca2+, Mg2+, Sr2+, Eu3+, and Zr4+) owing to its suitable void fraction and space shape, brought by the stacking mode of layers. The Cs+ capture mechanism is directly elucidated at molecular level by single-crystal structural analyses and density functional theory calculations. This work not only provides key insights in the design and property optimization of perovskite-type materials for radiocesium separation, but also paves the way for the development of efficient inorganic materials for radionuclides remediation.
Collapse
Affiliation(s)
- Hai-Yan Sun
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Zhi-Hua Chen
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Bing Hu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Jun-Hao Tang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Lu Yang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yan-Ling Guo
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
| | - Yue-Xin Yao
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
| | - Mei-Ling Feng
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China.
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China.
- Fujian Province Joint Innovation Key Laboratory of Fuel and Materials in Clean Nuclear Energy System, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou, Fujian, 350002, P. R. China.
| | - Xiao-Ying Huang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
5
|
Jin Q, Diao X, Fan Y, Hao L, Chen Z, Guo Z. Silica-Reinforced AMP-Calcium Alginate Beads for Efficient and Selective Removal of Cesium from a Strong Acidic Medium. ACS OMEGA 2024; 9:32011-32020. [PMID: 39072054 PMCID: PMC11270694 DOI: 10.1021/acsomega.4c03806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 06/20/2024] [Accepted: 07/01/2024] [Indexed: 07/30/2024]
Abstract
Due to the significant selectivity for Cs+, ammonium molybdophosphate (AMP) possesses potential to uptake radiocesium from high-level liquid waste (HLLW), whereas its micro-crystalline structure and fine powder morphology limit its industrial application. Although the granulation method with alginate is prospective for the preparation of an AMP exchanger, the mechanical strength of obtained beads may be insufficient for application. In this context, we prepared silica-reinforced AMP-calcium alginate (ACS) beads and evaluated their performance for Cs+ removal from strong acidic solutions. It was found that the addition of silica in the fabrication significantly improved the mechanical strength of the beads in comparison to those without silica. Notably, the beads with an AMP/silica mass ratio of 1.0 exhibited an exceptional mechanical strength, surpassing that of ACS beads composed of other components. The batch experiment results indicated that the Cs+ adsorption follows a non-linear pseudo-second-order rate equation. The distribution coefficient of Cs+ was high even in extreme acidic conditions (∼1.6 × 102 mL/g in 8.0 mol/L HNO3 solution). The Cs+ adsorption can be well fitted with the Langmuir model, and the estimated maximum exchange capacity in 3.0 mol/L HNO3 could reach 23.9 mg/g. More importantly, ACS beads showed excellent selectivity toward Cs+ uptake over eight co-existing metal ions in simulated HLLW, with separation factor values all above 145. The column experiment exhibited that the beads can serve as the stationary phase in columns to effectively remove Cs+. The findings of this study are significant as they provide insights into the development of efficient materials for radiocesium removal from high-level liquid waste. The results demonstrate the potential of silica-reinforced ACS beads for Cs+ adsorption, with promising applications in industrial settings.
Collapse
Affiliation(s)
- Qiang Jin
- MOE
Frontiers Science Center for Rare Isotopes, Lanzhou University, Lanzhou 730000, China
- Radiochemistry
Laboratory, School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000, China
- The
Key Laboratory of Special Function Materials and Structure Design,
Ministry of Education, Lanzhou University, Lanzhou 730000, China
| | - Xinya Diao
- MOE
Frontiers Science Center for Rare Isotopes, Lanzhou University, Lanzhou 730000, China
- Radiochemistry
Laboratory, School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000, China
| | - Ye Fan
- MOE
Frontiers Science Center for Rare Isotopes, Lanzhou University, Lanzhou 730000, China
- Radiochemistry
Laboratory, School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000, China
| | - Lecun Hao
- MOE
Frontiers Science Center for Rare Isotopes, Lanzhou University, Lanzhou 730000, China
- Radiochemistry
Laboratory, School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000, China
| | - Zongyuan Chen
- MOE
Frontiers Science Center for Rare Isotopes, Lanzhou University, Lanzhou 730000, China
- Radiochemistry
Laboratory, School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000, China
- The
Key Laboratory of Special Function Materials and Structure Design,
Ministry of Education, Lanzhou University, Lanzhou 730000, China
| | - Zhijun Guo
- MOE
Frontiers Science Center for Rare Isotopes, Lanzhou University, Lanzhou 730000, China
- Radiochemistry
Laboratory, School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000, China
- The
Key Laboratory of Special Function Materials and Structure Design,
Ministry of Education, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
6
|
Tang JH, Jia SQ, Liu JT, Yang L, Sun HY, Feng ML, Huang XY. "Ion-imprinting" strategy towards metal sulfide scavenger enables the highly selective capture of radiocesium. Nat Commun 2024; 15:4281. [PMID: 38769121 PMCID: PMC11106286 DOI: 10.1038/s41467-024-48565-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 05/06/2024] [Indexed: 05/22/2024] Open
Abstract
Highly selective capture of radiocesium is an urgent need for environmental radioactive contamination remediation and spent fuel disposal. Herein, a strategy is proposed for construction of "inorganic ion-imprinted adsorbents" with ion recognition-separation capabilities, and a metal sulfide Cs2.33Ga2.33Sn1.67S8·H2O (FJSM-CGTS) with "imprinting effect" on Cs+ is prepared. We show that the K+ activation product of FJSM-CGTS, Cs0.51K1.82Ga2.33Sn1.67S8·H2O (FJMS-KCGTS), can reach adsorption equilibrium for Cs+ within 5 min, with a maximum adsorption capacity of 246.65 mg·g-1. FJMS-KCGTS overcomes the hindrance of Cs+ adsorption by competing ions and realizes highly selective capture of Cs+ in complex environments. It shows successful cleanup for actual 137Cs-liquid-wastes generated during industrial production with removal rates of over 99%. Ion-exchange column filled with FJMS-KCGTS can efficiently treat 540 mL Cs+-containing solutions (31.995 mg·L-1) and generates only 0.12 mL of solid waste, which enables waste solution volume reduction. Single-crystal structural analysis and density functional theory calculations are used to visualize the "ion-imprinting" process and confirm that the "imprinting effect" originates from the spatially confined effect of the framework. This work clearly reveals radiocesium capture mechanism and structure-function relationships that could inspire the development of efficient inorganic adsorbents for selective recognition and separation of key radionuclides.
