1
|
Konopová B. Evolution of insect metamorphosis - an update. CURRENT OPINION IN INSECT SCIENCE 2025; 67:101289. [PMID: 39490982 DOI: 10.1016/j.cois.2024.101289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/18/2024] [Accepted: 10/22/2024] [Indexed: 11/05/2024]
Abstract
Metamorphosis endowed the insects with properties that enabled them to conquer the Earth. It is a hormonally controlled morphogenetic process that transforms the larva into the adult. Metamorphosis appeared with the origin of wings and flight. The sesquiterpenoid juvenile hormone (JH) suppresses wing morphogenesis and ensures that metamorphosis takes place at the right ontogenetic time. This review explores the origin of insect metamorphosis and the ancestral function of JH. Fossil record shows that the first Paleozoic winged insects had (hemimetabolous) metamorphosis, and their larvae were likely aquatic. In the primitive wingless silverfish that lacks metamorphosis, JH is essential for late embryogenesis and reproduction. JH production after the embryo dorsal closure promotes hatching and terminal tissue maturation.
Collapse
Affiliation(s)
- Barbora Konopová
- Institute of Entomology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic.
| |
Collapse
|
2
|
Treidel LA, Deem KD, Salcedo MK, Dickinson MH, Bruce HS, Darveau CA, Dickerson BH, Ellers O, Glass JR, Gordon CM, Harrison JF, Hedrick TL, Johnson MG, Lebenzon JE, Marden JH, Niitepõld K, Sane SP, Sponberg S, Talal S, Williams CM, Wold ES. Insect Flight: State of the Field and Future Directions. Integr Comp Biol 2024; 64:icae106. [PMID: 38982327 PMCID: PMC11406162 DOI: 10.1093/icb/icae106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2024] Open
Abstract
The evolution of flight in an early winged insect ancestral lineage is recognized as a key adaptation explaining the unparalleled success and diversification of insects. Subsequent transitions and modifications to flight machinery, including secondary reductions and losses, also play a central role in shaping the impacts of insects on broadscale geographic and ecological processes and patterns in the present and future. Given the importance of insect flight, there has been a centuries-long history of research and debate on the evolutionary origins and biological mechanisms of flight. Here, we revisit this history from an interdisciplinary perspective, discussing recent discoveries regarding the developmental origins, physiology, biomechanics, and neurobiology and sensory control of flight in a diverse set of insect models. We also identify major outstanding questions yet to be addressed and provide recommendations for overcoming current methodological challenges faced when studying insect flight, which will allow the field to continue to move forward in new and exciting directions. By integrating mechanistic work into ecological and evolutionary contexts, we hope that this synthesis promotes and stimulates new interdisciplinary research efforts necessary to close the many existing gaps about the causes and consequences of insect flight evolution.
Collapse
Affiliation(s)
- Lisa A Treidel
- School of Biological Sciences, University of Nebraska, Lincoln, Lincoln NE, 68588, USA
| | - Kevin D Deem
- Department of Biology, University of Rochester, Rochester NY, 14627, USA
| | - Mary K Salcedo
- Department of Biological and Environmental Engineering, Cornell University, Ithaca NY, 14853, USA
| | - Michael H Dickinson
- Department of Bioengineering, California Institute of Technology, Pasadena CA 91125, USA
| | | | - Charles-A Darveau
- Department of Biology, University of Ottawa, Ottawa Ontario, K1N 6N5, Canada
| | - Bradley H Dickerson
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, USA
| | - Olaf Ellers
- Biology Department, Bowdoin College, Brunswick, ME 04011, USA
| | - Jordan R Glass
- Department of Zoology & Physiology, University of Wyoming, Laramie, WY 82070, USA
| | - Caleb M Gordon
- Department of Earth and Planetary Sciences, Yale University, New Haven, CT 06520-8109, USA
| | - Jon F Harrison
