1
|
Zong Z, Zhang X, Chen P, Fu Z, Zeng Y, Wang Q, Chipot C, Leggio LL, Sun Y. Elucidation of the noncovalent interactions driving enzyme activity guides branching enzyme engineering for α-glucan modification. Nat Commun 2024; 15:8760. [PMID: 39384762 PMCID: PMC11464733 DOI: 10.1038/s41467-024-53018-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 09/23/2024] [Indexed: 10/11/2024] Open
Abstract
Branching enzymes (BEs) confer to α-glucans, the primary energy-storage reservoir in nature, a variety of features, like slow digestion. The full catalytic cycle of BEs can be divided in six steps, namely two covalent catalytic steps involving glycosylation and transglycosylation, and four noncatalytic steps involving substrate binding and transfers (SBTs). Despite the ever-growing wealth of biochemical and structural information on BEs, clear mechanistic insights into SBTs from an industrial-performance perspective are still missing. Here, we report a Rhodothermus profundi BE (RpBE) endowed with twice as much enzymatic activity as the Rhodothermus obamensis BE currently used in industry. Furthermore, we focus on the SBTs for RpBE by means of large-scale computations supported by experiment. Engineering of the crucial positions responsible for the initial substrate-binding step improves enzymatic activity significantly, while offering a possibility to customize product types. In addition, we show that the high-efficiency substrate-transfer steps preceding glycosylation and transglycosylation are the main reason for the remarkable enzymatic activity of RpBE, suggestive of engineering directions for the BE family.
Collapse
Affiliation(s)
- Zhiyou Zong
- National Engineering Research Center of Industrial Enzymes, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China.
- National Center of Technology Innovation for Synthetic Biology, Tianjin, China.
| | - Xuewen Zhang
- National Engineering Research Center of Industrial Enzymes, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin, China
| | - Peng Chen
- National Engineering Research Center of Industrial Enzymes, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin, China
| | - Zhuoyue Fu
- National Engineering Research Center of Industrial Enzymes, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin, China
| | - Yan Zeng
- National Engineering Research Center of Industrial Enzymes, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin, China
| | - Qian Wang
- National Engineering Research Center of Industrial Enzymes, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin, China
| | - Christophe Chipot
- Laboratoire International Associé CNRS and University of Illinois at Urbana-Champaign, LPCT, UMR 7019 Université de Lorraine CNRS, Vandœuvre-lès-Nancy, France
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, USA
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, USA
| | - Leila Lo Leggio
- Department of Chemistry, University of Copenhagen, Copenhagen, Denmark
| | - Yuanxia Sun
- National Engineering Research Center of Industrial Enzymes, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China.
- National Center of Technology Innovation for Synthetic Biology, Tianjin, China.
| |
Collapse
|
2
|
Madsen MS, Martins PA, Agger JW. Efficient activity screening of new glucuronoyl esterases using a pNP-based assay. Enzyme Microb Technol 2024; 178:110444. [PMID: 38581869 DOI: 10.1016/j.enzmictec.2024.110444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/22/2024] [Accepted: 04/02/2024] [Indexed: 04/08/2024]
Abstract
Glucuronoyl esterases (CE15, EC 3.1.1.117) catalyze the hydrolysis of ester bonds between lignin and carbohydrates in lignocellulose. They are widespread within fungi and bacteria, and are subjects to research interest due to their potential applicability in lignocellulose processing. Identifying new and relevant glucuronoyl esterase candidates is challenging because available model substrates poorly represent the natural substrate, which leads to inefficient screening for the activity. In this study, we demonstrate how fifteen novel, fungal, putative glucuronoyl esterases from family CE15 were expressed and screened for activity towards a commercially available, colorimetric assay based on the methyl-ester of 4-O-methyl-aldotriuronic acid linked to para-nitrophenol (methyl ester-UX-β-pNP) and coupled with the activity of GH67 (α-glucuronidase) and GH43 (β-xylosidase) activity. The assay provides easy means for accurately establishing activity and determining specific activity of glucuronoyl esterases. Out of the fifteen expressed CE15 proteins, seven are active and were purified to determine their specific activity. The seven active enzymes originate from Auricularia subglabra (3 proteins), Ganoderma sinensis (2 proteins) and Neocallimastix californiae (2 proteins). Among the CE15 proteins not active towards the screening substrate (methyl ester-UX-β-pNP) were proteins originating from Schizophyllum commune, Podospora anserina, Trametes versicolor, and Coprinopsis cinerea. It is unexpected that CE15 proteins from such canonical lignocellulose degraders do not have the anticipated activity, and these observations call for deeper investigations.
