1
|
Liu X, Yuan M, Li Y, Sun B, Yang X, Su Y, Luo J. Te 2- modulated heterogeneous remodeling of S atoms in ultrathin ZnIn 2S 4 nanosheets containing S vacancies synergistically enhances CO 2 photoreduction. J Colloid Interface Sci 2025; 679:772-784. [PMID: 39393154 DOI: 10.1016/j.jcis.2024.10.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/19/2024] [Accepted: 10/02/2024] [Indexed: 10/13/2024]
Abstract
Reconfiguration of in situ heterojunction composites without interfacial resistance by substitution of homologous anions for the formation of gradient work function differences inducing the formation of built-in electric field is an effective strategy to enhance the charge separation efficiency. Herein, Te2-/ZnIn2S4-VS (Te2-/ZIS-VS) in situ heterojunction was synthesized by substitution of Te2- ions for S2- in ultrathin ZIS containing S vacancies, which can significantly promote photogenerated charge separation, surface electron enrichment, and CO2 adsorption/activation. The presence of S vacancies and adjacent Te2-/S2- double anions, the double active sites constructed by defect engineering promote the desorption of *CO molecules while inhibiting the protonation toward *CHO, which was more favorable for selective CO2 photoreduction to CO. The experimental results showed that the CO yield of Te2-/ZIS-VS was significantly increased to 672.1 μmol g-1 h-1 compared with pristine ZIS (54.3 μmol g-1 h-1) and the CO selectivity was close to 83 %. Notably, the life cycle assessment (LCA) of Te2-/Znln2S4 nanosheets with S-vacancy was performed. The evaluation results showed that most of the 17 impact categories showed low overall impact values and were environmentally friendly. Based on the results of this LCA, suggestions were put forward to further optimize the product to reduce carbon emissions.
Collapse
Affiliation(s)
- Xing Liu
- School of Materials Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, China.
| | - Meng Yuan
- Key Laboratory of Bio-based Material Science & Technology, Ministry of Education, Northeast Forestry University, Harbin 150040, China
| | - Yudong Li
- Key Laboratory of Bio-based Material Science & Technology, Ministry of Education, Northeast Forestry University, Harbin 150040, China.
| | - Bowen Sun
- Heilongjiang Provincial Hospital, Harbin Institute of Technology, Harbin 150036, China
| | - Xiaohui Yang
- Key Laboratory of Reservoir Aquatic Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, No. 266, Fangzheng Avenue, Beibei District, Chongqing 400714, China
| | - Yuchen Su
- School of Materials Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, China
| | - Juhua Luo
- School of Materials Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, China.
| |
Collapse
|
2
|
Shao M, Shi W, Jiang J, Tan S, Wang X, Fei J, Li J, Zhang Z. Unveiling the role of NiFeM hydroxide (M = Pt, Ru, Ir, Rh) cocatalysts for robust H 2 production in photocatalytic water splitting. Chem Commun (Camb) 2025. [PMID: 39844729 DOI: 10.1039/d4cc06199c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2025]
Abstract
In this study, the NiFe-LDH doped with different Pt group metals (Pt, Ru, Ir, Rh) was prepared as a cocatalyst for photocatalytic H2 production over g-C3N4. It is found that the doped NiFe-LDH loaded g-C3N4 generally displays higher photocatalytic activity than the raw NiFe-LDH modified one, where the NiFeRu-LDH loaded g-C3N4 shows the optimal H2 evolution rate of 77.4 μmol h-1, about 5.5 times that of the NiFe-LDH system.
Collapse
Affiliation(s)
- Mengmeng Shao
- Fujian Provincial Key Laboratory of Polymer Materials, College of Materials Science and Engineering, Fujian Normal University, Fuzhou 350007, China.
- Zhejiang Huayuan Pigment Co., Ltd, Huzhou 313220, China
| | - Wei Shi
- Hangzhou Chaoteng Energy Technology Co., Ltd, Hangzhou 310051, China
| | - Junhui Jiang
- Taizhou Pollution Prevention and Control Engineering Center Co., Ltd, Taizhou 318000, China
| | - Shihua Tan
- Hunan Province Key Laboratory of Materials Surface or Interface Science and Technology, Central South University of Forestry and Technology, Changsha 410004, China
| | - Xuehan Wang
- Zhejiang Huayuan Pigment Co., Ltd, Huzhou 313220, China
| | - Jiawei Fei
- Zhejiang Huayuan Pigment Co., Ltd, Huzhou 313220, China
| | - Jinhua Li
- Zhejiang Huayuan Pigment Co., Ltd, Huzhou 313220, China
| | - Zhangjing Zhang
- Fujian Provincial Key Laboratory of Polymer Materials, College of Materials Science and Engineering, Fujian Normal University, Fuzhou 350007, China.
| |
Collapse
|
3
|
Du Z, Guo C, Guo M, Meng S, Yang Y, Yu Z, Zheng X, Zhang S, Chen C, Chen S. Engineering ZnIn 2S 4 with efficient charge separation and utilization for synergistic accelerate dual-function photocatalysis. J Colloid Interface Sci 2025; 677:571-582. [PMID: 39154449 DOI: 10.1016/j.jcis.2024.08.095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/21/2024] [Accepted: 08/13/2024] [Indexed: 08/20/2024]
Abstract
Combining photocatalytic reduction with organic synthetic oxidation in the same photocatalytic redox system can effectively utilize photoexcited electrons and holes from solar to chemical energy. Here, we stabilized 0D Au clusters on the substrate surface of Zn vacancies modified 2D ZnIn2S4 (ZIS-V) nanosheets by chemically bonding Au-S interaction, forming surfactant functionalized Au/ZIS-V photocatalyst, which can not only synergistic accelerate the selective oxidation of phenylcarbinol to value-added products coupled with clean energy hydrogen production but also further drive photocatalytic CO2-to-CO conversion. An internal electric field of Au/ZIS-V ohmic junction and Zn vacancies synchronously promote the photoexcited charge carrier separation and transfer to optimized active sites for redox reactions. Compared with CO2 reduction in water and the pristine ZnIn2S4, the reaction thermodynamics and kinetics of CO2 reduction over the Au/ZIS-V were simultaneously improved about 11.09 and 45.51 times, respectively. Moreover, the photocatalytic redox mechanisms were also profoundly studied by 13CO2 isotope tracing tests, in situ electron paramagnetic resonance (in situ EPR), in situ X-ray photoelectron spectroscopy (in situ XPS), in situ diffuse reflection infrared Fourier transform spectroscopy (in situ DRIFTS) and density functional theory (DFT) characterizations, etc. These results demonstrate the advantages of vacancies coupled with metal clusters in the synergetic enhancement of photocatalytic redox performance and have great potential applications in a wide range of environments and energy.
Collapse
Affiliation(s)
- Zisheng Du
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, College of Chemistry and Materials Science, Huaibei Normal University, Huaibei 235000, China
| | - Chan Guo
- School of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
| | - Mingchun Guo
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science & Technology of China, Hefei 230026, China
| | - Sugang Meng
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, College of Chemistry and Materials Science, Huaibei Normal University, Huaibei 235000, China; Hefei National Laboratory for Physical Sciences at the Microscale, University of Science & Technology of China, Hefei 230026, China.
| | - Yang Yang
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, College of Chemistry and Materials Science, Huaibei Normal University, Huaibei 235000, China
| | - Zhiruo Yu
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, College of Chemistry and Materials Science, Huaibei Normal University, Huaibei 235000, China
| | - Xiuzhen Zheng
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, College of Chemistry and Materials Science, Huaibei Normal University, Huaibei 235000, China
| | - Sujuan Zhang
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, College of Chemistry and Materials Science, Huaibei Normal University, Huaibei 235000, China
| | - Cheng Chen
- School of Resources and Environment, Anhui Agricultural University, Hefei 230036, China.
| | - Shifu Chen
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, College of Chemistry and Materials Science, Huaibei Normal University, Huaibei 235000, China.
| |
Collapse
|
4
|
Shan P, Geng K, Shen Y, Hao P, Zhang S, Hou J, Lu J, Guo F, Li C, Shi W. Facile synthesis of hierarchical core-shell carbon@ZnIn 2S 4 composite for boosted photothermal-assisted photocatalytic H 2 production. J Colloid Interface Sci 2025; 677:1098-1107. [PMID: 39142151 DOI: 10.1016/j.jcis.2024.08.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/26/2024] [Accepted: 08/08/2024] [Indexed: 08/16/2024]
Abstract
Against the backdrop of energy shortage, hydrogen energy has attracted much attention as a green and clean energy source. In order to explore efficient hydrogen production pathways, we designed a composite photocatalyst with carbon-based core-shell photothermal-assisted photocatalytic system (Carbon@ZnIn2S4, denoted as C@ZIS). The well-designed catalyst C@ZIS composites demonstrated a photocatalytic hydrogen precipitation rate of 2.97 mmol g-1 h-1 even in the absence of the noble metal Pt co-catalyst. The incorporation of carbon-based core-shell photocatalysts into a photocatalytic reaction significantly affects the activity of the reaction by triggering a photothermal effect in the reaction solution. The results of the physicochemical experiments demonstrated that the carbon spheres in C@ZIS composite system could provide a greater number of active sites, thereby accelerating the electron transfer and separation efficiency, and thus enhancing the photocatalytic activity. The study presents an efficacious design concept for the development of efficacious carbon-based core-shell photothermal-assisted photocatalysts, which is anticipated to facilitate the efficient conversion of solar energy to hydrogen energy.