Collapse
Affiliation(s)
- Jun-Hao Tang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, Fujian, PR China
- University of Chinese Academy of Sciences, 100049, Beijing, PR China
| | | | - Jia-Ting Liu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, Fujian, PR China
| | - Lu Yang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, Fujian, PR China
| | - Hai-Yan Sun
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, Fujian, PR China
| | - Mei-Ling Feng
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, Fujian, PR China.
- University of Chinese Academy of Sciences, 100049, Beijing, PR China.
- Fujian Province Joint Innovation Key Laboratory of Fuel and Materials in Clean Nuclear Energy System, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, PR China.
| | - Xiao-Ying Huang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, Fujian, PR China
- University of Chinese Academy of Sciences, 100049, Beijing, PR China
| |
Collapse
|
7
|
Chen Z, Jia S, Sun H, Tang J, Guo Y, Yao Y, Pan T, Feng M, Huang X. All-in-one treatment: Capture and immobilization of 137Cs by ultra-stable inorganic solid acid materials HMMoO 6·nH 2O (M = Ta, Nb). WATER RESEARCH 2024; 255:121459. [PMID: 38513370 DOI: 10.1016/j.watres.2024.121459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 03/04/2024] [Accepted: 03/11/2024] [Indexed: 03/23/2024]
Abstract
Capture and immobilization of 137Cs is urgent for radioactive contamination remediation and spent fuel treatment. Herein, an effective all-in-one treatment method to simultaneously adsorb and immobilize Cs+ without high-temperature treatment is proposed. According to the strategy of incorporating high-valency metal ions into molybdates to increase the material stability and affinity towards radionuclides, layered HMMoO6·nH2O (M = Ta (1), Nb (2)) are prepared. Both materials exhibit excellent acid resistance (even 15 mol/L HNO3). They maintain remarkable adsorption capacity for Cs+ in 1 mol/L HNO3 solutions and can selectively capture Cs+ under excessive competitive ions. Furthermore, they show successful cleanup for actual 137Cs-liquid-wastes generated during industrial production. In particular, adsorbed Cs+ can be firmly immobilized in interlayer spaces of materials due to the highly stable anionic framework. The removal mechanism is attributed to ion exchange between Cs+ and interlayer H+ by multiple characterizations. Study of the structure-function relationship shows that the occurrence of Cs+ ion exchange is closely related to plate-like layered structure. This work develops an efficient all-in-one treatment method for capturing and immobilizing radiocesium by ultra-stable inorganic solid acid materials with low energy consumption and high safety for radionuclide remediation.
Collapse
Affiliation(s)
- Zhihua Chen
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | | | - Haiyan Sun
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, PR China
| | - Junhao Tang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Yanling Guo
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, PR China
| | - Yuexin Yao
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, PR China
| | - Tianyu Pan
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, PR China
| | - Meiling Feng
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, PR China; Fujian Province Joint Innovation Key Laboratory of Fuel and Materials in Clean Nuclear Energy System, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou, 350002, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China.
| | - Xiaoying Huang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| |
Collapse
|
8
|
Zhao W, Wei M, Ma L, Deng T, Hu J. Phosphate-rich cellulose beads for efficient cesium extraction from aqueous solutions: a novel approach for cellulose utilization. Chem Commun (Camb) 2024; 60:4938-4941. [PMID: 38629231 DOI: 10.1039/d4cc00901k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
In this work, phosphate-rich cellulose beads (CBPs) were first used for cesium extraction from aqueous solutions. These green, abundant, cheap, and renewable CBPs demonstrated a high adsorption capacity and fast absorption rate. Besides, the CBPs also exhibited excellent stability and recycling performance, as well as good selectivity. This study presents the promising application potential of cellulose for efficient cesium extraction from aqueous media.
Collapse
Affiliation(s)
- Weilian Zhao
- Tianjin Key Laboratory of Brine Chemical Engineering and Resource Eco-utilization, College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin, China.
| | - Mingming Wei
- Tianjin Key Laboratory of Brine Chemical Engineering and Resource Eco-utilization, College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin, China.
| | - Lichun Ma
- QingHai Salt Lake Industry Co., Ltd., Golmud, China.
| | - Tianlong Deng
- Tianjin Key Laboratory of Brine Chemical Engineering and Resource Eco-utilization, College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin, China.
| | - Jiayin Hu
- Tianjin Key Laboratory of Brine Chemical Engineering and Resource Eco-utilization, College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin, China.
