1
|
Sun Y, Zhang X, Hong W, Qin Y, Man Y, He M, Liu JW, Chen J. Site-specific bioorthogonal regulation of bone morphogenetic protein 2 expression for effective bone regeneration. J Control Release 2024; 374:577-589. [PMID: 39208933 DOI: 10.1016/j.jconrel.2024.08.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/01/2024] [Accepted: 08/25/2024] [Indexed: 09/04/2024]
Abstract
Growth factor holds great promise for bone regeneration, and spatiotemporal control of their expressing through site-specific reactions is crucial but challenging for on-demand therapy. In this study, we present the development of a novel unnatural amino acids (UAAs)-triggered therapeutic switch (UATS) system, composed of an orthogonal aminoacyl-tRNA-synthase (aaRS)-tRNA pair and a bone morphogenetic protein 2 (BMP2) gene harboring premature stop codon, which enable in situ and on-demand initiation of the expression of BMP2. The resulting UATS system allowed specifically control of base expressing on the BMP2 mRNA that switched to the BMP2 protein with complete structure and function to facilitate bone regeneration. Our investigations showed that the UATS system exhibits remarkable attributes of rapid, sensitive, reversible, and sustained BMP2 expression both in vitro and in vivo settings. Moreover, the implantation of microencapsulated cells with UATS system is applied to a mouse femur defect model, demonstrating high effciency in controlled expressing of BMP2 protein and substantial repair of bone defect following oral administration of UAAs. Therefore, our findings underscore the great potential of UATS system for on-demand awakening of functional growth factor, thus offering promising prospects in the realm of regenerative medicine.
Collapse
Affiliation(s)
- Yu Sun
- Division of Spinal Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Xiuhua Zhang
- Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education, Guangxi Colleges and Universities Key Laboratory of Biological Molecular Medicine Research, School of Basic Medical Sciences Guangxi Medical University, Nanning 530021, China
| | - Wanrong Hong
- Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education, Guangxi Colleges and Universities Key Laboratory of Biological Molecular Medicine Research, School of Basic Medical Sciences Guangxi Medical University, Nanning 530021, China
| | - Yingfeng Qin
- Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education, Guangxi Colleges and Universities Key Laboratory of Biological Molecular Medicine Research, School of Basic Medical Sciences Guangxi Medical University, Nanning 530021, China.
| | - Yunan Man
- Division of Spinal Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Maolin He
- Division of Spinal Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China.
| | - Jin-Wen Liu
- Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education, Guangxi Colleges and Universities Key Laboratory of Biological Molecular Medicine Research, School of Basic Medical Sciences Guangxi Medical University, Nanning 530021, China.
| | - Jia Chen
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| |
Collapse
|
2
|
Qi H, Duan S, Xu Y, Zhang H. Frontiers and future perspectives of neuroimmunology. FUNDAMENTAL RESEARCH 2024; 4:206-217. [PMID: 38933499 PMCID: PMC11197808 DOI: 10.1016/j.fmre.2022.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 08/16/2022] [Accepted: 10/11/2022] [Indexed: 11/06/2022] Open
Abstract
Neuroimmunology is an interdisciplinary branch of biomedical science that emerges from the intersection of studies on the nervous system and the immune system. The complex interplay between the two systems has long been recognized. Research efforts directed at the underlying functional interface and associated pathophysiology, however, have garnered attention only in recent decades. In this narrative review, we highlight significant advances in research on neuroimmune interplay and modulation. A particular focus is on early- and middle-career neuroimmunologists in China and their achievements in frontier areas of "neuroimmune interface", "neuro-endocrine-immune network and modulation", "neuroimmune interactions in diseases", "meningeal lymphatic and glymphatic systems in health and disease", and "tools and methodologies in neuroimmunology research". Key scientific questions and future directions for potential breakthroughs in neuroimmunology research are proposed.