- School of Life Sciences, Arizona State University, Tempe, AZ 85287-4501, USA
| | - Tyson L Hedrick
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Meredith G Johnson
- School of Life Sciences, Arizona State University, Tempe, AZ 85287-4501, USA
| | - Jacqueline E Lebenzon
- Department of Integrative Biology, University of California, Berkeley, Berkeley CA, 94720, USA
| | - James H Marden
- Department of Biology, Pennsylvania State University, University Park, PA 16803, USA
| | | | - Sanjay P Sane
- National Center for Biological Sciences, Tata Institute of Fundamental Research, Bangalore 560065 India
| | - Simon Sponberg
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Stav Talal
- School of Life Sciences, Arizona State University, Tempe, AZ 85287-4501, USA
| | - Caroline M Williams
- Department of Integrative Biology, University of California, Berkeley, Berkeley CA, 94720, USA
| | - Ethan S Wold
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| |
Collapse
|
3
|
Dong W, Song CY, Liu MQ, Gao YH, Zhao ZW, Zhang XB, Moussian B, Zhang JZ. Osiris17 is essential for stable integrin localization and function during insect wing epithelia remodeling. Int J Biol Macromol 2024; 263:130245. [PMID: 38367779 DOI: 10.1016/j.ijbiomac.2024.130245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/13/2024] [Accepted: 02/14/2024] [Indexed: 02/19/2024]
Abstract
The dynamic adhesion between cells and their extracellular matrix is essential for the development and function of organs. During insect wing development, two epithelial sheets contact each other at their basal sites through the interaction of βPS integrins with the extracellular matrix. We report that Osiris17 contributes to the maintenance of βPS integrins localization and function in developing wing of Drosophila and locust. In flies with reduced Osiris17 expression the epithelia sheets fail to maintain the integrity of basal cytoplasmic junctional bridges and basal adhesion. In contrast to the continuous basal integrin localization in control wings, this localization is disrupted during late stages of wing development in Osiris17 depleted flies. In addition, the subcellular localization revealed that Osiris17 co-localizes with the endosomal markers Rab5 and Rab11. This observation suggests an involvement of Osiris17 in endosomal recycling of integrins. Indeed, Osiris17 depletion reduced the numbers of Rab5 and Rab11 positive endosomes. Moreover, overexpression of Osiris17 increased co-localization of Rab5 and βPS integrins and partially rescued the detachment phenotype in flies with reduced βPS integrins. Taken together, our data suggest that Osiris17 is an endosome related protein that contributes to epithelial remodeling and morphogenesis by assisting basal integrins localization in insects.
Collapse
Affiliation(s)
- Wei Dong
- Research Institute of Applied Biology, Shanxi Key Laboratory of Nucleic Acid Biopesticides, Shanxi University, Taiyuan, Shanxi, China.
| | - Chen-Yang Song
- Research Institute of Applied Biology, Shanxi Key Laboratory of Nucleic Acid Biopesticides, Shanxi University, Taiyuan, Shanxi, China
| | - Meng-Qi Liu
- Research Institute of Applied Biology, Shanxi Key Laboratory of Nucleic Acid Biopesticides, Shanxi University, Taiyuan, Shanxi, China
| | - Ying-Hao Gao
- Research Institute of Applied Biology, Shanxi Key Laboratory of Nucleic Acid Biopesticides, Shanxi University, Taiyuan, Shanxi, China
| | - Zhang-Wu Zhao
- Research Institute of Applied Biology, Shanxi Key Laboratory of Nucleic Acid Biopesticides, Shanxi University, Taiyuan, Shanxi, China
| | - Xu-Bo Zhang
- Research Institute of Applied Biology, Shanxi Key Laboratory of Nucleic Acid Biopesticides, Shanxi University, Taiyuan, Shanxi, China.
| | - Bernard Moussian
- INRAE, CNRS, Institut Sophia Agrobiotech, Sophia Antipolis, Université Côte d(')Azur, 06108 Nice, France.
| | - Jian-Zhen Zhang
- Research Institute of Applied Biology, Shanxi Key Laboratory of Nucleic Acid Biopesticides, Shanxi University, Taiyuan, Shanxi, China.