Collapse
Affiliation(s)
- Pengnian Shan
- School of Energy and Power, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212003, PR China
| | - Kun Geng
- School of Energy and Power, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212003, PR China
| | - Yu Shen
- School of Energy and Power, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212003, PR China
| | - Pengyu Hao
- School of Energy and Power, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212003, PR China
| | - Shunhong Zhang
- School of Energy and Power, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212003, PR China
| | - Jianhua Hou
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225009, PR China
| | - Jialin Lu
- School of Energy and Power, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212003, PR China
| | - Feng Guo
- School of Energy and Power, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212003, PR China.
| | - Chunsheng Li
- Key Laboratory of Advanced Electrode Materials for Novel Solar Cells for Petroleum and Chemical Industry of China, School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou City, Jiangsu Province 215009, PR China.
| | - Weilong Shi
- School of Material Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212003, PR China.
| |
Collapse
|
5
|
Feng Y, Gong S, Wang Y, Ban C, Qu X, Ma J, Duan Y, Lin C, Yu D, Xia L, Chen X, Tao X, Gan L, Zhou X. Noble-Metal-Free Cocatalysts Reinforcing Hole Consumption for Photocatalytic Hydrogen Evolution with Ultrahigh Apparent Quantum Efficiency. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2412965. [PMID: 39723725 DOI: 10.1002/adma.202412965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 11/28/2024] [Indexed: 12/28/2024]
Abstract
Achieving efficient and sustainable hydrogen production through photocatalysis is highly promising yet remains a significant challenge, especially when replacing costly noble metals with more abundant alternatives. Conversion efficiency with noble-metal-free alternatives is frequently limited by high charge recombination rates, mainly due to the sluggish transfer and inefficient consumption of photo-generated holes. To address these challenges, a rational design of noble-metal-free cocatalysts as oxidative sites is reported to facilitate hole consumption, leading to markedly increased H2 yield rates without relying on expensive noble metals. By integrating femtosecond transient absorption spectroscopy with in situ characterizations and theoretical calculations, the rapid hole consumption is compellingly confirmed, which in turn promotes the effective separation and migration of photo-generated carriers. The optimized catalyst delivers an impressive photocatalytic H2 yield rate of 57.84 mmol gcat -1 h-1, coupled with an ultrahigh apparent quantum efficiency reaching up to 65.8%. Additionally, a flow-type quartz microreactor is assembled using the optimal catalyst thin film, which achieves a notable H2 yield efficiency of 0.102 mL min-1 and maintains high stability over 1260 min of continuous operation. The strategy of reinforcing hole consumption through noble-metal-free cocatalysts establishes a promising pathway for scalable and economically viable solar H2 production.
Collapse
Affiliation(s)
- Yajie Feng
- College of Physics and Center of Quantum Materials and Devices, Chongqing University, Chongqing, 401331, China
| | - Shaokuan Gong
- Shenzhen Key Laboratory of Intelligent Robotics and Flexible Manufacturing Systems, SUSTech Energy Institute for Carbon Neutrality, Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Yang Wang
- College of Physics and Center of Quantum Materials and Devices, Chongqing University, Chongqing, 401331, China
| | - Chaogang Ban
- College of Physics and Center of Quantum Materials and Devices, Chongqing University, Chongqing, 401331, China
| | - Xianlin Qu
- Center for Microscopy and Analysis, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, China
| | - Jiangping Ma
- College of Physics and Center of Quantum Materials and Devices, Chongqing University, Chongqing, 401331, China
| | - Youyu Duan
- College of Physics and Center of Quantum Materials and Devices, Chongqing University, Chongqing, 401331, China
| | - Chi Lin
- College of Physics and Center of Quantum Materials and Devices, Chongqing University, Chongqing, 401331, China
| | - Danmei Yu
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331, China
| | - Lu Xia
- Mechanical Engineering, RWTH Aachen University, 52062, Aachen, Germany
| | - Xihan Chen
- Shenzhen Key Laboratory of Intelligent Robotics and Flexible Manufacturing Systems, SUSTech Energy Institute for Carbon Neutrality, Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Xiaoping Tao
- College of Physics and Center of Quantum Materials and Devices, Chongqing University, Chongqing, 401331, China
| | - Liyong Gan
- College of Physics and Center of Quantum Materials and Devices, Chongqing University, Chongqing, 401331, China
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing, 401331, China
- Chongqing Institute of New Energy Storage Material and Equipment, Chongqing, 401120, China
| | - Xiaoyuan Zhou
- College of Physics and Center of Quantum Materials and Devices, Chongqing University, Chongqing, 401331, China
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing, 401331, China
- Chongqing Institute of New Energy Storage Material and Equipment, Chongqing, 401120, China
| |
Collapse
|
6
|
Wang X, Zhao Y, Wu X, Zhang B, Tian J, Wong WY, Zhang F. Achieving Photocatalytic Overall Nitrogen Fixation via an Enzymatic Pathway on a Distorted CoP 4 Configuration. Angew Chem Int Ed Engl 2024:e202420327. [PMID: 39714573 DOI: 10.1002/anie.202420327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 12/07/2024] [Accepted: 12/18/2024] [Indexed: 12/24/2024]
Abstract
Photocatalytic nitrogen (N2) fixation over semiconductors has always suffered from poor conversion efficiency owing to weak N2 adsorption and the difficulty of N≡N triple bond dissociation. Herein, a Co single-atom catalyst (SAC) model with a C-defect-evoked CoP4 distorted configuration was fabricated using a selective phosphidation strategy, wherein P-doping and C defects co-regulate the local electronic structure of Co sites. Comprehensive experiments and theoretical calculations revealed that the distorted CoP4 configuration caused a strong charge redistribution between the Co atoms and adjacent C atoms, minimizing their electronegativity difference. Consequently, the N2 adsorption pattern switched from an "end-on" to a "side-on" mode with a high N2 adsorption energy of -1.40 eV and an elongated N-N bond length of 1.20 Å, notably decreasing the N2 adsorption/activation energy barrier. In the absence of sacrificial agents, the Co SAC achieved excellent photocatalytic overall N2 fixation performance via an enzymatic pathway. The NH3 yielding rate peaked at 1249.5 μmol h-1 g-1 with an apparent quantum yield of 3.51 % at 365 nm. Moreover, the selective phosphidation strategy has universality for synthesizing other SACs, such as those containing Ni and Fe. This study offers new insight into co-regulating the electronic structure of SACs for efficient photocatalytic overall N2 fixation.
Collapse
Affiliation(s)
- Xin Wang
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- Shenzhen University of Advanced Technology, Shenzhen, 518107, China
| | - Yuqi Zhao
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- School of Materials Science and Engineering, Shan-dong University of Science and Technology, Qingdao, 266590, China
| | - Xi Wu
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, 518035, China
| | - Bin Zhang
- Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, 518035, China
| | - Jian Tian
- School of Materials Science and Engineering, Shan-dong University of Science and Technology, Qingdao, 266590, China
| | - Wai-Yeung Wong
- Department of Applied Biology and Chemical Technology and Research Institute for Smart Energy, The Hong Kong Polytechnic University, Hong Kong, China
| | - Fuxiang Zhang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian National Laboratory for Clean Energy, Dalian, 116023, China
| |
Collapse
|
7
|
Zhao Y, Wu X, Wang H, Ma M, Tian J, Wang X. Phosphorus Regulates Coordination Number and Electronegativity of Cobalt Atomic Sites Triggering Efficient Photocatalytic Water Splitting. NANO LETTERS 2024; 24:16175-16183. [PMID: 39652167 DOI: 10.1021/acs.nanolett.4c05201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
Optimizing the local electronic structure of a single-atom catalyst (SAC) is crucial for efficient photocatalytic hydrogen evolution reactions. This study synthesized a Co-P4/g-C3N4 heterostructure by selective phosphidation of the Co metal-organic framework/graphitic carbon nitride (Co-MOF/g-C3N4), converting the Co-O6 configuration into a highly electronegative, coordinatively unsaturated Co-P4 configuration anchored to a carbon matrix. P-doping induces strong charge redistribution, shifting the d-band center toward the Fermi level, transforming the Co sites from an electron-deficient state to an electron-rich state, and resulting in a significant reduction in the free energy barrier for HER to -0.08 eV. The Co-P4/g-C3N4 heterostructure demonstrated a HER rate of 13.51 mmol g-1 h-1, approximately 4.82-8.35 times greater than those of photocatalysts loaded with noble metals. The apparent quantum efficiency (AQE) was 28.45% at 380 nm. The synergistic effect of the low coordination number and high electronegativity metal sites significantly enhances the photocatalytic HER performance.