Collapse
Affiliation(s)
- Michael S Madsen
- Technical University of Denmark, Lignin Biotechnology, Department of Biotechnology and Biomedicine, Søltofts Plads 224, Kgs Lyngby DK-2800, Denmark
| | - Pedro A Martins
- Technical University of Denmark, Lignin Biotechnology, Department of Biotechnology and Biomedicine, Søltofts Plads 224, Kgs Lyngby DK-2800, Denmark
| | - Jane W Agger
- Technical University of Denmark, Lignin Biotechnology, Department of Biotechnology and Biomedicine, Søltofts Plads 224, Kgs Lyngby DK-2800, Denmark.
| |
Collapse
|
3
|
Gruninger RJ, Kevorkova M, Low KE, Jones DR, Worrall L, McAllister TA, Abbott DW. Structural, Biochemical, and Phylogenetic Analysis of Bacterial and Fungal Carbohydrate Esterase Family 15 Glucuronoyl Esterases in the Rumen. Protein J 2024; 43:910-922. [PMID: 39153129 PMCID: PMC11345330 DOI: 10.1007/s10930-024-10221-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/28/2024] [Indexed: 08/19/2024]
Abstract
Glucuronoyl esterases (GEs) are carbohydrate active enzymes in carbohydrate esterase family 15 which are involved in the hydrolysis of lignin-carbohydrate complexes. They are encoded by a wide range of aerobic and anaerobic fungi and bacteria inhabiting diverse environments. The rumen microbiome is a complex microbial community with a wide array of enzymes that specialize in deconstructing plant cell wall carbohydrates. Enzymes from the rumen tend to show low similarity to homologues found in other environments, making the rumen microbiome a promising source for the discovery of novel enzymes. Using a combination of phylogenetic and structural analysis, we investigated the structure-function relationship of GEs from the rumen bacteria Fibrobacter succinogenes and Ruminococcus flavefaciens, and from the rumen fungus, Piromyces rhizinflata. All adopt a canonical α/β hydrolase fold and possess a structurally conserved Ser-His-Glu/Asp catalytic triad. Structural variations in the enzymes are localized to loops surrounding the active site. Analysis of the active site structures in these enzymes emphasized the importance of structural plasticity in GEs with non-canonical active site conformations. We hypothesize that interkingdom HGT events may have contributed to the diversity of GEs in the rumen, and this is demonstrated by the phylogenetic and structural similarity observed between rumen bacterial and fungal GEs. This study advances our understanding of the structure-function relationship in glucuronoyl esterases and illuminates the evolutionary dynamics that contribute to enzyme diversity in the rumen microbiome.
Collapse
Affiliation(s)
- Robert J Gruninger
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, Canada.
| | - Maya Kevorkova
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, Canada
| | - Kristin E Low
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, Canada
| | - Darryl R Jones
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, Canada
| | - Liam Worrall
- Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | - Tim A McAllister
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, Canada
| | - D Wade Abbott
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, Canada
| |
Collapse
|
4
|
Carbonaro M, Mazurkewich S, Fiorentino G, Lo Leggio L, Larsbrink J. Exploration of three Dyadobacter fermentans enzymes uncovers molecular activity determinants in CE15. Appl Microbiol Biotechnol 2024; 108:335. [PMID: 38747981 PMCID: PMC11096219 DOI: 10.1007/s00253-024-13175-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/29/2024] [Accepted: 05/04/2024] [Indexed: 05/18/2024]
Abstract
Glucuronoyl esterases (GEs) are serine-type hydrolase enzymes belonging to carbohydrate esterase family 15 (CE15), and they play a central role in the reduction of recalcitrance in plant cell walls by cleaving ester linkages between glucuronoxylan and lignin in lignocellulose. Recent studies have suggested that bacterial CE15 enzymes are more heterogeneous in terms of sequence, structure, and substrate preferences than their fungal counterparts. However, the sequence space of bacterial GEs has still not been fully explored, and further studies on diverse enzymes could provide novel insights into new catalysts of biotechnological interest. To expand our knowledge on this family of enzymes, we investigated three unique CE15 members encoded by Dyadobacter fermentans NS114T, a Gram-negative bacterium found endophytically in maize/corn (Zea mays). The enzymes are dissimilar, sharing ≤ 39% sequence identity to each other' and were considerably different in their activities towards synthetic substrates. Combined analysis of their primary sequences and structural predictions aided in establishing hypotheses regarding specificity determinants within CE15, and these were tested using enzyme variants attempting to shift the activity profiles. Together, the results expand our existing knowledge of CE15, shed light into the molecular determinants defining specificity, and support the recent thesis that diverse GEs encoded by a single microorganism may have evolved to fulfil different physiological functions. KEY POINTS: • D. fermentans encodes three CE15 enzymes with diverse sequences and specificities • The Region 2 inserts in bacterial GEs may directly influence enzyme activity • Rational amino acid substitutions improved the poor activity of the DfCE15A enzyme.