| |
Collapse
|
4
|
Ferrarini MG, Vallier A, Vincent-Monégat C, Dell'Aglio E, Gillet B, Hughes S, Hurtado O, Condemine G, Zaidman-Rémy A, Rebollo R, Parisot N, Heddi A. Coordination of host and endosymbiont gene expression governs endosymbiont growth and elimination in the cereal weevil Sitophilus spp. MICROBIOME 2023; 11:274. [PMID: 38087390 PMCID: PMC10717185 DOI: 10.1186/s40168-023-01714-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 10/30/2023] [Indexed: 12/18/2023]
Abstract
BACKGROUND Insects living in nutritionally poor environments often establish long-term relationships with intracellular bacteria that supplement their diets and improve their adaptive and invasive powers. Even though these symbiotic associations have been extensively studied on physiological, ecological, and evolutionary levels, few studies have focused on the molecular dialogue between host and endosymbionts to identify genes and pathways involved in endosymbiosis control and dynamics throughout host development. RESULTS We simultaneously analyzed host and endosymbiont gene expression during the life cycle of the cereal weevil Sitophilus oryzae, from larval stages to adults, with a particular emphasis on emerging adults where the endosymbiont Sodalis pierantonius experiences a contrasted growth-climax-elimination dynamics. We unraveled a constant arms race in which different biological functions are intertwined and coregulated across both partners. These include immunity, metabolism, metal control, apoptosis, and bacterial stress response. CONCLUSIONS The study of these tightly regulated functions, which are at the center of symbiotic regulations, provides evidence on how hosts and bacteria finely tune their gene expression and respond to different physiological challenges constrained by insect development in a nutritionally limited ecological niche. Video Abstract.
Collapse
Affiliation(s)
- Mariana Galvão Ferrarini
- Univ Lyon, INSA Lyon, INRAE, BF2I, UMR 203, 69621, Villeurbanne, France
- Université de Lyon, Université Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Evolutive UMR 5558, F-69622, Villeurbanne, France
| | - Agnès Vallier
- Univ Lyon, INRAE, INSA Lyon, BF2I, UMR 203, 69621, Villeurbanne, France
| | | | - Elisa Dell'Aglio
- Univ Lyon, INSA Lyon, INRAE, BF2I, UMR 203, 69621, Villeurbanne, France
| | - Benjamin Gillet
- Institut de Génomique Fonctionnelle de Lyon (IGFL), CNRS UMR 5242, Ecole Normale Supérieure de Lyon, Université de Lyon, Lyon, France
| | - Sandrine Hughes
- Institut de Génomique Fonctionnelle de Lyon (IGFL), CNRS UMR 5242, Ecole Normale Supérieure de Lyon, Université de Lyon, Lyon, France
| | - Ophélie Hurtado
- Univ Lyon, INSA Lyon, INRAE, BF2I, UMR 203, 69621, Villeurbanne, France
| | - Guy Condemine
- Univ Lyon, Université Lyon 1, INSA de Lyon, CNRS UMR 5240 Microbiologie Adaptation et Pathogénie, Villeurbanne, France
| | - Anna Zaidman-Rémy
- Univ Lyon, INSA Lyon, INRAE, BF2I, UMR 203, 69621, Villeurbanne, France
- Institut universitaire de France (IUF), Paris, France
| | - Rita Rebollo
- Univ Lyon, INRAE, INSA Lyon, BF2I, UMR 203, 69621, Villeurbanne, France
| | - Nicolas Parisot
- Univ Lyon, INSA Lyon, INRAE, BF2I, UMR 203, 69621, Villeurbanne, France.
| | - Abdelaziz Heddi
- Univ Lyon, INSA Lyon, INRAE, BF2I, UMR 203, 69621, Villeurbanne, France.
| |
Collapse
|
5
|
Prokop J, Rosová K, Leipner A, Sroka P. Thoracic and abdominal outgrowths in early pterygotes: a clue to the common ancestor of winged insects? Commun Biol 2023; 6:1262. [PMID: 38087009 PMCID: PMC10716172 DOI: 10.1038/s42003-023-05568-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 11/09/2023] [Indexed: 12/18/2023] Open
Abstract
One of the fundamental questions in insect evolution is the origin of their wings and primary function of ancestral wing precursors. Recent phylogenomic and comparative morphological studies broadly support a terrestrial ancestor of pterygotes, but an aquatic or semiaquatic ancestor cannot be ruled out. Here new features of the branchial system of palaeodictyopteran larvae of several different instars of Katosaxoniapteron brauneri gen. et sp. nov. (Eugereonoidea) from the late Carboniferous collected at Piesberg (Germany) are described, which consist of delicate dorsolateral and lamellate caudal abdominal gills that support an aquatic or at least semiaquatic lifestyle for these insects. Moreover, the similar form and surface microstructures on the lateral abdominal outgrowths and thoracic wing pads indicate that paired serial outgrowths on segments of both tagmata presumably functioned as ancestral type of gills resembling a protopterygote model. This is consistent with the hypothesis that the wing sheaths of later stage damselfly larvae in hypoxic conditions have a respiratory role similar to abdominal tracheal gills. Hence, the primary function and driving force for the evolution of the precursors of wing pads and their abdominal homologues could be respiration.