Collapse
Affiliation(s)
- Yuqi Zhao
- School of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Xi Wu
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Hengliang Wang
- International Collaborative Laboratory of 2D Materials for Optoelectronic Science and Technology, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, China
| | - Ming Ma
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Jian Tian
- School of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Xin Wang
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| |
Collapse
|
8
|
Yuan S, Liu G, Zhang Q, Liu T, Yang J, Guan Z. Synergistic effect of Na doping and CoSe 2 cocatalyst for enhanced photocatalytic hydrogen evolution performance of ZnIn 2S 4. J Colloid Interface Sci 2024; 676:272-282. [PMID: 39029253 DOI: 10.1016/j.jcis.2024.07.129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/12/2024] [Accepted: 07/15/2024] [Indexed: 07/21/2024]
Abstract
Element doping has been demonstrated as a useful strategy to regulate the band gap and electronic structure of photocatalyst for improving photocatalytic activity. Herein, ZnIn2S4 (ZIS) nanosheets were doped with alkali metal ions (Li+, Na+ or K+) by a simple solution method. Experimental characterizations reveal that alkali metal ions doping reduce the band gap, raise the conduction band position, and improve surface hydrophilicity of ZIS. In addition, theoretical calculations show that Na doping increases the electron density at valence band maximum and surrounding S atom, which is conducive to produce more electrons and effective utilization of electrons, respectively. Benefited from above factors, Na-doped ZIS (Na-ZIS) shows the highest photocatalytic hydrogen evolution performance. Furthermore, CoSe2 cocatalyst is loaded on the surface of Na-ZIS (CS/Na-ZIS), which further improve the charge separation and prolong the lifetime of charges. As a result, the optimized CS/Na-ZIS shows a H2 evolution rate of 4525 μmol·g-1·h-1 with an apparent quantum efficiency of 27.5 % at 420 nm, which are much higher than that of pure ZIS. This study provides an in-depth understanding of the synergistic effect of Na doping and CoSe2 cocatalyst in ameliorating photocatalytic activity.
Collapse
Affiliation(s)
- Shuya Yuan
- National & Local Joint Engineering Research Center for Applied Technology of Hybrid Nanomaterials, Institute of Nanoscience and Engineering, Henan University, Kaifeng 475004, Henan, China
| | - Guowei Liu
- National & Local Joint Engineering Research Center for Applied Technology of Hybrid Nanomaterials, Institute of Nanoscience and Engineering, Henan University, Kaifeng 475004, Henan, China
| | - Qingsheng Zhang
- National & Local Joint Engineering Research Center for Applied Technology of Hybrid Nanomaterials, Institute of Nanoscience and Engineering, Henan University, Kaifeng 475004, Henan, China
| | - Taifeng Liu
- National & Local Joint Engineering Research Center for Applied Technology of Hybrid Nanomaterials, Institute of Nanoscience and Engineering, Henan University, Kaifeng 475004, Henan, China
| | - Jianjun Yang
- National & Local Joint Engineering Research Center for Applied Technology of Hybrid Nanomaterials, Institute of Nanoscience and Engineering, Henan University, Kaifeng 475004, Henan, China
| | - Zhongjie Guan
- National & Local Joint Engineering Research Center for Applied Technology of Hybrid Nanomaterials, Institute of Nanoscience and Engineering, Henan University, Kaifeng 475004, Henan, China.
| |
Collapse
|
9
|
Zhang K, Wang X, Su Y. Investigation of Two Novel Heterojunction Photocatalysts with Boosted Hydrogen Evolution Performance. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1947. [PMID: 39683335 DOI: 10.3390/nano14231947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 11/29/2024] [Accepted: 12/02/2024] [Indexed: 12/18/2024]
Abstract
Among the reported photocatalysts, ZnIn2S4 has garnered significant research interest due to its advantageous layered structure and appropriate band gap. However, achieving rational design and effective interfacial regulation in heterojunctions remains challenging. In this study, we designed two novel heterojunctions: SrTiO3@ZnIn2S4 and SrCrO3@ZnIn2S4. The photocatalytic hydrogen evolution performance of prepared heterojunctions was systematically investigated under different single-wavelength light sources. Without a cocatalyst, the optimized hydrogen evolution efficiency of SrTiO3@ZnIn2S4 and SrCrO3@ZnIn2S4 reached 3.27 and 4.6 mmol g-1. The enhanced photocatalytic performance can be attributed to the formation of a type-II heterojunction, which improves light absorption capabilities and promotes the separation and transfer of photoinduced carriers. This study provides valuable insights into the strategic construction of heterojunctions for photocatalytic water splitting.
Collapse
Affiliation(s)
- Kaifeng Zhang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China
- Corrosion and Protection Center, University of Science and Technology Beijing, Beijing 100083, China
| | - Xudong Wang
- Corrosion and Protection Center, University of Science and Technology Beijing, Beijing 100083, China
| | - Yanjing Su
- Beijing Advanced Innovation Center for Materials Genome Engineering, Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China
- Corrosion and Protection Center, University of Science and Technology Beijing, Beijing 100083, China
| |
Collapse
|
10
|
Li N, Ma Y, Ma J, Chang Q, Fan X, Liu L, Xue C, Hao C, Zhang H, Hu S, Wang S. Enhanced Photothermal-Assisted Hydrogen Production via a Porous Carbon@MoS 2/ZnIn 2S 4 Type II-S-Scheme Tandem Heterostructure. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2406609. [PMID: 39344161 PMCID: PMC11618738 DOI: 10.1002/smll.202406609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/04/2024] [Indexed: 10/01/2024]
Abstract
MoS2/ZnIn2S4 flower-like heterostructures into porous carbon (PC@MoS2/ZIS) are embedded. This ternary heterostructure demonstrates enhanced light absorption across a broad spectral range from 200 to 2500 nm. It features both Type-II and S-scheme dual heterojunction interfaces, which facilitate the generation, separation, and transfer of photoinduced carriers. The PC enveloped by MoS2/ZIS composite microspheres serves as a photothermal source, providing additional energy to the carriers. This process accelerates charge separation and migration, enhancing photothermal-assisted photocatalytic H2 evolution. The optimal H2 evolution rate for PC@MoS2/ZIS reaches an impressive 18.79 mmol g-1 h-1, with an apparent quantum efficiency of 14.1% at 400 nm. This work presents a promising approach for effectively integrating multicomponent heterostructures with photothermal effects, offering innovative strategies for efficient solar energy utilization and conversion.