| |
Collapse
|
9
|
Lim SG, Oh CY, Kim SH, Ra K, Cha M, Yoon JH. Freshwater Recovery and Removal of Cesium and Strontium from Radioactive Wastewater by Methane Hydrate Formation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:6170-6180. [PMID: 38501927 DOI: 10.1021/acs.est.3c10587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
As human society has advanced, nuclear energy has provided energy security while also offering low carbon emissions and reduced dependence on fossil fuels, whereas nuclear power plants have produced large amounts of radioactive wastewater, which threatens human health and the sustainability of water resources. Here, we demonstrate a hydrate-based desalination (HBD) technology that uses methane as a hydrate former for freshwater recovery and for the removal of radioactive chemicals from wastewater, specifically from Cs- and Sr-containing wastewater. The complete exclusion of radioactive ions from solid methane hydrates was confirmed by a close examination using phase equilibria, spectroscopic investigations, thermal analyses, and theoretical calculations, enabling simultaneous freshwater recovery and the removal of radioactive chemicals from wastewater by the methane hydrate formation process described in this study. More importantly, the proposed HBD technology is applicable to radioactive wastewater containing Cs+ and Sr2+ across a broad concentration range of low percentages to hundreds of parts per million (ppm) and even subppm levels, with high removal efficiency of radioactive chemicals. This study highlights the potential of environmentally sustainable technologies to address the challenges posed by radioactive wastewater generated by nuclear technology, providing new insights for future research and development efforts.
Collapse
Affiliation(s)
- Sol Geo Lim
- Department of Convergence Study on Ocean Science and Technology, Ocean Science and Technology (OST) School, Korea Maritime and Ocean University, Busan 49112, Korea
| | - Chang Yeop Oh
- Department of Convergence Study on Ocean Science and Technology, Ocean Science and Technology (OST) School, Korea Maritime and Ocean University, Busan 49112, Korea
| | - Sun Ha Kim
- Western Seoul Center, Korea Basic Science Institute (KBSI), Seoul 03759, Korea
| | - Kongtae Ra
- Marine Environmental Research Center, Korea Institute of Ocean Science and Technology (KIOST), Busan 49111, Korea
| | - Minjun Cha
- Department of Energy and Resources Engineering, Kangwon National University, Kangwon 24341, Korea
| | - Ji-Ho Yoon
- Department of Convergence Study on Ocean Science and Technology, Ocean Science and Technology (OST) School, Korea Maritime and Ocean University, Busan 49112, Korea
- Department of Energy and Resources Engineering, Korea Maritime and Ocean University, Busan 49112, Korea
| |
Collapse
|
10
|
Li L, Kang K, Chee T, Tian Z, Sun Q, Xiao C. Incorporating Two Crown Ether Struts into the Backbone of Robust Zirconium-Based Metal-Organic Frameworks as Custom-Designed Efficient Collectors for Radioactive Metal Ions. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308663. [PMID: 38311580 PMCID: PMC11005732 DOI: 10.1002/advs.202308663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 01/19/2024] [Indexed: 02/06/2024]
Abstract
The incorporation of crown ether into metal-organic frameworks (MOFs) is garnered significant attention because these macrocyclic units can fine-tune the inherent properties of the frameworks. However, the synthesis of flexible crown ethers with precise structures as the fundamental building blocks of crystalline MOFs remains a challenging endeavor, with only a limited number of transition metal examples existing to date. Herein, 18-crown-6 and 24-crown-8 struts are successfully incorporated into the skeleton of zirconium-based MOFs to obtain two new and stable crown ether-based MOFs, denoted as ZJU-X100 and ZJU-X102. These newly developed MOFs displayed high porosity and remarkable stability when exposed to various solvents, boiling water, pH values, and even concentrated HCl conditions. Thanks to their highly ordered porous structure and high-density embedding of specific binding sites within tubular channels, these two MOFs exhibited extremely fast sorption kinetics and demonstrated outstanding performance in the uptake of strontium and cesium ions, respectively. Furthermore, the structures of Sr-adsorbed ZJU-X100 and Cs-adsorbed ZJU-X102 are solved and confirmed the precise location of Sr2+/Cs+ in the cavity of 18-crown-6/24-crown-8. This makes modular mosaic of different crown ethers into the skeleton of stable zirconium-based MOFs possible and promote such materials have broad applications in sorption, sensing, and catalysis.
Collapse
Affiliation(s)
- Lei Li
- College of Chemical and Biological EngineeringZhejiang UniversityHangzhou310058P. R. China
| | - Kang Kang
- College of Chemical and Biological EngineeringZhejiang UniversityHangzhou310058P. R. China
| | - Tien‐Shee Chee
- Department of Materials Science and EngineeringKorea Advanced Institute of Science and TechnologyDaejeon34141South Korea
| | - Zhenjiang Tian
- College of Chemical and Biological EngineeringZhejiang UniversityHangzhou310058P. R. China
| | - Qi Sun
- College of Chemical and Biological EngineeringZhejiang UniversityHangzhou310058P. R. China
| | - Chengliang Xiao
- College of Chemical and Biological EngineeringZhejiang UniversityHangzhou310058P. R. China
| |
Collapse
|
11
|
Kim HJ, Choi JH, Lee S, Han GS, Jung HS. Facet-Controlled Growth of Hydroxyapatite for Effectively Removing Pb from Aqueous Solutions. ACS OMEGA 2024; 9:2730-2739. [PMID: 38250348 PMCID: PMC10795148 DOI: 10.1021/acsomega.3c07725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/20/2023] [Accepted: 12/22/2023] [Indexed: 01/23/2024]
Abstract
To address the growing concerns regarding severe water pollution, effective and environmentally friendly adsorbents must be identified. In this study, we prepared hydroxyapatite (HAp, Ca10(PO4)6(OH)2) as an eco-friendly absorbent via simple precipitation and obtained rod- (r-HAp) and plate-shaped HAp (p-HAp). The approach to obtaining p-HAp involved a low pH titration rate, promoting growth along the c-axis due to the adsorption of OH- on the (110) facet. Conversely, r-HAp was obtained by maintaining a high concentration of OH- during the initial stage through rapid pH titration, leading to a stronger restrictive effect on the growth of positively charged a(b)-planes. p-HAp demonstrated superior adsorption capacity, removing Pb through dissolution and recrystallization, achieving an impressive 625 mg/g within a 60 min reaction time compared to r-HAp. Our findings afford insights into the Pb removal mechanisms of HAp with different morphologies and can aid in the development of water purification strategies against heavy metal contamination.