Collapse
Affiliation(s)
- Jakub Prokop
- Department of Zoology, Faculty of Science, Charles University, Viničná 7, 128 00, Praha 2, Czech Republic.
| | - Kateřina Rosová
- Department of Zoology, Faculty of Science, Charles University, Viničná 7, 128 00, Praha 2, Czech Republic
| | - Angelika Leipner
- Museum Schölerberg, Klaus-Strick-Weg 10, 49082, Osnabrück, Germany
| | - Pavel Sroka
- Institute of Entomology, Biology Centre of the Czech Academy of Sciences, Branišovská 31, 370 05, České Budějovice, Czech Republic
| |
Collapse
|
6
|
Chen Y, Li H, Yi TC, Shen J, Zhang J. Notch Signaling in Insect Development: A Simple Pathway with Diverse Functions. Int J Mol Sci 2023; 24:14028. [PMID: 37762331 PMCID: PMC10530718 DOI: 10.3390/ijms241814028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/05/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023] Open
Abstract
Notch signaling is an evolutionarily conserved pathway which functions between adjacent cells to establish their distinct identities. Despite operating in a simple mechanism, Notch signaling plays remarkably diverse roles in development to regulate cell fate determination, organ growth and tissue patterning. While initially discovered and characterized in the model insect Drosophila melanogaster, recent studies across various insect species have revealed the broad involvement of Notch signaling in shaping insect tissues. This review focuses on providing a comprehensive picture regarding the roles of the Notch pathway in insect development. The roles of Notch in the formation and patterning of the insect embryo, wing, leg, ovary and several specific structures, as well as in physiological responses, are summarized. These results are discussed within the developmental context, aiming to deepen our understanding of the diversified functions of the Notch signaling pathway in different insect species.
Collapse
Affiliation(s)
- Yao Chen
- Department of Plant Biosecurity and MOA Key Laboratory of Surveillance and Management for Plant Quarantine Pests, College of Plant Protection, China Agricultural University, Beijing 100193, China; (Y.C.)
| | - Haomiao Li
- Department of Plant Biosecurity and MOA Key Laboratory of Surveillance and Management for Plant Quarantine Pests, College of Plant Protection, China Agricultural University, Beijing 100193, China; (Y.C.)
| | - Tian-Ci Yi
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of Mountainous Regions, Institute of Entomology, Guizhou University, Guiyang 550025, China
| | - Jie Shen
- Department of Plant Biosecurity and MOA Key Laboratory of Surveillance and Management for Plant Quarantine Pests, College of Plant Protection, China Agricultural University, Beijing 100193, China; (Y.C.)
| | - Junzheng Zhang
- Department of Plant Biosecurity and MOA Key Laboratory of Surveillance and Management for Plant Quarantine Pests, College of Plant Protection, China Agricultural University, Beijing 100193, China; (Y.C.)