Collapse
Affiliation(s)
- Ning Li
- School of Energy and Power Engineering & State Key Laboratory of Coal and CBM Co‐MiningNorth University of ChinaTaiyuan030051China
| | - Yong Ma
- School of Energy and Power Engineering & State Key Laboratory of Coal and CBM Co‐MiningNorth University of ChinaTaiyuan030051China
| | - Jiafeng Ma
- School of Energy and Power Engineering & State Key Laboratory of Coal and CBM Co‐MiningNorth University of ChinaTaiyuan030051China
| | - Qing Chang
- School of Energy and Power Engineering & State Key Laboratory of Coal and CBM Co‐MiningNorth University of ChinaTaiyuan030051China
| | - Xiangqian Fan
- School of Energy and Power Engineering & State Key Laboratory of Coal and CBM Co‐MiningNorth University of ChinaTaiyuan030051China
| | - Lei Liu
- School of Energy and Power Engineering & State Key Laboratory of Coal and CBM Co‐MiningNorth University of ChinaTaiyuan030051China
| | - Chaorui Xue
- School of Energy and Power Engineering & State Key Laboratory of Coal and CBM Co‐MiningNorth University of ChinaTaiyuan030051China
| | - Caihong Hao
- School of Energy and Power Engineering & State Key Laboratory of Coal and CBM Co‐MiningNorth University of ChinaTaiyuan030051China
| | - Huayang Zhang
- Chair for Photonics and OptoelectronicsFaculty of PhysicsNano‐Institute MunichLudwig‐Maximilians‐Universität MünchenKöniginstr. 1080539MunichGermany
- School of Chemical EngineeringThe University of AdelaideAdelaideSA5005Australia
| | - Shengliang Hu
- School of Energy and Power Engineering & State Key Laboratory of Coal and CBM Co‐MiningNorth University of ChinaTaiyuan030051China
| | - Shaobin Wang
- School of Chemical EngineeringThe University of AdelaideAdelaideSA5005Australia
| |
Collapse
|
11
|
Li X, Su Z, Wu S, Zheng L, Zheng H, Mao L, Shi X. Synergistic Interactions of Bulk Polarization and Built-In Electric Field Inducing 2D/2D S-Scheme Homojunction Toward Enhanced Photocatalytic Performance. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2406485. [PMID: 39314022 DOI: 10.1002/smll.202406485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/09/2024] [Indexed: 09/25/2024]
Abstract
The rational design of S-scheme photocatalysts, achieved by serially integrating two different semiconductors, represents a promising strategy for efficient charge separation and amplified photocatalytic performance, yet it remains a challenge. Herein, ZnIn2S4 (ZIS) and oxygen-doped ZnIn2S4 (O-ZIS) nanosheets are chosen to construct a homojunction catalyst architecture. Theoretical simulations alongside comprehensive in situ and ex situ characterizations confirm that ZIS and O-ZIS with noncentrosymmetric layered structures can generate a polarization-induced bulk-internal electric field (IEF) within the crystal. A robust interface-IEF is also created by the strong interfacial interaction between O-ZIS and ZIS with different work functions. Owing to these features, the O-ZIS/ZIS homojunction adopts an S-scheme directional charge transfer route, wherein photoexcited electrons in ZIS and holes in O-ZIS concurrently migrate to their interface and subsequently recombine. This enables spatial charge separation and provides a high driving force for both reduction and oxidation reactions simultaneously. Consequently, such photocatalyst exhibits an H2 evolution rate up to 142.9 µmol h-1 without any cocatalysts, which is 4.6- and 3.4-fold higher than that of pristine ZIS and O-ZIS, respectively. Benzaldehyde is also produced as a value-added oxidation product with a rate of 146.9 µmol h-1. This work offers a new perspective on the design of S-scheme systems.
Collapse
Affiliation(s)
- Xiaohui Li
- Department of Applied Chemistry, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Zhiqi Su
- Department of Applied Chemistry, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Shiting Wu
- New Energy Materials Research Center, College of Materials & Environmental Engineering, Hangzhou Dianzi University, Hangzhou, 310018, P. R. China
| | - Lingxia Zheng
- Department of Applied Chemistry, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Huajun Zheng
- Department of Applied Chemistry, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Liang Mao
- School of Materials Science and Physics, China University of Mining and Technology, Xuzhou, 221116, P. R. China
| | - Xiaowei Shi
- Department of Applied Chemistry, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| |
Collapse
|
12
|
Yu L, Liu X, Zhang H, Zhou B, Chen Z, Li H, Zhang L. Twisted BiOCl Moiré Superlattices for Photocatalytic Chloride Reforming of Methane. J Am Chem Soc 2024; 146:32816-32825. [PMID: 39531269 DOI: 10.1021/jacs.4c13254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Solar-driven conversion of CH4 into value-added methyl chlorides and H2 with abundant chloride ions offers a sustainable CH4 reforming strategy but suffers from inefficient Cl- activation and severe e--h+ recombination in traditional photocatalysts. Herein, we demonstrate that BiOCl moiré superlattices with a 11.1° twist angle are highly efficient for photocatalytic CH4 reforming into CH3Cl and H2 with NaCl. These moiré superlattices, featuring misalignment-induced tensile strains, destabilize surface Bi-Cl bonds, facilitating a hole-mediated MvK-analogous process to activate lattice Cl into reactive •Cl for CH4 chlorination. Meanwhile, their twisted stacking configurations reinforce interlayer electronic coupling and thus accelerate out-of-plane carrier transfer. Along with surface anchoring of single-atom Pt sites for H2 evolution, the resulting Pt1/BiOCl moiré superlattices deliver a CH3Cl yield of 53.4 μmol g-1 h-1 with an impressive selectivity of 96% under visible light. This study highlights the potential of lattice engineering in two-dimensional photocatalysts to regulate structural strains and carrier dynamics for the decentralized reforming of CH4.
Collapse
Affiliation(s)
- Linghao Yu
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental & Applied Chemistry, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Xupeng Liu
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental & Applied Chemistry, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Hao Zhang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental & Applied Chemistry, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Biao Zhou
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental & Applied Chemistry, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Ziyue Chen
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental & Applied Chemistry, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Hao Li
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Lizhi Zhang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental & Applied Chemistry, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
13
|
Yang Z, Ren J, You J, Luo X, Wang X, Xue Y, Qin Y, Tian J, Zhang H, Han S. Self-assembly of snowflake-like Cu 2S with ultrathin ZnIn 2S 4 nanosheets to form S-scheme heterojunctions for photocatalytic hydrogen production. J Colloid Interface Sci 2024; 680:124-136. [PMID: 39561640 DOI: 10.1016/j.jcis.2024.11.070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 11/05/2024] [Accepted: 11/10/2024] [Indexed: 11/21/2024]
Abstract
Step-scheme (S-scheme) heterojunction has attracted much attention in the design of heterostructures for photocatalysts. In this study, we successfully utilized the principle of electrostatic self-assembly to load ultrathin ZnIn2S4 nanosheets onto snowflake-like Cu2S using a simple grinding method, and synthesized Cu2S/ZnIn2S4 S-scheme heterojunctions according to the different work functions (Φ). At the optimal Cu2S loading ratio (5 wt%), the hydrogen yield of the Cu2S/ZnIn2S4 composites reaches 5.58 mmol·h-1·g-1, which is 5.12 times higher than that of pure ZnIn2S4 (1.09 mmol·h-1·g-1). The apparent quantum efficiency (AQE) of the Cu2S/ZnIn2S4 composites reaches 5.8 % (λ = 370 nm), which is an improvement compared to pure ZnIn2S4 (2.7 %). The AQE of pure ZnIn2S4 is 0.4 %, while the AQE of Cu2S/ZnIn2S4 composites is enhanced to 1.0 % at λ = 456 nm. The heterojunction interface of Cu2S and ZnIn2S4 builds a built-in electric field (IEF), which greatly reduces the recombination rate of photogenerated electrons and holes, retains highly reduced photoelectrons in the conduction band (CB) of ZnIn2S4. The snowflake structure of Cu2S effectively increases the active sites and specific surface area, and improves the light absorption. This work opens a new avenue for designing photocatalysts, synergizing energy development and protecting the environment.
Collapse
Affiliation(s)
- Zhihui Yang
- School of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Jiali Ren
- School of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Junhua You
- School of Materials Science and Engineering, Shenyang University of Technology, Shenyang 110870, China.
| | - Xilu Luo
- School of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Xinyu Wang
- School of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Yanjun Xue
- School of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Yingying Qin
- Archives Department, China University of Petroleum (East China), Qingdao 266580, China.
| | - Jian Tian
- School of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China.
| | - Hangzhou Zhang
- Department of Orthopedics; Joint Surgery and Sports Medicine, First Affiliated Hospital of China Medical University; Shenyang Sports Medicine Clinical Medical Research Center, Shenyang 110001, China
| | - Shuai Han
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang 110055, China.
| |
Collapse
|
14
|
Yue W, Ye Z, Liu C, Xu Z, Wang L, Cao X, Yamashita H, Zhang J. Enhanced Photocatalytic Hydrogen Evolution Activity Driven by the Synergy Between Surface Vacancies and Cocatalysts: Surface Reaction Matters. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2407092. [PMID: 39319636 DOI: 10.1002/advs.202407092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/19/2024] [Indexed: 09/26/2024]
Abstract
The incorporation of defects and cocatalysts is known to be effective in improving photocatalytic activity, yet their coupled contribution to the photocatalytic hydrogen evolution process has not been well-explored. In this study, We demonstrate that the incorporation of S vacancies and NiSe can contribute to the improvement of charge separation efficiency via the formation of a strong electric field within the bulk ZnIn2S4 (ZIS) and on its surface. More importantly, We also demonstrate that the synergy of S vacancies and NiSe benefits the overall hydrogen evolution activity by facilitating the H2O adsorption and dissociation process. This is particularly important for hydrogen evolution taking place under alkaline conditions where the proton concentration is low, allowing ZISv-NiSe (containing abundant S vacancies) to outperform ZIS-NiSe under alkaline conditions. In contrast, under acid conditions, since there are already sufficient amounts of protons available for reaction, the hydrogen evolution activity became governed by the hydrogen adsorption/desorption process rather than the H2O dissociation process. This leads to ZIS-NiSe exhibiting higher activity than ZISv-NiSe due to its more favorable hydrogen adsorption energy. The findings thus provide insights into how defect and cocatalyst modification strategies can be tailor-made to improve hydrogen evolution activity under different pH conditions.