Collapse
Affiliation(s)
- Hai Qi
- School of Medicine, Tsinghua University, Beijing 100084, China
| | - Shumin Duan
- Faculty of Medicine and Pharmaceutical Sciences, Zhejiang University, Hangzhou 310014, China
| | - Yanying Xu
- Department of Life Sciences, National Natural Science Foundation of China, Beijing 100085, China
| | - Hongliang Zhang
- Department of Life Sciences, National Natural Science Foundation of China, Beijing 100085, China
| |
Collapse
|
3
|
Zhang F, Huang Y, Hu J, Yin S. Editorial: Parathyroid disorders: updates of PTH/serum Ca2+ regulation and therapeutic prospects. Front Endocrinol (Lausanne) 2024; 14:1354277. [PMID: 38292765 PMCID: PMC10826605 DOI: 10.3389/fendo.2023.1354277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 12/31/2023] [Indexed: 02/01/2024] Open
Affiliation(s)
- Fan Zhang
- Department of Breast and Thyroid Surgery, Chongqing General Hospital, Chongqing, China
| | - Yinde Huang
- Department of Breast and Thyroid Surgery, Chongqing General Hospital, Chongqing, China
| | - Jiongyu Hu
- Department of Endocrinology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Supeng Yin
- Department of Breast and Thyroid Surgery, Chongqing General Hospital, Chongqing, China
| |
Collapse
|
4
|
Li T, Wang H, Jiang Y, Chen S, Huang D, Wu Z, Yin X, Zhou C, Li Y, Zou S. LITTIP/Lgr6/HnRNPK complex regulates cementogenesis via Wnt signaling. Int J Oral Sci 2023; 15:33. [PMID: 37558690 PMCID: PMC10412570 DOI: 10.1038/s41368-023-00237-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 06/25/2023] [Accepted: 06/26/2023] [Indexed: 08/11/2023] Open
Abstract
Orthodontically induced tooth root resorption (OIRR) is a serious complication during orthodontic treatment. Stimulating cementum repair is the fundamental approach for the treatment of OIRR. Parathyroid hormone (PTH) might be a potential therapeutic agent for OIRR, but its effects still lack direct evidence, and the underlying mechanisms remain unclear. This study aims to explore the potential involvement of long noncoding RNAs (lncRNAs) in mediating the anabolic effects of intermittent PTH and contributing to cementum repair, as identifying lncRNA-disease associations can provide valuable insights for disease diagnosis and treatment. Here, we showed that intermittent PTH regulates cell proliferation and mineralization in immortalized murine cementoblast OCCM-30 via the regulation of the Wnt pathway. In vivo, daily administration of PTH is sufficient to accelerate root regeneration by locally inhibiting Wnt/β-catenin signaling. Through RNA microarray analysis, lncRNA LITTIP (LGR6 intergenic transcript under intermittent PTH) is identified as a key regulator of cementogenesis under intermittent PTH. Chromatin isolation by RNA purification (ChIRP) and RNA immunoprecipitation (RIP) assays revealed that LITTIP binds to mRNA of leucine-rich repeat-containing G-protein coupled receptor 6 (LGR6) and heterogeneous nuclear ribonucleoprotein K (HnRNPK) protein. Further co-transfection experiments confirmed that LITTIP plays a structural role in the formation of the LITTIP/Lgr6/HnRNPK complex. Moreover, LITTIP is able to promote the expression of LGR6 via the RNA-binding protein HnRNPK. Collectively, our results indicate that the intermittent PTH administration accelerates root regeneration via inhibiting Wnt pathway. The lncRNA LITTIP is identified to negatively regulate cementogenesis, which activates Wnt/β-catenin signaling via high expression of LGR6 promoted by HnRNPK.