| |
Collapse
|
7
|
Yamashita T, Ohde T, Nakamura T, Ishimaru Y, Watanabe T, Tomonari S, Nakamura Y, Noji S, Mito T. Involvement of the scalloped gene in morphogenesis of the wing margin via regulating cell growth in a hemimetabolous insect Gryllus bimaculatus. Dev Growth Differ 2023; 65:348-359. [PMID: 37310211 DOI: 10.1111/dgd.12869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 05/30/2023] [Accepted: 06/02/2023] [Indexed: 06/14/2023]
Abstract
The acquisition of wings was a key event in insect evolution. As hemimetabolous insects were the first group to acquire functional wings, establishing the mechanisms of wing formation in this group could provide useful insights into their evolution. In this study, we aimed to elucidate the expression and function of the gene scalloped (sd), which is involved in wing formation in Drosophila melanogaster, and in Gryllus bimaculatus mainly during postembryonic development. Expression analysis showed that sd is expressed in the tergal edge, legs, antennae, labrum, and cerci during embryogenesis and in the distal margin of the wing pads from at least the sixth instar in the mid to late stages. Because sd knockout caused early lethality, nymphal RNA interference experiments were performed. Malformations were observed in the wings, ovipositor, and antennae. By analyzing the effects on wing morphology, it was revealed that sd is mainly involved in the formation of the margin, possibly through the regulation of cell proliferation. In conclusion, sd might regulate the local growth of wing pads and influence wing margin morphology in Gryllus.
Collapse
Grants
- 17H03945 Ministry of Education, Culture, Sports, Science and Technology
- 19H02970 Ministry of Education, Culture, Sports, Science and Technology
- 19K06691 Ministry of Education, Culture, Sports, Science and Technology
- 20K21436 Ministry of Education, Culture, Sports, Science and Technology
Collapse
Affiliation(s)
- Takahisa Yamashita
- Graduate School of Advanced Technology and Science, Tokushima University, Tokushima, Japan
| | - Takahiro Ohde
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Taro Nakamura
- Division of Evolutionary Developmental Biology, National Institute for Basic Biology, Okazaki, Japan
| | - Yoshiyasu Ishimaru
- Graduate School of Sciences and Technology for Innovation, Tokushima University, Tokushima, Japan
| | - Takahito Watanabe
- Bio-Innovation Research Center, Tokushima University, Tokushima, Japan
| | - Sayuri Tomonari
- Technical Support Department, Tokushima University, Tokushima, Japan
| | - Yuki Nakamura
- Graduate School of Advanced Technology and Science, Tokushima University, Tokushima, Japan
| | - Sumihare Noji
- Bio-Innovation Research Center, Tokushima University, Tokushima, Japan
| | - Taro Mito
- Bio-Innovation Research Center, Tokushima University, Tokushima, Japan
| |
Collapse
|
8
|
Kudla AM, Miranda X, Frederik Nijhout H. Ontogenetic trajectories and early shape differentiation of treehopper pronota (Hemiptera: Membracidae). Evol Dev 2023; 25:240-252. [PMID: 37035938 DOI: 10.1111/ede.12431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 02/21/2023] [Accepted: 03/02/2023] [Indexed: 04/11/2023]
Abstract
Membracids (family: Membracidae), commonly known as treehoppers, are recognizable by their enlarged and often elaborated pronota. Much of the research investigating the development and evolution of this structure has focused on the fifth instar to adult transition, in which the pronotum undergoes the largest transformation as it takes on adult identity. However, little is known about the earlier nymphal stages, the degree to which the pronotum develops at these timepoints, and how development has changed relative to the ancestral state. Here, we studied the nymphal stages and adults of five morphologically distinct membracid species and of Aetalion reticulatum (family: Aetalionidae), the outgroup which was used as an ancestral state proxy. We found that shape differentiation in the pronotum of membracids can start as early as the second instar stage. Most shape differentiation occurs within the nymphal stages and not in the embryo since the shape of the first-instar pronotum did not differ from the outgroup species in all but one species we investigated. We found the anterior-posterior axis of the pronotum elongated at a faster relative rate in membracid species than in A. reticulatum, which contributed to the development of exaggerated pronotal size. Finally, we found differences in the morphogenesis of shape across species. We suggest this is due to the developmental and evolutionary divergence of differential growth patterning of the dorsal surface of the pronotum, not only across species, but also between stages within the same species. This lability may contribute to the evolvability and diversification of the membracid pronotum.