Collapse
Affiliation(s)
- Miriam Carbonaro
- Department of Biology, University of Naples Federico II, 80126, Naples, Italy
| | - Scott Mazurkewich
- Wallenberg Wood Science Center, Division of Industrial Biotechnology, Department of Life Sciences, Chalmers University of Technology, SE-412 96, Gothenburg, Sweden.
| | | | - Leila Lo Leggio
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100, Copenhagen, Denmark
| | - Johan Larsbrink
- Wallenberg Wood Science Center, Division of Industrial Biotechnology, Department of Life Sciences, Chalmers University of Technology, SE-412 96, Gothenburg, Sweden.
| |
Collapse
|
5
|
Taxeidis G, Djapovic M, Nikolaivits E, Maslak V, Nikodinovic-Runic J, Topakas E. New Labeled PET Analogues Enable the Functional Screening and Characterization of PET-Degrading Enzymes. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2024; 12:5943-5952. [PMID: 38903150 PMCID: PMC11187625 DOI: 10.1021/acssuschemeng.4c00143] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 03/14/2024] [Accepted: 03/15/2024] [Indexed: 06/22/2024]
Abstract
The discovery and engineering of novel biocatalysts capable of depolymerizing polyethylene terephthalate (PET) have gained significant attention since the need for green technologies to combat plastic pollution has become increasingly urgent. This study focuses on the development of novel substrates that can indicate enzymes with PET hydrolytic activity, streamlining the process of enzyme evaluation and selection. Four novel substrates, mimicking the structure of PET, were chemically synthesized and labeled with fluorogenic or chromogenic moieties, enabling the direct analysis of candidate enzymes without complex preparatory or analysis steps. The fluorogenic substrates, mUPET1, mUPET2, and mUPET3, not only identify enzymes capable of PET breakdown but also differentiate those with exceptional performance on the polymer, such as the benchmark PETase, LCCICCG. Among the substrates, the chromogenic p-NPhPET3 stands out as a reliable tool for screening both pure and crude enzymes, offering advantages over fluorogenic substrates such as ease of assay using UV-vis spectroscopy and compatibility with crude enzyme samples. However, ferulic acid esterases and mono-(2-hydroxyethyl) terephthalate esterases (MHETases), which exhibit remarkably high affinity for PET oligomers, also show high catalytic activity on these substrates. The substrates introduced in this study hold significant value in the function-based screening and characterization of enzymes that degrade PET, as well as the the potential to be used in screening mutant libraries derived from directed evolution experiments. Following this approach, a rapid and dependable assay method can be carried out using basic laboratory infrastructure, eliminating the necessity for intricate preparatory procedures before analysis.
Collapse
Affiliation(s)
- George Taxeidis
- Industrial
Biotechnology & Biocatalysis Group, Biotechnology Laboratory,
School of Chemical Engineering, National
Technical University of Athens, Heroon Polytechniou 9, Zografou, 15772 Athens, Greece
| | - Milica Djapovic
- Faculty
of Chemistry, University of Belgrade, Studentski trg 12-16, 11000 Belgrade, Belgrade, Serbia
| | - Efstratios Nikolaivits
- Industrial
Biotechnology & Biocatalysis Group, Biotechnology Laboratory,
School of Chemical Engineering, National
Technical University of Athens, Heroon Polytechniou 9, Zografou, 15772 Athens, Greece
| | - Veselin Maslak
- Faculty
of Chemistry, University of Belgrade, Studentski trg 12-16, 11000 Belgrade, Belgrade, Serbia
| | - Jasmina Nikodinovic-Runic
- Institute
of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11000 Belgrade, Serbia
| | - Evangelos Topakas
- Industrial
Biotechnology & Biocatalysis Group, Biotechnology Laboratory,
School of Chemical Engineering, National
Technical University of Athens, Heroon Polytechniou 9, Zografou, 15772 Athens, Greece
| |
Collapse
|
6
|
Perna V, Agger JW. Transesterification with CE15 glucuronoyl esterase from Cerrena unicolor reveals substrate preferences. Biotechnol Lett 2024; 46:107-114. [PMID: 38150097 PMCID: PMC10787888 DOI: 10.1007/s10529-023-03456-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 11/21/2023] [Accepted: 11/25/2023] [Indexed: 12/28/2023]
Abstract
PURPOSE Glucuronoyl esterases (GE, family CE15) catalyse the cleavage of ester linkages in lignin-carbohydrate complexes (LCCs), and this study demonstrate how transesterification reactions with a fungal GE from Cerrena unicolor (CuGE) can reveal the enzyme's preference for the alcohol-part of the ester-bond. METHODS This alcohol-preference relates to where the ester-LCCs are located on the lignin molecule, and has consequences for how the enzymes potentially interact with lignin. It is unknown exactly what the enzymes prefer; either the α-benzyl or the γ-benzyl position. By providing the enzyme with a donor substrate (the methyl ester of either glucuronate or 4-O-methyl-glucuronate) and either one of two acceptor molecules (benzyl alcohol or 3-phenyl-1-propanol) we demonstrate that the enzyme can perform transesterification and it serves as a method for assessing the enzyme's alcohol preferences. CONCLUSION CuGE preferentially forms the γ-ester from the methyl ester of 4-O-methyl-glucuronate and 3-phenyl-1-propanol and the enzyme's substrate preferences are primarily dictated by the presence of the 4-O-methylation on the glucuronoyl donor, and secondly on the type of alcohol.