Collapse
Affiliation(s)
- Hee Jung Kim
- School
of Advanced Materials Science & Engineering, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do 16419, Republic of Korea
| | - Jin Hyuk Choi
- School
of Advanced Materials Science & Engineering, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do 16419, Republic of Korea
| | - SangMyeong Lee
- School
of Advanced Materials Science & Engineering, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do 16419, Republic of Korea
| | - Gill Sang Han
- Division
of Advanced Materials, Korea Research Institute
of Chemical Technology (KRICT), Daejeon 34114, Republic of Korea
| | - Hyun Suk Jung
- School
of Advanced Materials Science & Engineering, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do 16419, Republic of Korea
- SKKU
Institute of Energy Science and Technology (SIEST), Sungkyunkwan University, Suwon 16419, Republic
of Korea
| |
Collapse
|
12
|
Li X, Shao K, Xu G, Xia M, Liu X, Shang Z, Fan F, Dou J. A Prussian blue analog-based copper-aluminum layered double hydroxide for cesium removal from water: fabrication, density functional theory-based molecular modeling, and the adsorption mechanism. Phys Chem Chem Phys 2024; 26:1113-1124. [PMID: 38098463 DOI: 10.1039/d3cp03879c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
A new type of adsorbent, a Prussian blue analog-based copper-aluminum layered double hydroxide (PBA@CuAl-LDH), was successfully synthesized using a one-step method for the removal of radioactive Cs+ from wastewater. The adsorption performance, characteristics and the underlying adsorption mechanism of PBA@CuAl-LDH were systematically examined. The results showed that PBA@CuAl-LDH exhibited excellent adsorption performance, with a maximum adsorption capacity of 109.2 mg g-1. Over 85% of PBA@CuAl-LDH can be recycled, and the material exhibited only a 6.6% loss in adsorption performance. The adsorption process was well-fitted using the pseudo-second-order kinetic model and the Freundlich isotherm model, revealing the surface heterogeneity of the composite adsorbent. A molecular model of PBA@CuAl-LDH was constructed by combining density functional theory and multiple instrumental characterization techniques. Our results indicate that PBA crystals can be generated between layers and on the surface. Ion exchange was revealed as the main adsorption mechanism of Cs+ by PBA@CuAl-LDH. Specifically, the interstitial spaces of the PBA crystals generated between the layers and on the surface played an important role in ion exchange. These findings provide concrete theoretical support for radioactive pollution control and have significant value in directing the fabrication of cesium removal materials and their future engineering application.
Collapse
Affiliation(s)
- Xindai Li
- College of Water Sciences, Beijing Normal University, Beijing 100875, P. R. China.
- Engineering Research Center for Groundwater Pollution Control and Remediation Ministry of Education, College of Water Sciences, Beijing Normal University, Beijing 100875, P. R. China
| | - Kexin Shao
- College of Water Sciences, Beijing Normal University, Beijing 100875, P. R. China.
- Engineering Research Center for Groundwater Pollution Control and Remediation Ministry of Education, College of Water Sciences, Beijing Normal University, Beijing 100875, P. R. China
| | - Guangming Xu
- College of Water Sciences, Beijing Normal University, Beijing 100875, P. R. China.
- Engineering Research Center for Groundwater Pollution Control and Remediation Ministry of Education, College of Water Sciences, Beijing Normal University, Beijing 100875, P. R. China
| | - Meng Xia
- College of Water Sciences, Beijing Normal University, Beijing 100875, P. R. China.
| | - Xinyao Liu
- College of Water Sciences, Beijing Normal University, Beijing 100875, P. R. China.
| | - Zhaorong Shang
- Nuclear and Radiation Safety Center, Ministry of Ecology and Environment, Beijing 100082, China
| | - Fuqiang Fan
- Advanced Institute of Natural Sciences, Beijing Normal University at Zhuhai, Zhuhai 519087, P. R. China.
| | - Junfeng Dou
- College of Water Sciences, Beijing Normal University, Beijing 100875, P. R. China.
- Engineering Research Center for Groundwater Pollution Control and Remediation Ministry of Education, College of Water Sciences, Beijing Normal University, Beijing 100875, P. R. China
| |
Collapse
|
13
|
Wang J, Zhang J, Ni S, Xing H, Meng Q, Bian Y, Xu Z, Rong M, Liu H, Yang L. Cation-Intercalated Lamellar MoS 2 Adsorbent Enables Highly Selective Capture of Cesium. ACS APPLIED MATERIALS & INTERFACES 2023; 15:49095-49106. [PMID: 37820001 DOI: 10.1021/acsami.3c08848] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
Highly selective capture of cesium (Cs+) from complex aqueous solutions has become increasingly important owing to its (133Cs) indispensable role in some cutting-edge technologies and the environmental mobility of radioactive nuclide (137Cs) from nuclear wastewater. Herein, we report the development of cation-intercalated lamellar MoS2 as an effective Cs+ adsorbent with the advantages of facile synthesis and highly tunable layer spacing. Two types of cations, including Na+ and NH4+, were employed for the intercalations between adjacent layers of MoS2. The results demonstrated that the adsorption capacity of the NH4+-intercalated material (M-NH4+, 134 mg/g) for Cs+ clearly outperformed the others due to higher loading percentages of cations and larger layer spacing. The cesium partition coefficients for M-NH4+ in the presence of 100-fold competing ions all exceed 1 × 103 mL/g. A simulated complex aqueous solution containing 15.37 mg/L Cs+ and highly excess of competing ions Li+, Na+, K+, Mg2+, and Ca2+ (20-306 times higher) was introduced to prove the practical application potential using our best-performing M-NH4+, showing a good to excellent partition ability of Cs+ among other cations, especially for Cs/K and Cs/Na with separation factors of 58 and 212, respectively. The adsorption and selectivity mechanisms were clearly elucidated using various advanced techniques, such as scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and Raman spectroscopy. These results revealed that the good selectivity for Cs+ can be ascribed to the differences in Lewis acidities, hydration energy, cation sizes, and in particular, the divergence of coordination modes which was successfully achieved after tuning the layer distance via the cation intercalation strategy. In addition, the material has fast kinetics (<30 min), wide range of pH tolerance (4-10), and good reusability. Overall, our studies point out that the tunable lamellar MoS2-based materials are promising adsorbents for Cs+ capture and separation.