Collapse
Affiliation(s)
- Anna M Kudla
- Department of Biology, Duke University, Durham, North Carolina, USA
| | - Ximena Miranda
- Escuela de Biología, Universidad de Costa Rica, San José, Costa Rica
| | | |
Collapse
|
9
|
Liu XZ, Guo H, Long GJ, Ma YF, Gong LL, Zhang MQ, Hull JJ, Dewer Y, Liu LW, He M, He P. Functional characterization of five developmental signaling network genes in the white-backed planthopper: Potential application for pest management. PEST MANAGEMENT SCIENCE 2023. [PMID: 36942746 DOI: 10.1002/ps.7464] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 02/14/2023] [Accepted: 03/19/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND The white-backed planthopper (WBPH, Sogatella furcifera) is a major rice pest that exhibits condition dependent wing dimorphisms - a macropterous (long wing) form and a brachypterous (short wing) form. Although, the gene cascade that regulates wing development and dimorphic differentiation has been largely defined, the utility of these genes as targets for pest control has yet to be fully explored. RESULTS Five genes typically associated with the developmental signaling network, armadillo (arm), apterous A (apA), scalloped (sd), dachs (d), and yorkie (yki) were identified from the WBPH genome and their roles in wing development assessed following RNA interference (RNAi)-mediated knockdown. At 5 days-post injection, transcript levels for all five targets were substantially decreased compared with the dsGFP control group. Among the treatment groups, those injected with dsSfarm had the most pronounced effects on transcript reduction, mortality (95 ± 3%), and incidence (45 ± 3%) of wing deformities, whereas those injected with dsSfyki had the lowest incidence (6.7 ± 4%). To assess the utility of topical RNAi for Sfarm, we used a spray-based approach that complexed a large-scale, bacteria-based double-stranded RNA (dsRNA) expression pipeline with star polycation (SPc) nanoparticles. Rice seedlings infested with third and fourth instar nymphs were sprayed with SPc-dsRNA formulations and RNAi phenotypic effects were assessed over time. At 2 days post-spray, Sfarm transcript levels decreased by 86 ± 9.5% compared with dsGFP groups, and the subsequent incidences of mortality and wing defects were elevated in the treatment group. CONCLUSIONS This study characterized five genes in the WBPH developmental signaling cascade, assessed their impact on survival and wing development via RNAi, and developed a nanoparticle-dsRNA spray approach for potential field control of WBPH. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xuan-Zheng Liu
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyan, People's Republic of China
| | - Huan Guo
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyan, People's Republic of China
| | - Gui-Jun Long
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyan, People's Republic of China
| | - Yun-Feng Ma
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyan, People's Republic of China
| | - Lang-Lang Gong
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyan, People's Republic of China
| | - Meng-Qi Zhang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyan, People's Republic of China
| | - J Joe Hull
- Pest Management and Biocontrol Research Unit, US Arid Land Agricultural Research Center, USDA Agricultural Research Services, Maricopa, Arizona, USA
| | - Youssef Dewer
- Phytotoxicity Research Department, Central Agricultural Pesticide Laboratory, Agricultural Research Center, Dokki, Giza, Egypt
| | - Li-Wei Liu
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyan, People's Republic of China
| | - Ming He
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyan, People's Republic of China
| | - Peng He
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyan, People's Republic of China
| |
Collapse
|
10
|
Guo H, Liu XZ, Long GJ, Gong LL, Zhang MQ, Ma YF, Hull JJ, Dewer Y, He M, He P. Functional characterization of developmentally critical genes in the white-backed planthopper: Efficacy of nanoparticle-based dsRNA sprays for pest control. PEST MANAGEMENT SCIENCE 2023; 79:1048-1061. [PMID: 36325939 DOI: 10.1002/ps.7271] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 09/30/2022] [Accepted: 11/03/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Epidermal growth factor receptor (EGFR), zinc finger homeodomain-2 (zfh-2), Abdominal-A (Abd-A), and Abdominal-B (Abd-B) regulate the growth and development of the insect abdomen. However, their potential roles in pest control have not been fully assessed. The development of insecticide resistance to multiple chemistries in the white-backed planthopper (WBPH), a major pest of rice, has prompted interest in novel pest control approaches