1
|
Qiao Y, Zou J, Fei W, Fan W, You Q, Zhao Y, Li MB, Wu Z. Building Block Metal Nanocluster-Based Growth in 1D Direction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305556. [PMID: 37849043 DOI: 10.1002/smll.202305556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 10/03/2023] [Indexed: 10/19/2023]
Abstract
Metal nanoclusters with precisely modulated structures at the nanoscale give us the opportunity to synthesize and investigate 1D nanomaterials at the atomic level. Herein, it realizes selective 1D growth of building block nanocluster "Au13 Cd2 " into three structurally different nanoclusters: "hand-in-hand" (Au13 Cd2 )2 O, "head-to-head" Au25 , and "shoulder-to-shoulder" Au33 . Detailed studies further reveals the growth mechanism and the growth-related tunable properties. This work provides new hints for the predictable structural transformation of nanoclusters and atomically precise construction of 1D nanomaterials.
Collapse
Affiliation(s)
- Yao Qiao
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, China
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, Hefei Institutes of Physical Science (HFIPS), Chinese Academy of Sciences, Hefei, 230031, China
| | - Jiafeng Zou
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, China
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, Hefei Institutes of Physical Science (HFIPS), Chinese Academy of Sciences, Hefei, 230031, China
| | - Wenwen Fei
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, China
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, Hefei Institutes of Physical Science (HFIPS), Chinese Academy of Sciences, Hefei, 230031, China
| | - Wentao Fan
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, Hefei Institutes of Physical Science (HFIPS), Chinese Academy of Sciences, Hefei, 230031, China
| | - Qing You
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, Hefei Institutes of Physical Science (HFIPS), Chinese Academy of Sciences, Hefei, 230031, China
| | - Yan Zhao
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, China
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, Hefei Institutes of Physical Science (HFIPS), Chinese Academy of Sciences, Hefei, 230031, China
| | - Man-Bo Li
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, China
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, Hefei Institutes of Physical Science (HFIPS), Chinese Academy of Sciences, Hefei, 230031, China
| | - Zhikun Wu
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, China
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, Hefei Institutes of Physical Science (HFIPS), Chinese Academy of Sciences, Hefei, 230031, China
| |
Collapse
|
2
|
Qiao L, Pollard N, Senanayake RD, Yang Z, Kim M, Ali AS, Hoang MT, Yao N, Han Y, Hernandez R, Clayborne AZ, Jones MR. Atomically precise nanoclusters predominantly seed gold nanoparticle syntheses. Nat Commun 2023; 14:4408. [PMID: 37479703 PMCID: PMC10362052 DOI: 10.1038/s41467-023-40016-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 07/07/2023] [Indexed: 07/23/2023] Open
Abstract
Seed-mediated synthesis strategies, in which small gold nanoparticle precursors are added to a growth solution to initiate heterogeneous nucleation, are among the most prevalent, simple, and productive methodologies for generating well-defined colloidal anisotropic nanostructures. However, the size, structure, and chemical properties of the seeds remain poorly understood, which partially explains the lack of mechanistic understanding of many particle growth reactions. Here, we identify the majority component in the seed solution as an atomically precise gold nanocluster, consisting of a 32-atom Au core with 8 halide ligands and 12 neutral ligands constituting a bound ion pair between a halide and the cationic surfactant: Au32X8[AQA+•X-]12 (X = Cl, Br; AQA = alkyl quaternary ammonium). Ligand exchange is dynamic and versatile, occurring on the order of minutes and allowing for the formation of 48 distinct Au32 clusters with AQAX (alkyl quaternary ammonium halide) ligands. Anisotropic nanoparticle syntheses seeded with solutions enriched in Au32X8[AQA+•X-]12 show narrower size distributions and fewer impurity particle shapes, indicating the importance of this cluster as a precursor to the growth of well-defined nanostructures.
Collapse
Affiliation(s)
- Liang Qiao
- Department of Chemistry, Rice University, Houston, TX, 77005, USA
- Division of Fundamental Research, Petrochemical Research Institute, PetroChina, Beijing, 102206, China
| | - Nia Pollard
- Department of Chemistry & Biochemistry, George Mason University, Fairfax, VA, 22030, USA
| | | | - Zhi Yang
- Department of Chemistry, Rice University, Houston, TX, 77005, USA
| | - Minjung Kim
- Department of Chemistry, Rice University, Houston, TX, 77005, USA
| | - Arzeena S Ali
- Department of Chemistry, Rice University, Houston, TX, 77005, USA
| | - Minh Tam Hoang
- Department of Chemistry, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Nan Yao
- Princeton Materials Institute, Princeton University, Princeton, NJ, 08544, USA
| | - Yimo Han
- Department of Materials Science & Nanoengineering, Rice University, Houston, TX, 77005, USA
| | - Rigoberto Hernandez
- Department of Chemistry, Johns Hopkins University, Baltimore, MD, 21218, USA
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Andre Z Clayborne
- Department of Chemistry & Biochemistry, George Mason University, Fairfax, VA, 22030, USA
| | - Matthew R Jones
- Department of Chemistry, Rice University, Houston, TX, 77005, USA.