Collapse
Affiliation(s)
- Wenhui Yue
- Key Laboratory for Advanced Materials, Shanghai Engineering Research Center for Multi-media Environmental Catalysis and Resource Utilization, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai, 200237, China
| | - Ziwei Ye
- Key Laboratory for Advanced Materials, Shanghai Engineering Research Center for Multi-media Environmental Catalysis and Resource Utilization, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai, 200237, China
| | - Cong Liu
- Key Laboratory for Advanced Materials, Shanghai Engineering Research Center for Multi-media Environmental Catalysis and Resource Utilization, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai, 200237, China
| | - Zehong Xu
- Key Laboratory for Advanced Materials, Shanghai Engineering Research Center for Multi-media Environmental Catalysis and Resource Utilization, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai, 200237, China
| | - Lingzhi Wang
- Key Laboratory for Advanced Materials, Shanghai Engineering Research Center for Multi-media Environmental Catalysis and Resource Utilization, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai, 200237, China
| | - Xiaoming Cao
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Hiromi Yamashita
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, Osaka, 565-0871, Japan
| | - Jinlong Zhang
- Key Laboratory for Advanced Materials, Shanghai Engineering Research Center for Multi-media Environmental Catalysis and Resource Utilization, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai, 200237, China
| |
Collapse
|
15
|
Wu S, Zhang S, Zhang Q, Liu G, Yang J, Guan Z, Zou Z. Efficient Holes Abstraction by Precisely Decorating Ruthenium Single Atoms and RuO x Clusters on ZnIn 2S 4 for Photocatalytic Pure Water Splitting. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2405153. [PMID: 39039979 DOI: 10.1002/smll.202405153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/16/2024] [Indexed: 07/24/2024]
Abstract
Developing efficient photocatalysts for two-electron water splitting with simultaneous H2O2 and H2 generation shows great promise for practical application. Currently, the efficiency of two-electron water splitting is still restricted by the low utilization of photogenerated charges, especially holes, of which the transfer rate is much slower than that of electrons. Herein, Ru single atoms and RuOx clusters are co-decorated on ZnIn2S4 (RuOx/Ru-ZIS) to employ as multifunctional sites for efficient photocatalytic pure water splitting. Doping of Ru single atoms in the ZIS basal plane enhances holes abstraction from bulk ZIS by regulating the electronic structure, and RuOx clusters offer a strong interfacial electric field to remarkably promote the out-of-plane migration of holes from ZIS. Moreover, Ru single atoms and RuOx clusters also serve as active sites for boosting surface water oxidation. As a result, an excellent H2 and H2O2 evolution rates of 581.9 µmol g-1 h-1 and 464.4 µmol g-1 h-1 is achieved over RuOx/Ru-ZIS under visible light irradiation, respectively, with an apparent quantum efficiency (AQE) of 4.36% at 400 nm. This work paves a new way to increase charge utilization by manipulating photocatalyst using single atom and clusters.
Collapse
Affiliation(s)
- Shuangzhi Wu
- National & Local Joint Engineering Research Center for Applied Technology of Hybrid Nanomaterials, Henan University, Kaifeng, Henan, 475004, China
| | - Shengyu Zhang
- National & Local Joint Engineering Research Center for Applied Technology of Hybrid Nanomaterials, Henan University, Kaifeng, Henan, 475004, China
| | - Qingsheng Zhang
- National & Local Joint Engineering Research Center for Applied Technology of Hybrid Nanomaterials, Henan University, Kaifeng, Henan, 475004, China
| | - Guowei Liu
- National & Local Joint Engineering Research Center for Applied Technology of Hybrid Nanomaterials, Henan University, Kaifeng, Henan, 475004, China
| | - Jianjun Yang
- National & Local Joint Engineering Research Center for Applied Technology of Hybrid Nanomaterials, Henan University, Kaifeng, Henan, 475004, China
| | - Zhongjie Guan
- National & Local Joint Engineering Research Center for Applied Technology of Hybrid Nanomaterials, Henan University, Kaifeng, Henan, 475004, China
| | - Zhigang Zou
- Eco-materials and Renewable Energy Research Center (ERERC), Jiangsu Key Laboratory for Nano Technology, National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing, Jiangsu, 210093, China
| |
Collapse
|
16
|
Yang K, Huang Y, Wang T, Li Y, Du Y, Ling J, Fan Z, Zhang C, Ma C. In-Situ Anchoring of Co Single-Atom Synergistically with Cd Vacancy of Cadmium Sulfide for Boosting Asymmetric Charge Distribution and Photocatalytic Hydrogen Evolution. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2409832. [PMID: 39388450 DOI: 10.1002/adma.202409832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/08/2024] [Indexed: 10/12/2024]
Abstract
In the context of reshaping the energy pattern, designing and synthesizing high-performance noble metal-free photocatalysts with ultra-high atomic utilization for hydrogen evolution reaction (HER) still remains a challenge. In a streamlined synthesis process, in-situ single atom anchoring is performed in parallel with HER by irradiating a precursory defect-state CdS/Co suspension (Co-DCdS-Ss) system under simulated sunlight and the in-situ synthesizing single-atom Co photocatalyst (Co5:DCdS) exhibits further improved catalytic performance (60.10 mmol g-1 h-1) compared with Co-DCdS-Ss (18.09 mmol g-1 h-1), reaching an apparent quantum yield of 57.6% at 500 nm and a solar-chemical energy conversion efficiency (SCC) of 6.26% at AM 1.5G. In-depth characterization tests and density functional theory (DFT) calculations prove that the anchoring of Co single atom deepens the asymmetric charge distribution of the two-coordination S atom adjacent to the cadmium vacancy (VCd). The synergy between electron delocalization VCd and Co single atom on the catalyst surface is constructed, which bifunctional sites responsible for boosting water adsorption-dissociation and hydrogen evolution. This study advances the understanding of the underlying mechanisms of synergy between surface defects and metal single atoms and opens a new horizon for the development of advanced materials in the field of photocatalysis.
Collapse
Affiliation(s)
- Kaihua Yang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, China
| | - Yicai Huang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, China
| | - Tantan Wang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, China
| | - Yiming Li
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, China
| | - Yating Du
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, China
| | - Juan Ling
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, China
| | - Ziyi Fan
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, China
| | - Chang Zhang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, China
| | - Chi Ma
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, China
| |
Collapse
|
17
|
Zhu Z, Hu J, Hu C, Lu Y, Chu S, Chen F, Zhang Y, Huang H. Oriented Crystal Polarization Tuning Bulk Charge and Single-Site Chemical State for Exceptional Hydrogen Photo-Production. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2411339. [PMID: 39363805 DOI: 10.1002/adma.202411339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/25/2024] [Indexed: 10/05/2024]
Abstract
Rapid bulk charge recombination and mediocre surface catalytic sites harshly restrict the photocatalytic activities. Herein, the aforementioned concerns are well addressed by coupling macroscopic spontaneous polarization and atomic-site engineering of CdS single-crystal nanorods for superb H2 photo-production. The oriented growth of CdS nanorods along the polar axis, vectorially superimposing substantial polar units with orderly arrangement, renders a strong polarization electric field (20.1 times enhancement), which boosts bulk charge separation with an efficiency up to 72.4% (80.4-fold). Remarkably, polarization electric field alters the chemical state of Pt single sites by orderly reducing the binding energy of Pt atom with stepwise polarization enhancement of CdS substrate, which increases the onsite electron density of Pt from 10.232 to 10.261e- and *H key intermediates, providing preponderant Volmer-Tafel/Volmer-Heyrovsky reaction pathways with significantly decreased energy barriers for H2 production. Thus, highly polarized CdS nanorods with atomically dispersed Pt sites perform an outstanding H2 space-time yield of 118.5 mmol g-1 h-1 and apparent quantum efficiency of 57.7% at λ = 420 nm, and a record-high H2 turnover frequency of 57798.4 h-1, being one of the best catalysts for photocatalytic H2 evolution. This work highlights the function of polarization in manipulating charge separation and catalytic reaction.