that are ecologically friendly. Although pest management approaches based on double-stranded RNA (dsRNA)-mediated RNA interference (RNAi) have potential, their susceptibility to degradation limits large-scale field applications. These limitations, however, can be overcome with nanoparticle-dsRNA complexes that have greater environmental stability and improved cellular uptake. RESULTS In this study, at 5 days post-injection, transcripts for the four gene targets were reduced relative to controls and all of the experimental groups exhibited significant phenotypic defects and increased mortality. To evaluate the potential of these gene targets for field applications, a nanocarrier-dsRNA spray delivery system was assessed for RNAi efficacy. At 11 days post-spray, significant phenotypic defects and increased mortality were observed in all experimental groups. CONCLUSION Taken together, the results confirm the suitability of the target genes (SfEGFR, Sfzfh-2, SfAbd-A, and SfAbd-B) for pest management and demonstrate the efficacy of the nanocarrier spray system for inducing RNAi-mediated knockdown. As such, the study lays the foundation for the further development and optimization of this technology for large-scale field applications. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Huan Guo
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, P. R. China
| | - Xuan-Zheng Liu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, P. R. China
| | - Gui-Jun Long
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, P. R. China
| | - Lang-Lang Gong
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, P. R. China
| | - Meng-Qi Zhang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, P. R. China
| | - Yun-Feng Ma
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, P. R. China
| | - J Joe Hull
- Pest Management and Biocontrol Research Unit, US Arid Land Agricultural Research Center, USDA Agricultural Research Services, Maricopa, AZ, USA
| | - Youssef Dewer
- Phytotoxicity Research Department, Central Agricultural Pesticide Laboratory, Agricultural Research Center, Giza, Egypt
| | - Ming He
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, P. R. China
| | - Peng He
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, P. R. China
| |
Collapse
|
11
|
Bai Y, He Y, Shen CZ, Li K, Li DL, He ZQ. CRISPR/Cas9-Mediated genomic knock out of tyrosine hydroxylase and yellow genes in cricket Gryllus bimaculatus. PLoS One 2023; 18:e0284124. [PMID: 37036877 PMCID: PMC10085040 DOI: 10.1371/journal.pone.0284124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 03/24/2023] [Indexed: 04/11/2023] Open
Abstract
Gryllus bimaculatus is an emerging model organism in various fields of biology such as behavior, neurology, physiology and genetics. Recently, application of reverse genetics provides an opportunity of understanding the functional genomics and manipulating gene regulation networks with specific physiological response in G. bimaculatus. By using CRISPR/Cas9 system in G. bimaculatus, we present an efficient knockdown of Tyrosine hydroxylase (TH) and yellow-y, which are involved in insect melanin and catecholamine-biosynthesis pathway. As an enzyme catalyzing the conversion of tyrosine to 3,4-dihydroxyphenylalanine, TH confines the first step reaction in the pathway. Yellow protein (dopachrome conversion enzyme, DCE) is also involved in the melanin biosynthetic pathway. The regulation system and molecular mechanism of melanin biogenesis in the pigmentation and their physiological functions in G. bimaculatus hasn't been well defined by far for lacking of in vivo models. Deletion and insertion of nucleotides in target sites of both TH and Yellow are detected in both F0 individuals and the inheritable F1 progenies. We confirm that TH and yellow-y are down-regulated in mutants by quantitative real-time PCR analysis. Compared with the control group, mutations of TH and yellow-y genes result in defects in pigmentation. Most F0 nymphs with mutations of TH gene die by the first instar, and the only adult had significant defects in the wings and legs. However, we could not get any homozygotes of TH mutants for all the F2 die by the first instar. Therefore, TH gene is very important for the growth and development of G. bimaculatus. When the yellow-y gene is knocked out, 71.43% of G. bimaculatus are light brown, with a slight mosaic on the abdomen. The yellow-y gene can be inherited stably through hybridization experiment with no obvious phenotype except lighter cuticular color. The present loss of function study indicates the essential roles of TH and yellow in pigmentation, and TH possesses profound and extensive effects of dopamine synthesis in embryonic development in G. bimaculatus.