Collapse
Affiliation(s)
- Jing Wang
- Key Laboratory of Green and High-End Utilization of Salt Lake Resources, State Key Laboratory of Biochemical Engineering, CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, P. R. China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Jianfeng Zhang
- Key Laboratory of Green and High-End Utilization of Salt Lake Resources, State Key Laboratory of Biochemical Engineering, CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Shan Ni
- Key Laboratory of Green and High-End Utilization of Salt Lake Resources, State Key Laboratory of Biochemical Engineering, CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Huifang Xing
- Key Laboratory of Green and High-End Utilization of Salt Lake Resources, State Key Laboratory of Biochemical Engineering, CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Qiyu Meng
- Key Laboratory of Green and High-End Utilization of Salt Lake Resources, State Key Laboratory of Biochemical Engineering, CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Yangyang Bian
- Key Laboratory of Green and High-End Utilization of Salt Lake Resources, State Key Laboratory of Biochemical Engineering, CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, P. R. China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Zihao Xu
- Key Laboratory of Green and High-End Utilization of Salt Lake Resources, State Key Laboratory of Biochemical Engineering, CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, P. R. China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Meng Rong
- Key Laboratory of Green and High-End Utilization of Salt Lake Resources, State Key Laboratory of Biochemical Engineering, CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Huizhou Liu
- Key Laboratory of Green and High-End Utilization of Salt Lake Resources, State Key Laboratory of Biochemical Engineering, CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Liangrong Yang
- Key Laboratory of Green and High-End Utilization of Salt Lake Resources, State Key Laboratory of Biochemical Engineering, CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, P. R. China
| |
Collapse
|
14
|
Quintero MA, Pournara AD, Godsel R, Li Z, Panuganti S, Zhou X, Wolverton C, Kanatzidis MG. Metal Sulfide Ion Exchangers: High Acid Stability of Na 2xMg 2y-xSn 4-yS 8 (NMS) and Topotactic Conversion to 2D Solid Acids with Semiconducting Character. Inorg Chem 2023; 62:15971-15982. [PMID: 37721531 DOI: 10.1021/acs.inorgchem.3c02064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Abstract
Metal sulfide ion exchange materials (MSIEs) are of interest for nuclear waste remediation applications. We report the high stability of two structurally related metal sulfide ion exchange materials, Na2xMg2y-xSn4-yS8 (Mg-NMS) and Na2SnS3 (Na-NMS), in strongly acid media, in addition to the preparation of Na2xNi2y-xSn4-yS8 (Ni-NMS). Their formation progress during synthesis is studied with in-situ methods, with the target phases appearing in <15 min, reaction completion in <12 h, and high yields (75-80%). Upon contact with nitric or hydrochloric acid, these materials topotactically exchange Na+ for H+, proceeding in a stepwise protonation pathway for Na5.33Sn2.67S8. Na-NMS is stable in 2 M HNO3 and Mg-NMS is stable in 4 M HNO3 for up to 4 h, while both NMS materials are stable in 6 M HCl for up to 4 days. However, the treatment of Mg-NMS and Na-NMS with 2-6 M H2SO4 reveals a much slower protonation process since after 4 h of contact both NMS and HMS are present in the solution. The resultant protonated materials, H2xMg2y-xSn4-yS8 and H4x[(HyNay-1)1.33xSn4--1.33x]S8, are themselves solid acids and readily react with and intercalate a variety of organic amines, where the band gap of the resultant adduct is influenced by amine choice and can be tuned within the range of 1.88(5)-2.27(5) eV. The work function energy values for all materials were extracted from photoemission yield spectroscopy in air (PYSA) measurements and range from 5.47 (2) to 5.76 (2) eV, and the relative band alignments of the materials are discussed. DFT calculations suggest that the electronic structure of Na2MgSn3S8 and H2MgSn3S8 makes them indirect gap semiconductors with multi-valley band edges, with carriers confined to the [MgSn3S8]2- layers. Light electron effective masses indicate high electron mobilities.
Collapse
Affiliation(s)
- Michael A Quintero
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Anastasia D Pournara
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Richard Godsel
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Zhi Li
- Materials Science Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Shobhana Panuganti
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Xiuquan Zhou
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Christopher Wolverton
- Materials Science Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Mercouri G Kanatzidis
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
- Materials Science Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| |
Collapse
|
15
|
Zeng F, Yang Y, Li X, Yang Y. Ionic Sieving at Sub-Angstrom Precision Enabled by Metal Organic Frameworks. ACS APPLIED MATERIALS & INTERFACES 2023; 15:40839-40845. [PMID: 37599605 DOI: 10.1021/acsami.3c07914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/22/2023]
Abstract
The demand for cesium is expanding rapidly in light of its necessity in high-tech industries. Thus, technologies that can efficiently extract cesium from the sources are critically needed. Here, the metal-organic framework (MOF) membranes created from -Cl and -NH2 functionalized MIL-53 enabled highly selective transport of cesium ions. The angstrom-scale pore windows in these MOFs conduct Cs+ ions at high throughput, 2 orders of magnitude faster than other marginally larger ions. Ascribed to size sieving effects, MIL-53-NH2 containing 6.6 Å size channels realized an exceedingly high Cs+/Li+ selectivity up to ∼315. The rapid transport of Cs+ ions relative to other ions is greatly dependent on the precision of the angstrom-scale pores. Our work highlights the enormous potential of realizing high ion selectivity with MOFs and drives the further development of these materials in a variety of advanced separations.