Collapse
Affiliation(s)
- Zijian Zhu
- Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences (Beijing), Beijing, 100083, China
| | - Jingcong Hu
- Beijing Key Laboratory of Microstructure and Properties of Solids Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing, 100124, China
| | - Cheng Hu
- Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences (Beijing), Beijing, 100083, China
| | - Yue Lu
- Beijing Key Laboratory of Microstructure and Properties of Solids Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing, 100124, China
| | - Shengqi Chu
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| | - Fang Chen
- Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences (Beijing), Beijing, 100083, China
| | - Yihe Zhang
- Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences (Beijing), Beijing, 100083, China
| | - Hongwei Huang
- Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences (Beijing), Beijing, 100083, China
| |
Collapse
|
18
|
Chong WK, Ng BJ, Tan LL, Chai SP. A compendium of all-in-one solar-driven water splitting using ZnIn 2S 4-based photocatalysts: guiding the path from the past to the limitless future. Chem Soc Rev 2024; 53:10080-10146. [PMID: 39222069 DOI: 10.1039/d3cs01040f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Photocatalytic water splitting represents a leading approach to harness the abundant solar energy, producing hydrogen as a clean and sustainable energy carrier. Zinc indium sulfide (ZIS) emerges as one of the most captivating candidates attributed to its unique physicochemical and photophysical properties, attracting much interest and holding significant promise in this domain. To develop a highly efficient ZIS-based photocatalytic system for green energy production, it is paramount to comprehensively understand the strengths and limitations of ZIS, particularly within the framework of solar-driven water splitting. This review elucidates the three sequential steps that govern the overall efficiency of ZIS with a sharp focus on the mechanisms and inherent drawbacks associated with each phase, including commonly overlooked aspects such as the jeopardising photocorrosion issue, the neglected oxidative counter surface reaction kinetics in overall water splitting, the sluggish photocarrier dynamics and the undesired side redox reactions. Multifarious material design strategies are discussed to specifically mitigate the formidable limitations and bottleneck issues. This review concludes with the current state of ZIS-based photocatalytic water splitting systems, followed by personal perspectives aimed at elevating the field to practical consideration for future endeavours towards sustainable hydrogen production through solar-driven water splitting.
Collapse
Affiliation(s)
- Wei-Kean Chong
- Multidisciplinary Platform of Advanced Engineering, Department of Chemical Engineering, School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Selangor, 47500, Malaysia.
| | - Boon-Junn Ng
- School of Energy and Chemical Engineering, Xiamen University Malaysia, Jalan Sunsuria, Bandar Sunsuria, Sepang, Selangor, 43900, Malaysia
| | - Lling-Lling Tan
- Multidisciplinary Platform of Advanced Engineering, Department of Chemical Engineering, School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Selangor, 47500, Malaysia.
| | - Siang-Piao Chai
- Multidisciplinary Platform of Advanced Engineering, Department of Chemical Engineering, School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Selangor, 47500, Malaysia.
| |
Collapse
|
19
|
Lv L, Shen G, Feng H, Liu Y, Liu H, Zhang H, Wang Z, Wang Y. Synergistic Coordination and Surface Plasmon Resonance of Quantum Dots in Enhancing Photocatalytic Hydrogen Evolution. ACS APPLIED MATERIALS & INTERFACES 2024; 16:54456-54466. [PMID: 39344047 DOI: 10.1021/acsami.4c11879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Recent studies have revealed that the integration of metal nanoparticles (NPs) with photocatalysts allows the metal NPs to serve as cocatalysts, significantly enhancing reactant efficiency near nanostructures through the surface plasmon resonance (SPR) effect. On this basis, we synthesized highly reactive FePt quantum dots (FePt QDs) with tailored configurations, manipulating the Pt coordination environment and combining FePt QDs with ultrathin two-dimensional nickel metal-organic layer (Ni-MOL) nanosheets. X-ray absorption fine spectroscopy (XAFS) confirmed the distinctive Pt-Fe configuration after photoactivation. The optimized loading amount of FePt QDs led to a hydrogen evolution reaction (HER) yield of 113 mmol·g-1·h-1 after activation, with the catalyst remaining stable over five cycles. The improved reaction efficiency stemmed from Pt coordination adjustments and a localized SPR effect, supported by ultraviolet-visible (UV-vis), infrared (IR), Raman, and XAFS characterizations. A comparative analysis was conducted with Ni-MOL deposited with platinum NPs, further underscoring the distinct advantages of FePt QDs and corroborating by density functional theory (DFT) calculations, which revealed favorable d-band center properties. These findings offer a promising avenue for the development of highly efficient and stable nanoalloy photocatalysts.
Collapse
Affiliation(s)
- Luotian Lv
- School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Guixian Shen
- School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China
| | - Han Feng
- School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Yao Liu
- School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Hao Liu
- School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Hao Zhang
- School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Zhiyong Wang
- School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China
| | - Yongqing Wang
- School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| |
Collapse
|
20
|
Andreou EK, Vamvasakis I, Douloumis A, Kopidakis G, Armatas GS. Size Dependent Photocatalytic Activity of Mesoporous ZnIn 2S 4 Nanocrystal Networks. ACS Catal 2024; 14:14251-14262. [PMID: 39324050 PMCID: PMC11420945 DOI: 10.1021/acscatal.4c04195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 08/31/2024] [Accepted: 09/04/2024] [Indexed: 09/27/2024]
Abstract
Understanding of the band-edge electronic structure and charge-transfer dynamics in size-confined nanostructures is vital in designing new materials for energy conversion applications, including green hydrogen production, decomposition of organic pollutants and solar cells. In this study, a series of mesoporous materials comprising continuous networks of linked zinc indium sulfide (ZnIn2S4) nanocrystals with a tunable diameter (ranging from 4 to 12 nm) is reported. These nanomaterials demonstrate intriguing size-dependent electronic properties, charge-transfer kinetics and photocatalytic behaviors. Our extensive characterizations uncover strong size effects on the catalytic activity of constituent ZnIn2S4 nanocrystals in the photochemical hydrogen evolution reaction. As an outcome, the optimized single-component ZnIn2S4 mesostructure produces hydrogen at a 7.8 mmol gcat -1 h-1 release rate under ultraviolet (UV)-visible light irradiation associated with an apparent quantum yield (AQY) of 17.2% at 420 ± 10 nm, far surpassing its microstructured counterpart by a factor of 10.7×. These findings provide a valuable perspective for the rational design of semiconductor nanostructures through synthetic engineering, aiming at the development of high-performance catalysts for zero-carbon energy-related applications.
Collapse
Affiliation(s)
- Evangelos K Andreou
- Department of Materials Science and Engineering, University of Crete, Heraklion 70013, Greece
| | - Ioannis Vamvasakis
- Department of Materials Science and Engineering, University of Crete, Heraklion 70013, Greece
| | - Andreas Douloumis
- Department of Materials Science and Engineering, University of Crete, Heraklion 70013, Greece
| | - Georgios Kopidakis
- Department of Materials Science and Engineering, University of Crete, Heraklion 70013, Greece
| | - Gerasimos S Armatas
- Department of Materials Science and Engineering, University of Crete, Heraklion 70013, Greece
| |
Collapse
|
21
|
Chen Q, Mao B, Liu Y, Zhou Y, Huang H, Wang S, Li L, Yan WC, Shi W, Kang Z. Designing 2D carbon dot nanoreactors for alcohol oxidation coupled with hydrogen evolution. Nat Commun 2024; 15:8052. [PMID: 39277627 PMCID: PMC11401949 DOI: 10.1038/s41467-024-52406-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 09/05/2024] [Indexed: 09/17/2024] Open
Abstract
The coupled green energy and chemical production by photocatalysis represents a promising sustainable pathway, which poses great challenges for the multifunction integration of catalytic systems. Here we show a promising green photocatalyst design using Cu-ZnIn2S4 nanosheets and carbon dots as building units, which enables the integration of reaction, mass transfer, and separation functions in the nano-space, mimicking a nanoreactor. This function integration results in great activity promotion for benzyl alcohol oxidation coupled H2 production, with H2/benzaldehyde production rates of 45.95/46.47 mmol g-1 h-1, 36.87 and 36.73 times to pure ZnIn2S4, respectively, owning to the enhanced charge accumulation and mass transfer according to in-situ spectroscopies and computational simulations of the built-in electrical field. Near-unity selectivity of benzaldehyde is achieved via the effective separation enabled by the Cu(II)-mediated conformation flipping of the intermediates and subsequent π-π conjugation. This work demonstrates an inspiring proof-of-concept nanoreactor design of photocatalysts for coupled sustainable systems.