Collapse
Affiliation(s)
- Yun Bai
- School of Life Science, East China Normal University, Shanghai, China
| | - Yuan He
- School of Life Science, East China Normal University, Shanghai, China
| | - Chu-Ze Shen
- College of Life Sciences, Beijing Normal University, Beijing, China
| | - Kai Li
- School of Life Science, East China Normal University, Shanghai, China
| | - Dong-Liang Li
- School of Life Science, East China Normal University, Shanghai, China
| | - Zhu-Qing He
- School of Life Science, East China Normal University, Shanghai, China
| |
Collapse
|
12
|
Bruce HS, Patel NH. The Daphnia carapace and other novel structures evolved via the cryptic persistence of serial homologs. Curr Biol 2022; 32:3792-3799.e3. [PMID: 35858617 DOI: 10.1016/j.cub.2022.06.073] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 05/13/2022] [Accepted: 06/23/2022] [Indexed: 10/17/2022]
Abstract
Understanding how novel structures arise is a central question in evolution. Novel structures are often defined as structures that are not derived from (homologous to) any structure in the ancestor.1 The carapace of the crustacean Daphnia magna is a bivalved "cape" of exoskeleton. Shiga et al.2 proposed that the carapace of crustaceans like Daphnia and many other plate-like outgrowths in arthropods are novel structures that arose through the repeated co-option of genes like vestigial that also pattern insect wings.2-4 To determine whether the Daphnia carapace is a novel structure, we compare previous functional work2 with the expression of genes known to pattern the proximal leg region (pannier, araucan, and vestigial)5,6 between Daphnia, Parhyale, and Tribolium. Our results suggest that the Daphnia carapace did not arise by co-option but instead derived from an exite (lateral leg lobe) that emerges from an ancestral proximal leg segment that was incorporated into the Daphnia body wall. The Daphnia carapace, therefore, appears to be homologous to the Parhyale tergal plate and the insect wing.5 Remarkably, the vestigial-positive tissue that gives rise to the Daphnia carapace appears to be present in Parhyale7 and Tribolium as a small, inconspicuous protrusion. Thus, rather than a novel structure resulting from gene co-option, the Daphnia carapace appears to have arisen from a shared, ancestral tissue (morphogenetic field) that persists in a cryptic state in other arthropod lineages. Cryptic persistence of unrecognized serial homologs may thus be a general solution for the origin of novel structures.
Collapse
Affiliation(s)
- Heather S Bruce
- Marine Biological Laboratory, 7 MBL Street, Woods Hole, MA 02543, USA.
| | - Nipam H Patel
- Marine Biological Laboratory, 7 MBL Street, Woods Hole, MA 02543, USA; University of Chicago, Organismal Biology & Anatomy, 1027 E 57(th) Street, Chicago, IL 60637, USA
| |
Collapse
|
13
|
Abdominal serial homologues of wings in Paleozoic insects. Curr Biol 2022; 32:3414-3422.e1. [PMID: 35772407 DOI: 10.1016/j.cub.2022.06.024] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 04/21/2022] [Accepted: 06/09/2022] [Indexed: 12/12/2022]
Abstract
The Late Paleozoic acquisition of wings in insects represents one of the key steps in arthropod evolution. While the origin of wings has been a contentious matter for nearly two centuries, recent evolutionary developmental studies suggest either the participation of both tergal and pleural tissues in the formation of wings1 or wings originated from exites of the most proximal leg podite incorporated into the insect body wall.2 The so-called "dual hypothesis" for wing origins finds support from studies of embryology, evo-devo, and genomics, although the degree of the presumed contribution from tergal and pleural tissues differ.3-6 Ohde et al.,7 confirmed a major role for tergal tissue in the formation of the cricket wing and suggested that "wings evolved from the pre-existing lateral terga of a wingless insect ancestor." Additional work has focused on identifying partial serially homologous structures of wings on the prothorax8,9 and abdominal segments.10 Thus, several studies have suggested that the prothoracic horns in scarab beetles,9 gin traps of tenebrionid and scarab beetle pupae,11,12 or abdominal tracheal gills of mayfly larvae1,13 evolved from serial homologues of wings. Here, we present critical information from abdominal lateral outgrowths (flaps) of Paleozoic palaeodictyopteran larvae, which show comparable structure to thoracic wings, consisting of cordate lateral outgrowths antero-basally hinged by muscle attachments. These flaps therefore most likely represent wing serial homologues. The presence of these paired outgrowths on abdominal segments I-IX in early diverging Pterygota likely corresponds to crustacean epipods14,15 and resembles a hypothesized ancestral body plan of a "protopterygote" model.
Collapse
|