Collapse
Affiliation(s)
- Fengmi Zeng
- Research Centre of Ecology and Environment for Coastal Area and Deep Sea, Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China
| | - Yihui Yang
- Research Centre of Ecology and Environment for Coastal Area and Deep Sea, Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China
| | - Xianhui Li
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China
| | - Yang Yang
- Research Centre of Ecology and Environment for Coastal Area and Deep Sea, Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| |
Collapse
|
16
|
Yan J, Zhang B, Li J, Yang Y, Wang YN, Zhang YD, Liu XZ. Rapid and Selective Uptake of Radioactive Cesium from Water by a Microporous Zeolitic-like Sulfide. Inorg Chem 2023; 62:12843-12850. [PMID: 37534778 DOI: 10.1021/acs.inorgchem.3c01507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2023]
Abstract
The fast and efficient removal of 137Cs+ ions from water is of great significance for the further treatment and disposal of highly active nuclear waste. Hitherto, although many layered metal sulfides have been proven to be very effective in capturing aqueous cesium, three-dimensional (3D) microporous examples have rarely been explored, especially compounds that are systematically used to study cesium ion exchange behaviors. In this paper, we present detailed Cs+ ion exchange properties of a 3D, microporous, zeolitic-like sulfide, namely K@GaSnS-1, in different conditions. Isotherm studies indicate that K@GaSnS-1 has a high cesium saturation capacity of 249.3 mg/g. In addition, it exhibits rapid sorption kinetics, with an equilibrium time of only 2 min. Further studies show that K@GaSnS-1 also displays a strong preference and good selectivity for cesium, with the highest distribution coefficient Kd value up to 3.53 × 104 mL/g. Also noteworthy is that the excellent cesium ion exchange properties are well-maintained despite acidic, basic, and competitive multiple-component environments. More importantly, the Cs+-exchanged products can be easily eluted and regenerated by a low-cost and eco-friendly method. These merits demonstrated by K@GaSnS-1 render it very promising in the effective and efficient separation of radioactive cesium from nuclear waste.
Collapse
Affiliation(s)
- Jie Yan
- Department of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, Shandong, China
| | - Bo Zhang
- Department of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, Shandong, China
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, Fujian, China
| | - Jun Li
- Department of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, Shandong, China
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, Fujian, China
| | - Yan Yang
- Department of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, Shandong, China
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, Fujian, China
| | - Ya-Ning Wang
- Department of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, Shandong, China
| | - Yong-Di Zhang
- Department of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, Shandong, China
| | - Xiao-Zhuo Liu
- Department of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, Shandong, China
| |
Collapse
|
17
|
Liu Y, Shi FQ, Hao X, Li MY, Cheng L, Wang C, Wang KY. Open-framework hybrid zinc/tin selenide as an ultrafast adsorbent for Cs +, Ba 2+, Co 2+, and Ni 2. JOURNAL OF HAZARDOUS MATERIALS 2023; 458:132038. [PMID: 37463560 DOI: 10.1016/j.jhazmat.2023.132038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 07/08/2023] [Accepted: 07/09/2023] [Indexed: 07/20/2023]
Abstract
Efficient adsorption of radioactive 137Cs+ and 60Co2+ and their decay products 137Ba2+ and 60Ni2+ bears significance for hazard elimination in case of nuclear emergency, which relies on the adsorption rate enhancement that takes advantages of compositional and structural optimization. Herein, we report a zinc-doped selenidostannate constructed from T2-supertetrahedral clusters, namely K3.4(CH3NH3)0.45(NH4)0.15Zn2Sn3Se10·3.4 H2O (ZnSnSe-1K). The soft Se and micro-porosity synergistically endow this material with a binding affinity to Cs+, Ba2+, Co2+, and Ni2+ ions and ultrafast kinetics with R > 97.6% in 2-60 min. In particular, ZnSnSe-1K can remove 99.34% of Cs+ in 2 min (KdCs > 1.5 × 105 mL g-1), contributing to a record rate constant k2 of 9.240 g mg-1 min-1 that surpasses all metal chalcogenide adsorbents. ZnSnSe-1K exhibits good acid/base tolerance (pH = 0-12), and the adsorption capacities at neutral are 253.61 ± 9.15, 108.94 ± 25.32, 45.76 ± 14.19 and 38.49 ± 2.99 mg g-1 for Cs+, Ba2+, Co2+, and Ni2+, respectively. The adsorption performances resist well co-existing cations and anions, and the removal rates can keep above or close to 90% even in sea water. ZnSnSe-1K is employed in continuous column and membrane filtration, both of which shows excellent elimination efficiency (R > 99%) for mixed Cs+, Ba2+, Co2+, and Ni2+. Especially, the membrane with an ultrathin (70 µm) ZnSnSe-1K layer can remove 97-100% Cs+ in suction filtration with a short contact time of 0.33 s. Combined with the simple synthesis, facile elution and great irradiation resistance, ZnSnSe-1K emerges as a selenide adsorbent candidate for use in environmental remediation especially that involving nuclear waste disposal.