Collapse
Affiliation(s)
- Qitao Chen
- School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, China
| | - Baodong Mao
- School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, China.
| | - Yanhong Liu
- School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, China.
| | - Yunjie Zhou
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Soochow University, 199 Ren'ai Road, Suzhou, 215123, China
| | - Hui Huang
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Soochow University, 199 Ren'ai Road, Suzhou, 215123, China
| | - Song Wang
- Hubei Key Laboratory of Low Dimensional Optoelectronic Materials and Devices, Hubei University of Arts and Science, Xiangyang, 441053, China
| | - Longhua Li
- School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, China.
| | - Wei-Cheng Yan
- School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, China.
| | - Weidong Shi
- School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, China.
| | - Zhenhui Kang
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Soochow University, 199 Ren'ai Road, Suzhou, 215123, China.
- Macao Institute of Materials Science and Engineering (MIMSE), MUST-SUDA Joint Research Center for Advanced Functional Materials, Macau University of Science and Technology, Taipa, 999078, Macao, China.
| |
Collapse
|
22
|
Jia G, Zhang Y, Yu JC, Guo Z. Asymmetric Atomic Dual-Sites for Photocatalytic CO 2 Reduction. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2403153. [PMID: 39039977 DOI: 10.1002/adma.202403153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 06/25/2024] [Indexed: 07/24/2024]
Abstract
Atomically dispersed active sites in a photocatalyst offer unique advantages such as locally tuned electronic structures, quantum size effects, and maximum utilization of atomic species. Among these, asymmetric atomic dual-sites are of particular interest because their asymmetric charge distribution generates a local built-in electric potential to enhance charge separation and transfer. Moreover, the dual sites provide flexibility for tuning complex multielectron and multireaction pathways, such as CO2 reduction reactions. The coordination of dual sites opens new possibilities for engineering the structure-activity-selectivity relationship. This comprehensive overview discusses efficient and sustainable photocatalysis processes in photocatalytic CO2 reduction, focusing on strategic active-site design and future challenges. It serves as a timely reference for the design and development of photocatalytic conversion processes, specifically exploring the utilization of asymmetric atomic dual-sites for complex photocatalytic conversion pathways, here exemplified by the conversion of CO2 into valuable chemicals.
Collapse
Affiliation(s)
- Guangri Jia
- Department of Chemistry and HKU-CAS Joint Laboratory on New Materials, The University of Hong Kong, Hong Kong SAR, 999077, P. R. China
| | - Yingchuan Zhang
- Department of Chemistry and HKU-CAS Joint Laboratory on New Materials, The University of Hong Kong, Hong Kong SAR, 999077, P. R. China
| | - Jimmy C Yu
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, 999077, P. R. China
| | - Zhengxiao Guo
- Department of Chemistry and HKU-CAS Joint Laboratory on New Materials, The University of Hong Kong, Hong Kong SAR, 999077, P. R. China
| |
Collapse
|
23
|
Li W, Duan W, Liao G, Gao F, Wang Y, Cui R, Zhao J, Wang C. 0.68% of solar-to-hydrogen efficiency and high photostability of organic-inorganic membrane catalyst. Nat Commun 2024; 15:6763. [PMID: 39117687 PMCID: PMC11310485 DOI: 10.1038/s41467-024-51183-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 07/31/2024] [Indexed: 08/10/2024] Open
Abstract
Solar-driven flat-panel H2O-to-H2 conversion is an important technology for value-added solar fuel production. However, most frequently used particulate photocatalysts are hard to achieve stable photocatalysis in flat-panel reaction module due to the influence of mechanical shear force. Herein, a highly active CdS@SiO2-Pt composite with rapid CdS-to-Pt electron transfer and restrained photoexciton recombination was prepared to process into an organic-inorganic membrane by compounding with polyvinylidene fluoride (PVDF). This PVDF networked organic-inorganic membrane displays high photostability and excellent operability, achieving improved simulated sunlight-driven alkaline H2O-to-H2 conversion activity (213.48 mmol m-2 h-1) following a 0.68% of solar-to-hydrogen efficiency. No obvious variation in its appearance and micromorphology was observed even being recycled for 50-times, which considerably outperforms the existing membrane photocatalysts. Subsequently, a homemade panel H2O-to-H2 conversion system was fabricated to obtain a 0.05% of solar-to-hydrogen efficiency. In this study, we opens up a prospect for practical application of photocatalysis technology.
Collapse
Affiliation(s)
- Wei Li
- College of Chemistry and Chemical Engineering, Shaanxi Key Laboratory of Chemical Additives for Industry, Shaanxi University of Science and Technology, Xi'an, Shaanxi, China.
| | - Wen Duan
- College of Chemistry and Chemical Engineering, Shaanxi Key Laboratory of Chemical Additives for Industry, Shaanxi University of Science and Technology, Xi'an, Shaanxi, China
| | - Guocheng Liao
- College of Chemistry and Chemical Engineering, Shaanxi Key Laboratory of Chemical Additives for Industry, Shaanxi University of Science and Technology, Xi'an, Shaanxi, China
| | - Fanfan Gao
- College of Chemistry and Chemical Engineering, Shaanxi Key Laboratory of Chemical Additives for Industry, Shaanxi University of Science and Technology, Xi'an, Shaanxi, China
| | - Yusen Wang
- College of Chemistry and Chemical Engineering, Shaanxi Key Laboratory of Chemical Additives for Industry, Shaanxi University of Science and Technology, Xi'an, Shaanxi, China
| | - Rongxia Cui
- College of Chemistry and Chemical Engineering, Shaanxi Key Laboratory of Chemical Additives for Industry, Shaanxi University of Science and Technology, Xi'an, Shaanxi, China
| | - Jincai Zhao
- Key Laboratory of Photochemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, PR China
| | - Chuanyi Wang
- School of Environmental Sciences and Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi, China.
| |
Collapse
|
24
|
Liu D, Zhang C, Shi J, Shi Y, Nga TTT, Liu M, Shen S, Dong CL. Defect Engineering Simultaneously Regulating Exciton Dissociation in Carbon Nitride and Local Electron Density in Pt Single Atoms Toward Highly Efficient Photocatalytic Hydrogen Production. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310289. [PMID: 38597769 DOI: 10.1002/smll.202310289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 03/10/2024] [Indexed: 04/11/2024]
Abstract
The high exciton binding energy (Eb) and sluggish surface reaction kinetics have severely limited the photocatalytic hydrogen production activity of carbon nitride (CN). Herein, a hybrid system consisting of nitrogen defects and Pt single atoms is constructed through a facile self-assembly and photodeposition strategy. Due to the acceleration of exciton dissociation and regulation of local electron density of Pt single atoms along with the introduction of nitrogen defects, the optimized Pt-MCT-3 exhibits a hydrogen production rate of 172.0 µmol h-1 (λ ≥ 420 nm), ≈41 times higher than pristine CN. The apparent quantum yield for the hydrogen production is determined to be 27.1% at 420 nm. The experimental characterizations and theoretical calculations demonstrate that the nitrogen defects act as the electron traps for the exciton dissociation, resulting in a decrease of Eb from 86.92 to 43.20 meV. Simultaneously, the stronger interaction between neighboring nitrogen defects and Pt single atoms directionally drives free electrons to aggregate around Pt single atoms, and tailors the d-band electrons of Pt, forming a moderate binding strength between Pt atoms and H* intermediates.