Collapse
Affiliation(s)
- Valentina Perna
- Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800, Kgs Lyngby, Denmark
| | - Jane Wittrup Agger
- Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800, Kgs Lyngby, Denmark.
| |
Collapse
|
7
|
Seveso A, Mazurkewich S, Banerjee S, Poulsen JCN, Lo Leggio L, Larsbrink J. Polysaccharide utilization loci from Bacteroidota encode CE15 enzymes with possible roles in cleaving pectin-lignin bonds. Appl Environ Microbiol 2024; 90:e0176823. [PMID: 38179933 PMCID: PMC10807430 DOI: 10.1128/aem.01768-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 11/23/2023] [Indexed: 01/06/2024] Open
Abstract
Lignocellulose is a renewable but complex material exhibiting high recalcitrance to enzymatic hydrolysis, which is attributed, in part, to the presence of covalent linkages between lignin and polysaccharides in the plant cell wall. Glucuronoyl esterases from carbohydrate esterase family 15 (CE15) have been proposed as an aid in reducing this recalcitrance by cleaving ester bonds found between lignin and glucuronoxylan. In the Bacteroidota phylum, some species organize genes related to carbohydrate metabolism in polysaccharide utilization loci (PULs) which encode all necessary proteins to bind, deconstruct, and respond to a target glycan. Bioinformatic analyses identified CE15 members in some PULs that appear to not target the expected glucuronoxylan. Here, five CE15 members from such PULs were investigated with the aim of gaining insights on their biological roles. The selected targets were characterized using glucuronoyl esterase model substrates and with a new synthetic molecule mimicking a putative ester linkage between pectin and lignin. The CE15 enzyme from Phocaeicola vulgatus was structurally determined by X-ray crystallography both with and without carbohydrate ligands with galacturonate binding in a distinct conformation than that of glucuronate. We further explored whether these CE15 enzymes could act akin to pectin methylesterases on pectin-rich biomass but did not find evidence to support the proposed activity. Based on the evidence gathered, the CE15 enzymes in the PULs expected to degrade pectin could be involved in cleavage of uronic acid esters in rhamnogalacturonans.IMPORTANCEThe plant cell wall is a highly complex matrix, and while most of its polymers interact non-covalently, there are also covalent bonds between lignin and carbohydrates. Bonds between xylan and lignin are known, such as the glucuronoyl ester bonds that are cleavable by CE15 enzymes. Our work here indicates that enzymes from CE15 may also have other activities, as we have discovered enzymes in PULs proposed to target other polysaccharides, including pectin. Our study represents the first investigation of such enzymes. Our first hypothesis that the enzymes would act as pectin methylesterases was shown to be false, and we instead propose that they may cleave other esters on complex pectins such as rhamnogalacturonan II. The work presents both the characterization of five novel enzymes and can also provide indirect information about the components of the cell wall itself, which is a highly challenging material to chemically analyze in fine detail.