Collapse
Affiliation(s)
- Yang Liu
- Tianjin Key Laboratory of Advanced Functional Porous Materials, Institute for New Energy Materials and Low-Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, PR China
| | - Feng-Qi Shi
- Tianjin Key Laboratory of Advanced Functional Porous Materials, Institute for New Energy Materials and Low-Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, PR China
| | - Xin Hao
- Tianjin Key Laboratory of Advanced Functional Porous Materials, Institute for New Energy Materials and Low-Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, PR China
| | - Meng-Yu Li
- Tianjin Key Laboratory of Advanced Functional Porous Materials, Institute for New Energy Materials and Low-Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, PR China
| | - Lin Cheng
- College of Chemistry, Tianjin Normal University, Tianjin 300387, PR China
| | - Cheng Wang
- Tianjin Key Laboratory of Advanced Functional Porous Materials, Institute for New Energy Materials and Low-Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, PR China
| | - Kai-Yao Wang
- Tianjin Key Laboratory of Advanced Functional Porous Materials, Institute for New Energy Materials and Low-Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, PR China.
| |
Collapse
|
18
|
Sun HY, Hu B, Lv TT, Guo YL, Yao YX, Yang L, Feng ML, Huang XY. Efficient Co-Adsorption and Highly Selective Separation of Cs + and Sr 2+ with a K + -Activated Niobium Germanate by the pH Control. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2208212. [PMID: 36916691 DOI: 10.1002/smll.202208212] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/20/2023] [Indexed: 06/15/2023]
Abstract
137 Cs and 90 Sr are hazardous to ecological environment and human health due to their strong radioactivity, long half-life, and high mobility. However, effective adsorption and separation of Cs+ and Sr2+ from acidic radioactive wastewater is challenging due to stability issues of material and the strong competition of protons. Herein, a K+ -activated niobium germanate (K-NGH-1) presents efficient Cs+ /Sr2+ coadsorption and highly selective Cs+ /Sr2+ separation, respectively, under different acidity conditions. In neutral solution, K-NGH-1 exhibits ultrafast adsorption kinetics and high adsorption capacity for both Cs+ and Sr2+ (qm Cs = 182.91 mg g-1 ; qm Sr = 41.62 mg g-1 ). In 1 M HNO3 solution, K-NGH-1 still possesses qm Cs of 91.40 mg g-1 for Cs+ but almost no adsorption for Sr2+ . Moreover, K-NGH-1 can effectively separate Cs+ from 1 M HNO3 solutions with excess competing Sr2+ and Mn + (Mn + = Na+ , Ca2+ , Mg2+ ) ions. Thus, efficient separation of Cs+ and Sr2+ is realized under acidic conditions. Besides, K-NGH-1 shows excellent acid and radiation resistance and recyclability. All the merits above endow K-NGH-1 with the first example of niobium germanates for radionuclides remediation. This work highlights the facile pH control approach towards bifunctional ion exchangers for efficient Cs+ /Sr2+ coadsorption and selective separation.
Collapse
Affiliation(s)
- Hai-Yan Sun
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Bing Hu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Tian-Tian Lv
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
| | - Yan-Ling Guo
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350007, P. R. China
| | - Yue-Xin Yao
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
| | - Lu Yang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
| | - Mei-Ling Feng
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- Fujian Province Joint Innovation Key Laboratory of Fuel and Materials in Clean Nuclear Energy System, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
| | - Xiao-Ying Huang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
19
|
Yang C, Suh YJ, Cho K. Leaching of structural Ca 2+ ions from a chalcogenide adsorbent by H + lifts Cs(I) uptake. JOURNAL OF HAZARDOUS MATERIALS 2023; 455:131648. [PMID: 37207481 DOI: 10.1016/j.jhazmat.2023.131648] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/02/2023] [Accepted: 05/14/2023] [Indexed: 05/21/2023]
Abstract
Acidic wastewater containing radioactive 137Cs is difficult to treat by selective adsorption. Abundant H+ under acidic conditions damages the structure of adsorbents and competes with Cs+ for adsorption sites. Herein, we designed a novel layered calcium thiostannate (KCaSnS) that contains Ca2+ as a dopant. The dopant Ca2+ ion is metastable and larger than the ions attempted before. The pristine KCaSnS demonstrated a high Cs+ adsorption capacity of 620 mg/g at 8250 mg/L Cs+ solution and pH 2, which is 68% higher than that at pH 5.5 (370 mg/g), a trend opposite to all previous studies. The neutral condition allowed the release of Ca2+ present only in the interlayer (∼20%); whereas the high acidity facilitated the leaching of Ca2+ from the backbone structure (∼80%). The complete structural Ca2+ leaching was made possible only by a synergistic interaction of highly concentrated H+ and Cs+. Doping a large enough ion, such as Ca2+, to accommodate Cs+ into the Sn-S matrix upon its liberation opens a new way of designing high-performance adsorbents.