- Department of Materials Science & Nanoengineering, Rice University, Houston, TX, 77005, USA.
| |
Collapse
|
3
|
Bharti K, Sk MA, Sadhu KK. Seed free synthesis of polyethylene glycol stabilized gold nanoprisms exploiting manganese metal at low pH. NANOSCALE ADVANCES 2023; 5:3729-3736. [PMID: 37441245 PMCID: PMC10334414 DOI: 10.1039/d3na00292f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 06/16/2023] [Indexed: 07/15/2023]
Abstract
Manganese powder with a suitable potential (, -1.19 V) has never been investigated for the reduction of Au3+ (, 1.00 V). In this study, we have utilized and low pH dependent for the polyethylene glycol stabilized gold nanoprism synthesis by reducing AuCl-4 in the presence of thiol terminated polyethylene glycol as the stabilizing agent. The synthetic methodology for gold nanoprisms has been optimized by pH and Cl- ion combination. Time dependent absorbance studies have been conducted to demonstrate the role of various reaction parameters such as the stabilizing agent, HCl concentration, temperature, and Mn metal. The synthesized gold nanoprism has been further utilized as a seed for nucleic acid and selected amino acid mediated edge and surface growth, respectively.
Collapse
Affiliation(s)
- Kanika Bharti
- Department of Chemistry, Indian Institute of Technology Roorkee Roorkee 247667 Uttarakhand India
| | - Md Azimuddin Sk
- Department of Chemistry, Indian Institute of Technology Roorkee Roorkee 247667 Uttarakhand India
| | - Kalyan K Sadhu
- Department of Chemistry, Indian Institute of Technology Roorkee Roorkee 247667 Uttarakhand India
| |
Collapse
|
4
|
Scarabelli L, Sun M, Zhuo X, Yoo S, Millstone JE, Jones MR, Liz-Marzán LM. Plate-Like Colloidal Metal Nanoparticles. Chem Rev 2023; 123:3493-3542. [PMID: 36948214 PMCID: PMC10103137 DOI: 10.1021/acs.chemrev.3c00033] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2023]
Abstract
The pseudo-two-dimensional (2D) morphology of plate-like metal nanoparticles makes them one of the most anisotropic, mechanistically understood, and tunable structures available. Although well-known for their superior plasmonic properties, recent progress in the 2D growth of various other materials has led to an increasingly diverse family of plate-like metal nanoparticles, giving rise to numerous appealing properties and applications. In this review, we summarize recent progress on the solution-phase growth of colloidal plate-like metal nanoparticles, including plasmonic and other metals, with an emphasis on mechanistic insights for different synthetic strategies, the crystallographic habits of different metals, and the use of nanoplates as scaffolds for the synthesis of other derivative structures. We additionally highlight representative self-assembly techniques and provide a brief overview on the attractive properties and unique versatility benefiting from the 2D morphology. Finally, we share our opinions on the existing challenges and future perspectives for plate-like metal nanomaterials.
Collapse
Affiliation(s)
- Leonardo Scarabelli
- NANOPTO Group, Institue of Materials Science of Barcelona, Bellaterra, 08193, Spain
| | - Muhua Sun
- National Center for Electron Microscopy in Beijing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, People's Republic of China
| | - Xiaolu Zhuo
- Guangdong Provincial Key Lab of Optoelectronic Materials and Chips, School of Science and Engineering, The Chinese University of Hong Kong (Shenzhen), Shenzhen 518172, China
| | - Sungjae Yoo
- Research Institute for Nano Bio Convergence, Sungkyunkwan University, Suwon 16419, Republic of Korea
- Department of Chemistry Sungkyunkwan University, Suwon 16419, Republic of Korea
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Jill E Millstone
- Department of Chemistry, Department of Chemical and Petroleum Engineering, Department of Mechanical Engineering and Materials Science, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Matthew R Jones
- Department of Chemistry, Rice University, Houston, Texas 77005, United States
- Department of Materials Science & Nanoengineering, Rice University, Houston, Texas 77005, United States
| | - Luis M Liz-Marzán
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), 20014 Donostia-San Sebastián, Spain
- Ikerbasque, 43009 Bilbao, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 20014 Donostia-San Sebastián, Spain
- Cinbio, Universidade de Vigo, 36310 Vigo, Spain
| |
Collapse
|
5
|
Xu C, Zhou Y, Shi L, Cheng L. Superatomic Three-Center Bond in a Tri-Icosahedral Au 36Ag 2(SR) 18 Cluster: Analogue of 3c-2e Bond in Molecules. J Phys Chem Lett 2022; 13:10147-10152. [PMID: 36270806 DOI: 10.1021/acs.jpclett.2c02552] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Probing the nature of electronic stability for ligand-protected gold clusters is important in gold chemistry. A thermally stable Au36Ag2(SR)18 nanocluster was synthesized recently. It has a D3h tri-icosahedral [Au30Ag2]12+ core with 20 valence electrons, which does not follow the magic number of gold superatoms. Herein, we propose a superatomic three-center bond to unveil its electronic stability. The [Au30Ag2]12+ core is viewed as a union of three face-fused superatoms, and chemical bonding analysis suggests a three-superatom-center two-electron (3sc-2e) bond for the octet rule of each superatom, which mimics the bonding framework of the D3h O32- molecule. Moreover, a liganded tri-icosahedral [Au27Pt3Ag2]11+ core with 18 valence electrons is predicted, and three 2sc-2e bonds are formed between each of two superatoms to satisfy the octet rule (analogue of D3h O3), indicating the flexibility of superatomic bonding. Such a superatomic three-center bond extends the community of superatomic bonding and gives a new perspective for superatom assembling.
Collapse
Affiliation(s)
- Chang Xu
- Department of Chemistry, Anhui University, 111 Jiulong Road, Hefei 230601, P. R. China
| | - Yichun Zhou
- Department of Chemistry, Anhui University, 111 Jiulong Road, Hefei 230601, P. R. China
| | - Lili Shi
- Department of Chemistry, Anhui University, 111 Jiulong Road, Hefei 230601, P. R. China
| | - Longjiu Cheng
- Department of Chemistry, Anhui University, 111 Jiulong Road, Hefei 230601, P. R. China
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University), 111 Jiulong Road, Hefei 230601, P. R. China
| |
Collapse
|