Collapse
Affiliation(s)
- Andrea Seveso
- Wallenberg Wood Science Center, Division of Industrial Biotechnology, Department of Life Sciences, Chalmers University of Technology, Gothenburg, Sweden
| | - Scott Mazurkewich
- Wallenberg Wood Science Center, Division of Industrial Biotechnology, Department of Life Sciences, Chalmers University of Technology, Gothenburg, Sweden
| | - Sanchari Banerjee
- Department of Chemistry, University of Copenhagen, Copenhagen, Denmark
| | | | - Leila Lo Leggio
- Department of Chemistry, University of Copenhagen, Copenhagen, Denmark
| | - Johan Larsbrink
- Wallenberg Wood Science Center, Division of Industrial Biotechnology, Department of Life Sciences, Chalmers University of Technology, Gothenburg, Sweden
| |
Collapse
|
8
|
Chang JN, Shi JW, Li Q, Li S, Wang YR, Chen Y, Yu F, Li SL, Lan YQ. Regulation of Redox Molecular Junctions in Covalent Organic Frameworks for H 2 O 2 Photosynthesis Coupled with Biomass Valorization. Angew Chem Int Ed Engl 2023; 62:e202303606. [PMID: 37277319 DOI: 10.1002/anie.202303606] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/15/2023] [Accepted: 06/05/2023] [Indexed: 06/07/2023]
Abstract
H2 O2 photosynthesis coupled with biomass valorization can not only maximize the energy utilization but also realize the production of value-added products. Here, a series of COFs (i.e. Cu3 -BT-COF, Cu3 -pT-COF and TFP-BT-COF) with regulated redox molecular junctions have been prepared to study H2 O2 photosynthesis coupled with furfuryl alcohol (FFA) photo-oxidation to furoic acid (FA). The FA generation efficiency of Cu3 -BT-COF was found to be 575 mM g-1 (conversion ≈100 % and selectivity >99 %) and the H2 O2 production rate can reach up to 187 000 μM g-1 , which is much higher than Cu3 -pT-COF, TFP-BT-COF and its monomers. As shown by theoretical calculations, the covalent coupling of the Cu cluster and the thiazole group can promote charge transfer, substrate activation and FFA dehydrogenation, thus boosting both the kinetics of H2 O2 production and FFA photo-oxidation to increase the efficiency. This is the first report about COFs for H2 O2 photosynthesis coupled with biomass valorization, which might facilitate the exploration of porous-crystalline catalysts in this field.
Collapse
Affiliation(s)
- Jia-Nan Chang
- Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University, 210023, Nanjing, P. R. China
| | - Jing-Wen Shi
- Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University, 210023, Nanjing, P. R. China
| | - Qi Li
- Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University, 210023, Nanjing, P. R. China
| | - Shan Li
- Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University, 210023, Nanjing, P. R. China
| | - Yi-Rong Wang
- School of Chemistry, South China Normal University, 510006, Guangzhou, P. R. China
| | - Yifa Chen
- School of Chemistry, South China Normal University, 510006, Guangzhou, P. R. China
| | - Fei Yu
- Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University, 210023, Nanjing, P. R. China
| | - Shun-Li Li
- School of Chemistry, South China Normal University, 510006, Guangzhou, P. R. China
| | - Ya-Qian Lan
- School of Chemistry, South China Normal University, 510006, Guangzhou, P. R. China
| |
Collapse
|
9
|
Liu B, Wang W, Qiu J, Huang X, Qiu S, Bao Y, Xu S, Ruan L, Ran T, He J. Crystal structures of herbicide-detoxifying esterase reveal a lid loop affecting substrate binding and activity. Nat Commun 2023; 14:4343. [PMID: 37468532 DOI: 10.1038/s41467-023-40103-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 07/11/2023] [Indexed: 07/21/2023] Open
Abstract
SulE, an esterase, which detoxifies a variety of sulfonylurea herbicides through de-esterification, provides an attractive approach to remove environmental sulfonylurea herbicides and develop herbicide-tolerant crops. Here, we determined the crystal structures of SulE and an activity improved mutant P44R. Structural analysis revealed that SulE is a dimer with spacious binding pocket accommodating the large sulfonylureas substrate. Particularly, SulE contains a protruding β hairpin with a lid loop covering the active site of the other subunit of the dimer. The lid loop participates in substrate recognition and binding. P44R mutation altered the lid loop flexibility, resulting in the sulfonylurea heterocyclic ring repositioning to a relative stable conformation thus leading to dramatically increased activity. Our work provides important insights into the molecular mechanism of SulE, and establish a solid foundation for further improving the enzyme activity to various sulfonylurea herbicides through rational design.