Collapse
Affiliation(s)
- Tiancheng Li
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Orthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology; Shanghai Research Institute of Stomatology, Shanghai, China
| | - Han Wang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yukun Jiang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Shuo Chen
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Danyuan Huang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Zuping Wu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xing Yin
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Chenchen Zhou
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yuyu Li
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| | - Shujuan Zou
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| |
Collapse
|
5
|
Li G, Liu S, Xu H, Chen Y, Deng J, Xiong A, Wang D, Weng J, Yu F, Gao L, Ding C, Zeng H. Potential effects of teriparatide (PTH (1-34)) on osteoarthritis: a systematic review. Arthritis Res Ther 2023; 25:3. [PMID: 36609338 PMCID: PMC9817404 DOI: 10.1186/s13075-022-02981-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 12/19/2022] [Indexed: 01/09/2023] Open
Abstract
Osteoarthritis (OA) is a common and prevalent degenerative joint disease characterized by degradation of the articular cartilage. However, none of disease-modifying OA drugs is approved currently. Teriparatide (PTH (1-34)) might stimulate chondrocyte proliferation and cartilage regeneration via some uncertain mechanisms. Relevant therapies of PTH (1-34) on OA with such effects have recently gained increasing interest, but have not become widespread practice. Thus, we launch this systematic review (SR) to update the latest evidence accordingly. A comprehensive literature search was conducted in PubMed, Web of Science, MEDLINE, the Cochrane Library, and Embase from their inception to February 2022. Studies investigating the effects of the PTH (1-34) on OA were obtained. The quality assessment and descriptive summary were made of all included studies. Overall, 307 records were identified, and 33 studies were included. In vivo studies (n = 22) concluded that PTH (1-34) slowed progression of OA by alleviating cartilage degeneration and aberrant remodeling of subchondral bone (SCB). Moreover, PTH (1-34) exhibited repair of cartilage and SCB, analgesic, and anti-inflammatory effects. In vitro studies (n = 11) concluded that PTH (1-34) was important for chondrocytes via increasing the proliferation and matrix synthesis but preventing apoptosis or hypertrophy. All included studies were assessed with low or unclear risk of bias in methodological quality. The SR demonstrated that PTH (1-34) could alleviate the progression of OA. Moreover, PTH (1-34) had beneficial effects on osteoporotic OA (OPOA) models, which might be a therapeutic option for OA and OPOA treatment.
Collapse
Affiliation(s)
- Guoqing Li
- grid.440601.70000 0004 1798 0578Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, 518036 People’s Republic of China ,grid.440601.70000 0004 1798 0578National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, 518036 People’s Republic of China
| | - Su Liu
- grid.440601.70000 0004 1798 0578Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, 518036 People’s Republic of China ,grid.440601.70000 0004 1798 0578National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, 518036 People’s Republic of China
| | - Huihui Xu
- grid.440601.70000 0004 1798 0578Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, 518036 People’s Republic of China ,grid.440601.70000 0004 1798 0578National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, 518036 People’s Republic of China
| | - Yixiao Chen
- grid.440601.70000 0004 1798 0578Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, 518036 People’s Republic of China ,grid.440601.70000 0004 1798 0578National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, 518036 People’s Republic of China
| | - Jiapeng Deng
- grid.440601.70000 0004 1798 0578Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, 518036 People’s Republic of China ,grid.440601.70000 0004 1798 0578National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, 518036 People’s Republic of China
| | - Ao Xiong
- grid.440601.70000 0004 1798 0578Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, 518036 People’s Republic of China ,grid.440601.70000 0004 1798 0578National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, 518036 People’s Republic of China
| | - Deli Wang
- grid.440601.70000 0004 1798 0578Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, 518036 People’s Republic of China ,grid.440601.70000 0004 1798 0578National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, 518036 People’s Republic of China
| | - Jian Weng
- grid.440601.70000 0004 1798 0578Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, 518036 People’s Republic of China ,grid.440601.70000 0004 1798 0578National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, 518036 People’s Republic of China
| | - Fei Yu
- grid.440601.70000 0004 1798 0578Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, 518036 People’s Republic of China ,grid.440601.70000 0004 1798 0578National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, 518036 People’s Republic of China
| | - Liang Gao
- Center for Clinical Medicine, Huatuo Institute of Medical Innovation (HTIMI), Berlin, Germany. .,Sino Euro Orthopaedics Network (SEON), Berlin, Germany.
| | - Changhai Ding
- Clinical Research Centre, Zhujiang Hospital, Southern Medical University, Guangzhou, People's Republic of China.
| | - Hui Zeng
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, 518036, People's Republic of China. .,National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, 518036, People's Republic of China.
| |
Collapse
|