Collapse
Affiliation(s)
- Chenyang Yang
- Department of Environmental Engineering, Pusan National University, 2 Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan 46241, Republic of Korea
| | - Yong Jae Suh
- Resources Utilization Division, Korea Institute of Geoscience and Mineral Resources, 124 Gwahak-ro, Yuseong-gu, Daejeon 34132, Republic of Korea; Department of Resources Engineering, Korea University of Science and Technology, 217 Gajeong-ro, Yuseong-gu, Daejeon 34113, Republic of Korea.
| | - Kuk Cho
- Department of Environmental Engineering, Pusan National University, 2 Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan 46241, Republic of Korea.
| |
Collapse
|
20
|
Peng L, Guo L, Li J, Zhang W, Shi B, Liao X. Rapid and highly selective removal of cesium by Prussian blue analog anchored on porous collagen fibers. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2022.122858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
21
|
Gao C, Yan W, Han S, Guo Y, Wang S, Deng T. Layer-by-layer Assembled Ferrocyanide Composite Fibers for Highly Efficient Removal of Cesium. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
22
|
Li X, Xu G, Xia M, Liu X, Fan F, Dou J. Research on the remediation of cesium pollution by adsorption: Insights from bibliometric analysis. CHEMOSPHERE 2022; 308:136445. [PMID: 36113663 DOI: 10.1016/j.chemosphere.2022.136445] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 09/06/2022] [Accepted: 09/10/2022] [Indexed: 06/15/2023]
Abstract
While nuclear energy with zero carbon emissions will continue to occupy an indispensable position in future scenarios for power generation, the proper disposal of nuclear waste is still highly challenging in many countries. Adsorption is currently one of the primary methods used for removal of cesium from wastewater. However, no available literature has systematically summarized advances and outlooks on the adsorptive removal of cesium, and research issues such as relevant adsorption mechanisms remain largely unexplored. In this study, a bibliometric analysis was used to quantitatively analyze 10141 publications in the Web of Science Core Collection that were published from 1900 to 2022. Current publication trends and active countries, most influential authors and institutions, journal distribution, and research hotspots and trends were reviewed and summarized. The results for the conceptual structure and evolution of investigations in this field showed three distinct periods of rapid development in recent decades. The first period concerned the scope, degree, and influences of pollution by cesium and the development of natural adsorbents. The second period included the exploration and verification of adsorption mechanisms, the fabrication and optimization of new materials, and the application of density functional theory for chemical calculations. The third period involved the development of more advanced biodegradable, nanoscale and synthetic materials with great potential for use as adsorbents as well as advances in engineering applications. Notably, the study showed that it is necessary to further enhance application-driven laboratory investigations. Future directions for research were proposed, such as the investigation of complex adsorption mechanisms, development of new materials, and engineering applications of materials developed in the laboratory. The findings will provide valuable insights and serve as a reference for researchers and policymakers as they address the adsorptive remediation of cases of pollution by cesium.
Collapse
Affiliation(s)
- Xindai Li
- College of Water Sciences, Beijing Normal University, Beijing, 100875, PR China; Beijing Key Laboratory of Urban Hydrological Cycle and Sponge City Technology, College of Water Sciences, Beijing Normal University, Beijing, 100875, PR China
| | - Guangming Xu
- College of Water Sciences, Beijing Normal University, Beijing, 100875, PR China; Beijing Key Laboratory of Urban Hydrological Cycle and Sponge City Technology, College of Water Sciences, Beijing Normal University, Beijing, 100875, PR China
| | - Meng Xia
- College of Water Sciences, Beijing Normal University, Beijing, 100875, PR China
| | - Xinyao Liu
- College of Water Sciences, Beijing Normal University, Beijing, 100875, PR China
| | - Fuqiang Fan
- Advanced Institute of Natural Sciences, Beijing Normal University at Zhuhai, Zhuhai, 519087, PR China.
| | - Junfeng Dou
- College of Water Sciences, Beijing Normal University, Beijing, 100875, PR China; Beijing Key Laboratory of Urban Hydrological Cycle and Sponge City Technology, College of Water Sciences, Beijing Normal University, Beijing, 100875, PR China.
| |
Collapse
|
23
|
Wang KY, Liu Y, Zhu JY, Cheng L, Wang C. M–Sn–Q (M = Zn, Cd; Q = S, Se) Compounds Templated by (Alkyl)ammonium Species: Synthesis, Crystal Structure, and Sr 2+ Adsorption Property. Inorg Chem 2022; 61:19106-19118. [DOI: 10.1021/acs.inorgchem.2c02594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Kai-Yao Wang
- Tianjin Key Laboratory of Advanced Functional Porous Materials, Institute for New Energy Materials and Low-Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin300384, China
- National Engineering Research Center for Optoelectronic Crystalline Materials, Fuzhou, Fujian350002, P. R. China
| | - Yang Liu
- Tianjin Key Laboratory of Advanced Functional Porous Materials, Institute for New Energy Materials and Low-Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin300384, China
| | - Jia-Ying Zhu
- Tianjin Key Laboratory of Advanced Functional Porous Materials, Institute for New Energy Materials and Low-Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin300384, China
| | - Lin Cheng
- College of Chemistry, Tianjin Normal University, Tianjin300387, P. R. China
| | - Cheng Wang
- Tianjin Key Laboratory of Advanced Functional Porous Materials, Institute for New Energy Materials and Low-Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin300384, China
| |
Collapse
|
24
|
He J, Mao L, Ma X, Hua J, Cui Z, He B, Pei H, Li J. Highly-Efficient adsorptive separation of Cs+ from aqueous solutions by porous polyimide membrane containing Dibenzo-18-Crown-6. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
25
|
Rapid and selective recovery of Ag(I) from simulative electroplating effluents by sulfydryl-rich covalent organic framework (COF-SH) with high adsorption capacity. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129156] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
26
|
Zhu JY, Cheng L, Zhao YM, Li MY, Wang ZZ, Wang J, Wang C, Wang KY. Structural Investigation on the Efficient Capture of Cs+ and Sr2+ by a Microporous Cd-Sn-Se Ion Exchanger Constructed from Mono-Lacunary Supertetrahedral Clusters. Inorg Chem Front 2022. [DOI: 10.1039/d2qi00338d] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Visualization of the ion exchange mechanism for 137Cs and 90Sr decontamination bears significance for safe radioactive liquid waste reprocessing and emergency response enhancement to nuclear accident. Here, the remediation of...
Collapse
|