Collapse
Affiliation(s)
- Bin Liu
- Key Laboratory of Agricultural Environmental Microbiology of Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
- College of Life Sciences, Jiangxi Normal University, Nanchang, 330022, China
| | - Weiwu Wang
- Key Laboratory of Agricultural Environmental Microbiology of Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jiguo Qiu
- Key Laboratory of Agricultural Environmental Microbiology of Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xing Huang
- Key Laboratory of Agricultural Environmental Microbiology of Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Shenshen Qiu
- Key Laboratory of Agricultural Environmental Microbiology of Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yixuan Bao
- Key Laboratory of Agricultural Environmental Microbiology of Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Siqiong Xu
- Key Laboratory of Agricultural Environmental Microbiology of Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Luyao Ruan
- Key Laboratory of Agricultural Environmental Microbiology of Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Tingting Ran
- Key Laboratory of Agricultural Environmental Microbiology of Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Jian He
- Key Laboratory of Agricultural Environmental Microbiology of Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
10
|
Agger JW, Madsen MS, Martinsen LK, Martins PA, Barrett K, Meyer AS. New insights to diversity and enzyme-substrate interactions of fungal glucuronoyl esterases. Appl Microbiol Biotechnol 2023:10.1007/s00253-023-12575-4. [PMID: 37256329 DOI: 10.1007/s00253-023-12575-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 05/05/2023] [Accepted: 05/09/2023] [Indexed: 06/01/2023]
Abstract
Glucuronoyl esterases (GEs) (EC 3.1.1.117) catalyze the cleavage of ester-linked lignin-carbohydrate complexes that has high impact on the plant cell wall integrity. The GEs are among the very few known types of hydrolytic enzymes that act at the interface of lignin, or which may potentially interact with lignin itself. In this review, we provide the latest update of the current knowledge on GEs with a special focus on the fungal variants. In addition, we have established the phylogenetic relationship between all GEs and this reveals that the fungal enzymes largely fall into one major branch, together with only a minor subset of bacterial enzymes. About 22% of the fungal proteins carry an additional domain, which is almost exclusively a CBM1 binding domain. We address how GEs may interact with the lignin-side of their substrate by molecular docking experiments based on the known structure of the Cerrena unicolor GE (CuGE). The docking studies indicate that there are no direct interactions between the enzyme and the lignin polymer, that the lignin-moiety is facing away from the protein surface and that an elongated carbon-chain between the ester-linkage and the first phenyl of lignin is preferable. Much basic research on these enzymes has been done over the past 15 years, but the next big step forward for these enzymes is connected to application and how these enzymes can facilitate the use of lignocellulose as a renewable resource. KEY POINTS: Fungal GEs are closely related and are sometimes linked to a binding module Molecular docking suggests good accommodation of lignin-like substructures GEs could be among the first expressed enzymes during fungal growth on biomass.
Collapse
Affiliation(s)
- Jane Wittrup Agger
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads 224, 2800, Kongens Lyngby, Denmark.
| | - Michael Schmidt Madsen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads 224, 2800, Kongens Lyngby, Denmark
| | - Line Korte Martinsen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads 224, 2800, Kongens Lyngby, Denmark
| | - Pedro Alves Martins
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads 224, 2800, Kongens Lyngby, Denmark
| | - Kristian Barrett
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads 224, 2800, Kongens Lyngby, Denmark
| | - Anne S Meyer
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads 224, 2800, Kongens Lyngby, Denmark
| |
Collapse
|
11
|
Glucuronoyl esterases - enzymes to decouple lignin and carbohydrates and enable better utilization of renewable plant biomass. Essays Biochem 2023; 67:493-503. [PMID: 36651189 PMCID: PMC10154605 DOI: 10.1042/ebc20220155] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/09/2022] [Accepted: 01/04/2023] [Indexed: 01/19/2023]
Abstract
Glucuronoyl esterases (GEs) are microbial enzymes able to cleave covalent linkages between lignin and carbohydrates in the plant cell wall. GEs are serine hydrolases found in carbohydrate esterase family 15 (CE15), which belongs to the large α/β hydrolase superfamily. GEs have been shown to reduce plant cell wall recalcitrance by hydrolysing the ester bonds found between glucuronic acid moieties on xylan polysaccharides and lignin. In recent years, the exploration of CE15 has broadened significantly and focused more on bacterial enzymes, which are more diverse in terms of sequence and structure to their fungal counterparts. Similar to fungal GEs, the bacterial enzymes are able to improve overall biomass deconstruction but also appear to have less strict substrate preferences for the uronic acid moiety. The structures of bacterial GEs reveal that they often have large inserts close to the active site, with implications for more extensive substrate interactions than the fungal GEs which have more open active sites. In this review, we highlight the recent work on GEs which has predominantly regarded bacterial enzymes, and discuss similarities and differences between bacterial and fungal enzymes in terms of the biochemical properties, diversity in sequence and modularity, and structural variations that have been discovered thus far in CE15.
Collapse
|
12
|
Zhao J, Xu Y, Lu H, Zhao D, Zheng J, Lin M, Liang X, Ding Z, Dong W, Yang M, Li W, Zhang C, Sun B, Li X. Molecular mechanism of LIP05 derived from Monascus purpureus YJX-8 for synthesizing fatty acid ethyl esters under aqueous phase. Front Microbiol 2023; 13:1107104. [PMID: 36713181 PMCID: PMC9877431 DOI: 10.3389/fmicb.2022.1107104] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 12/20/2022] [Indexed: 01/13/2023] Open
Abstract
Fatty acid ethyl esters are important flavor chemicals in strong-flavor Baijiu. Monascus purpureus YJX-8 is recognized as an important microorganism for ester synthesis in the fermentation process. Enzyme LIP05 from YJX-8 can efficiently catalyze the synthesis of fatty acid ethyl esters under aqueous phase, but the key catalytic sites affecting esterification were unclear. The present work combined homology modeling, molecular dynamics simulation, molecular docking and site-directed mutation to analyze the catalytic mechanism of LIP05. Protein structure modeling indicated LIP05 belonged to α/β fold hydrolase, contained a lid domain and a core catalytic pocket with conserved catalytic triad Ser150-His215-Asp202, and the oxyanion hole composed of Gly73 and Thr74. Ile30 and Leu37 of the lid domain were found to affect substrate specificity. The π-bond stacking between Tyr116 and Tyr149 played an important role in stabilizing the catalytic active center of LIP05. Tyr116 and Ile204 determined the substrate spectrum by composing the substrate-entrance channel. Residues Leu83, Ile204, Ile211 and Leu216 were involved in forming the hydrophobic substrate-binding pocket through steric hindrance and hydrophobic interaction. The catalytic mechanism for esterification in aqueous phase of LIP05 was proposed and provided a reference for clarifying the synthesis of fatty acid ethyl esters during the fermentation process of strong-flavor Baijiu.
Collapse
Affiliation(s)
- Jingrong Zhao
- Key Laboratory of Brewing Microbiome and Enzymatic Molecular Engineering, China General Chamber of Commerce, Beijing Technology and Business University, Beijing, China
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, China
| | - Youqiang Xu
- Key Laboratory of Brewing Microbiome and Enzymatic Molecular Engineering, China General Chamber of Commerce, Beijing Technology and Business University, Beijing, China
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, China
| | - Hongyun Lu
- Key Laboratory of Brewing Microbiome and Enzymatic Molecular Engineering, China General Chamber of Commerce, Beijing Technology and Business University, Beijing, China
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, China
| | - Dong Zhao
- Wuliangye Yibin Co., Ltd., Yibin, Sichuan, China
| | - Jia Zheng
- Wuliangye Yibin Co., Ltd., Yibin, Sichuan, China
| | - Mengwei Lin
- Key Laboratory of Brewing Microbiome and Enzymatic Molecular Engineering, China General Chamber of Commerce, Beijing Technology and Business University, Beijing, China
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, China
| | - Xin Liang
- Key Laboratory of Brewing Microbiome and Enzymatic Molecular Engineering, China General Chamber of Commerce, Beijing Technology and Business University, Beijing, China
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, China
| | - Ze Ding
- Key Laboratory of Brewing Microbiome and Enzymatic Molecular Engineering, China General Chamber of Commerce, Beijing Technology and Business University, Beijing, China
- School of Food and Health, Beijing Technology and Business University (BTBU), Beijing, China
| | - Wenqi Dong
- Key Laboratory of Brewing Microbiome and Enzymatic Molecular Engineering, China General Chamber of Commerce, Beijing Technology and Business University, Beijing, China
- School of Food and Health, Beijing Technology and Business University (BTBU), Beijing, China
| | - Maochen Yang
- School of Food and Health, Beijing Technology and Business University (BTBU), Beijing, China
| | - Weiwei Li
- Key Laboratory of Brewing Microbiome and Enzymatic Molecular Engineering, China General Chamber of Commerce, Beijing Technology and Business University, Beijing, China
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, China
| | - Chengnan Zhang
- Key Laboratory of Brewing Microbiome and Enzymatic Molecular Engineering, China General Chamber of Commerce, Beijing Technology and Business University, Beijing, China
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, China
| | - Baoguo Sun
- Key Laboratory of Brewing Microbiome and Enzymatic Molecular Engineering, China General Chamber of Commerce, Beijing Technology and Business University, Beijing, China
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, China
| | - Xiuting Li
- Key Laboratory of Brewing Microbiome and Enzymatic Molecular Engineering, China General Chamber of Commerce, Beijing Technology and Business University, Beijing, China
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, China
- School of Food and Health, Beijing Technology and Business University (BTBU), Beijing, China
| |
Collapse
|
13
|
Fungal Assisted Valorisation of Polymeric Lignin: Mechanism, Enzymes and Perspectives. Catalysts 2023. [DOI: 10.3390/catal13010149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Lignocellulose is considered one of the significant recalcitrant materials and also is difficult to break down because of its complex structure. Different microbes such as bacteria and fungi are responsible for breaking down these complex lignin structures. This article discussed briefly the lignin-degrading bacteria and their critical steps involved in lignin depolymerization. In addition, fungi are regarded as the ideal microorganism for the degradation of lignin because of their highly effective hydrolytic and oxidative enzyme systems for the breakdown of lignocellulosic materials. The white rot fungi, mainly belonging to basidiomycetes, is the main degrader of lignin among various microorganisms. This could be achieved because of the presence of lignolytic enzymes such as laccases, lignin peroxidases, and manganese peroxidases. The significance of the fungi and lignolytic enzyme’s role in lignin depolymerization, along with its mechanism and chemical pathways, are emphasized in this article.
Collapse
|
14
|
Microbial xylanolytic carbohydrate esterases. Essays Biochem 2022; 67:479-491. [PMID: 36468678 DOI: 10.1042/ebc20220129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 11/04/2022] [Accepted: 11/17/2022] [Indexed: 12/12/2022]
Abstract
Abstract
This article reviews microbial esterases participating in the degradation of the major plant hemicellulose, xylan. The main chain of this polysaccharide built of β-1,4-glycosidically linked xylopyranosyl residues is substituted by other sugars and also partially acetylated. Besides esters of acetic acid, there are two other types of ester linkages in plant xylans. L-Arabinofuranosyl side chains form esters with phenolic acids, predominantly with ferulic acid. The dimerization of ferulic acid residues leads to cross-links connecting the hemicellulose molecules. Ferulic acid cross-links were shown to serve as covalent linkage between lignin and hemicellulose. Another cross-linking between lignin and hemicellulose is provided by esters between the xylan side residues of glucuronic or 4-O-methyl-D-glucurononic acid and lignin alcohols. Regardless of the cross-linking, the side residues prevent xylan main chains from association that leads to crystallization similar to that of cellulose. Simultaneously, xylan decorations hamper the action of enzymes acting on the main chain. The enzymatic breakdown of plant xylan, therefore, requires a concerted action of glycanases attacking the main chain and enzymes catalyzing debranching, called accessory xylanolytic enzymes including xylanolytic esterases. While acetylxylan esterases and feruloyl esterases participate directly in xylan degradation, glucuronoyl esterases catalyze its separation from lignin. The current state of knowledge of diversity, classification and structure–function relationship of these three types of xylanolytic carbohydrate esterases is discussed with emphasis on important aspects of their future research relevant to their industrial applications.
Collapse
|
15
|
Chang J, Li Q, Yan Y, Shi J, Zhou J, Lu M, Zhang M, Ding H, Chen Y, Li S, Lan Y. Covalent‐Bonding Oxidation Group and Titanium Cluster to Synthesize a Porous Crystalline Catalyst for Selective Photo‐Oxidation Biomass Valorization. Angew Chem Int Ed Engl 2022; 61:e202209289. [DOI: 10.1002/anie.202209289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Jia‐Nan Chang
- Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials Jiangsu Key Laboratory of New Power Batteries School of Chemistry and Materials Science Nanjing Normal University Nanjing 210023 P. R. China
| | - Qi Li
- Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials Jiangsu Key Laboratory of New Power Batteries School of Chemistry and Materials Science Nanjing Normal University Nanjing 210023 P. R. China
| | - Y. Yan
- School of Chemistry South China Normal University Guangzhou 510006 P. R. China
| | - Jing‐Wen Shi
- Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials Jiangsu Key Laboratory of New Power Batteries School of Chemistry and Materials Science Nanjing Normal University Nanjing 210023 P. R. China
| | - Jie Zhou
- School of Chemistry South China Normal University Guangzhou 510006 P. R. China
| | - Meng Lu
- School of Chemistry South China Normal University Guangzhou 510006 P. R. China
| | - Mi Zhang
- School of Chemistry South China Normal University Guangzhou 510006 P. R. China
| | - Hui‐Min Ding
- Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials Jiangsu Key Laboratory of New Power Batteries School of Chemistry and Materials Science Nanjing Normal University Nanjing 210023 P. R. China
| | - Yifa Chen
- School of Chemistry South China Normal University Guangzhou 510006 P. R. China
| | - Shun‐Li Li
- School of Chemistry South China Normal University Guangzhou 510006 P. R. China
| | - Ya‐Qian Lan
- School of Chemistry South China Normal University Guangzhou 510006 P. R. China
| |
Collapse
|
16
|
Chang JN, Li Q, Yan Y, Shi JW, Zhou J, Lu M, Zhang M, Ding HM, Chen Y, Li SL, Lan YQ. Covalent Bonding Oxidation Group and Ti‐cluster to Synthesize a Porous Crystalline Catalyst for Selective Photo‐oxidation Biomass Valorization. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202209289] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
| | - Qi Li
- Nanjing Normal University College of Materials Science and Engineering CHINA
| | - Yong Yan
- South China Normal University school of chemistry CHINA
| | - Jing-Wen Shi
- Nanjing Normal University College of Materials Science and Engineering CHINA
| | - Jie Zhou
- South China Normal University school of chemistry CHINA
| | - Meng Lu
- South China Normal University school of chemistry CHINA
| | - Mi Zhang
- South China Normal University school of chemistry CHINA
| | - Hui-Min Ding
- Nanjing Normal University College of Materials Science and Engineering CHINA
| | - Yifa Chen
- South China Normal University school of chemistry CHINA
| | - Shun-Li Li
- South China Normal University school of chemistry CHINA
| | - Ya-Qian Lan
- South China Normal University school of chemistry Nanjing wenyuan road No. 1 51006 Guangzhou CHINA
| |
Collapse
|