Collapse
Affiliation(s)
- Dongjie Liu
- State Key Laboratory of Multiphase Flow in Power Engineering (MFPE), International Research Center for Renewable Energy (IRCRE), Xi'an Jiaotong University (XJTU), 28 West Xianning Road, Xi'an, 710049, China
| | - Chunyang Zhang
- State Key Laboratory of Multiphase Flow in Power Engineering (MFPE), International Research Center for Renewable Energy (IRCRE), Xi'an Jiaotong University (XJTU), 28 West Xianning Road, Xi'an, 710049, China
| | - Jinwen Shi
- State Key Laboratory of Multiphase Flow in Power Engineering (MFPE), International Research Center for Renewable Energy (IRCRE), Xi'an Jiaotong University (XJTU), 28 West Xianning Road, Xi'an, 710049, China
- Integrated Energy Institute, Sichuan Digital Economy Industry Development Research Institute, 88 Jiefang Road, Chengdu, 610036, China
| | - Yuchuan Shi
- State Key Laboratory of Multiphase Flow in Power Engineering (MFPE), International Research Center for Renewable Energy (IRCRE), Xi'an Jiaotong University (XJTU), 28 West Xianning Road, Xi'an, 710049, China
| | - Ta Thi Thuy Nga
- Department of Physics, Tamkang University, New Taipei City, 25137, Taiwan
| | - Maochang Liu
- State Key Laboratory of Multiphase Flow in Power Engineering (MFPE), International Research Center for Renewable Energy (IRCRE), Xi'an Jiaotong University (XJTU), 28 West Xianning Road, Xi'an, 710049, China
| | - Shaohua Shen
- State Key Laboratory of Multiphase Flow in Power Engineering (MFPE), International Research Center for Renewable Energy (IRCRE), Xi'an Jiaotong University (XJTU), 28 West Xianning Road, Xi'an, 710049, China
| | - Chun-Li Dong
- Department of Physics, Tamkang University, New Taipei City, 25137, Taiwan
| |
Collapse
|
25
|
Wan J, Wang Y, Liu J, Song R, Liu L, Li Y, Li J, Low J, Fu F, Xiong Y. Full-Space Electric Field in Mo-Decorated Zn 2In 2S 5 Polarization Photocatalyst for Oriented Charge Flow and Efficient Hydrogen Production. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2405060. [PMID: 38760947 DOI: 10.1002/adma.202405060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/10/2024] [Indexed: 05/20/2024]
Abstract
Integration of photocatalytic hydrogen (H2) evolution with oxidative organic synthesis presents a highly attractive strategy for the simultaneous production of clean H2 fuel and high-value chemicals. However, the sluggish dynamics of photogenerated charge carriers across the photocatalysts result in low photoconversion efficiency, hindering the wide applications of such a technology. Herein, this work overcomes this limitation by inducing the full-space electric field via charge polarization engineering on a Mo cluster-decorated Zn2In2S5 (Mo-Zn2In2S5) photocatalyst. Specifically, this full-space electric field arises from a cascade of the bulk electric field (BEF) and local surface electric field (LSEF), triggering the oriented migration of photogenerated electrons from [Zn-S] regions to [In-S] regions and eventually to Mo cluster sites, ensuring efficient separation of bulk and surface charge carriers. Moreover, the surface Mo clusters induce a tip enhancement effect to optimize charge transfer behavior by augmenting electrons and proton concentration around the active sites on the basal plane of Zn2In2S5. Notably, the optimized Mo1.5-Zn2In2S5 catalyst achieves exceptional H2 and benzaldehyde production rates of 34.35 and 45.31 mmol gcat -1 h-1, respectively, outperforming pristine ZnIn2S4 by 3.83- and 4.15-fold. These findings mark a significant stride in steering charge flow for enhanced photocatalytic performance.
Collapse
Affiliation(s)
- Jun Wan
- College of Chemistry & Chemical Engineering, Research Institute of Comprehensive Energy Industrial Technology, Shaanxi Key Laboratory of Chemical Reaction Engineering, Yan'an University, Yan'an, Shaanxi, 716000, China
- Hefei National Research Center for Physical Sciences at the Microscale, USTC Center for Micro- and Nanoscale Research and Fabrication, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Yu Wang
- College of Chemistry & Chemical Engineering, Research Institute of Comprehensive Energy Industrial Technology, Shaanxi Key Laboratory of Chemical Reaction Engineering, Yan'an University, Yan'an, Shaanxi, 716000, China
| | - Jiaqing Liu
- College of Chemistry & Chemical Engineering, Research Institute of Comprehensive Energy Industrial Technology, Shaanxi Key Laboratory of Chemical Reaction Engineering, Yan'an University, Yan'an, Shaanxi, 716000, China
| | - Ru Song
- College of Chemistry & Chemical Engineering, Research Institute of Comprehensive Energy Industrial Technology, Shaanxi Key Laboratory of Chemical Reaction Engineering, Yan'an University, Yan'an, Shaanxi, 716000, China
| | - Lin Liu
- College of Chemistry & Chemical Engineering, Research Institute of Comprehensive Energy Industrial Technology, Shaanxi Key Laboratory of Chemical Reaction Engineering, Yan'an University, Yan'an, Shaanxi, 716000, China
| | - Yaping Li
- Hefei National Research Center for Physical Sciences at the Microscale, USTC Center for Micro- and Nanoscale Research and Fabrication, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Jiayi Li
- Hefei National Research Center for Physical Sciences at the Microscale, USTC Center for Micro- and Nanoscale Research and Fabrication, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Jingxiang Low
- Hefei National Research Center for Physical Sciences at the Microscale, USTC Center for Micro- and Nanoscale Research and Fabrication, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Feng Fu
- College of Chemistry & Chemical Engineering, Research Institute of Comprehensive Energy Industrial Technology, Shaanxi Key Laboratory of Chemical Reaction Engineering, Yan'an University, Yan'an, Shaanxi, 716000, China
| | - Yujie Xiong
- Hefei National Research Center for Physical Sciences at the Microscale, USTC Center for Micro- and Nanoscale Research and Fabrication, University of Science and Technology of China, Hefei, Anhui, 230026, China
| |
Collapse
|
26
|
Li X, Su Z, Jiang H, Liu J, Zheng L, Zheng H, Wu S, Shi X. Band Structure Tuning via Pt Single Atom Induced Rapid Hydroxyl Radical Generation toward Efficient Photocatalytic Reforming of Lignocellulose into H 2. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2400617. [PMID: 38441279 DOI: 10.1002/smll.202400617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 02/21/2024] [Indexed: 08/02/2024]
Abstract
Photocatalytic lignocellulose reforming for H2 production presents a compelling solution to solve environmental and energy issues. However, achieving scalable conversion under benign conditions faces consistent challenges including insufficient active sites for H2 evolution reaction (HER) and inefficient lignocellulose oxidation directly by photogenerated holes. Herein, it is found that Pt single atom-loaded CdS nanosheet (PtSA-CdS) would be an active photocatalyst for lignocellulose-to-H2 conversion. Theoretical and experimental analyses confirm that the valence band of CdS shifts downward after depositing isolated Pt atoms, and the slope of valence band potential on pH for PtSA-CdS is more positive than Nernstian equation. These characteristics allow PtSA-CdS to generate large amounts of •OH radicals even at pH 14, while the capacity is lacking with CdS alone. The employment of •OH/OH- redox shuttle succeeds in relaying photoexcited holes from the surface of photocatalyst, and the •OH radicals can diffuse away to decompose lignocellulose efficiently. Simultaneously, surface Pt atoms, featured with a thermoneutralΔ G H ∗ $\Delta G_{\mathrm{H}}^{\mathrm{*}}$ , would collect electrons to expedite HER. Consequently, PtSA-CdS performs a H2 evolution rate of 10.14 µmol h-1 in 1 m KOH aqueous solution, showcasing a remarkable 37.1-fold enhancement compared to CdS. This work provides a feasible approach to transform waste biomass into valuable sources.
Collapse
Affiliation(s)
- Xiaohui Li
- Department of Applied Chemistry, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, P. R. China
| | - Zhiqi Su
- Department of Applied Chemistry, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, P. R. China
| | - Huiqian Jiang
- Department of Applied Chemistry, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, P. R. China
| | - Jiaqi Liu
- New Energy Materials Research Center, College of Materials & Environmental Engineering, Hangzhou Dianzi University, Hangzhou, 310018, P. R. China
| | - Lingxia Zheng
- Department of Applied Chemistry, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, P. R. China
| | - Huajun Zheng
- Department of Applied Chemistry, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, P. R. China
| | - Shiting Wu
- New Energy Materials Research Center, College of Materials & Environmental Engineering, Hangzhou Dianzi University, Hangzhou, 310018, P. R. China
| | - Xiaowei Shi
- Department of Applied Chemistry, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, P. R. China
| |
Collapse
|
27
|
Wang H, Ning Y, Tang Q, Li X, Hao M, Wei Q, Zhao T, Lv D, Tian H. Ultrathin 2D/2D ZnIn 2S 4/La 2Ti 2O 7 nanosheets with a Z-scheme heterojunction for enhanced photocatalytic hydrogen evolution. Dalton Trans 2024. [PMID: 39069951 DOI: 10.1039/d4dt01559b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Layered lanthanum titanate (La2Ti2O7) perovskite is a good photocatalytic material owing to its high stability, strong redox ability, and non-toxicity. However, its inherent wide bandgap limits its application in photocatalytic hydrogen evolution. Therefore, combining La2Ti2O7 with two-dimensional (2D) narrow-bandgap semiconductors to form 2D/2D layered structures is the preferred strategy to improve its photocatalytic performance. In this study, a novel 2D/2D ZnIn2S4/La2Ti2O7 Z-scheme heterojunction was prepared through a solvothermal method. The experimental results show that when the molar ratio of La2Ti2O7 to ZnIn2S4 is 1 : 4, the hydrogen evolution rate of the composite under ultraviolet-visible light reaches 6.97 mmol g-1 h-1, which is 3.5 times higher than that of the pure ZnIn2S4. The results of the morphological characterization studies of the samples and the photoelectrochemical measurements show that channels for the rapid transfer of carriers are generated by the unique 2D/2D structure of these samples, and the separation and migration efficiency of the photogenerated carriers significantly improved due to the formation of the Z-scheme heterojunction. This study provides useful insights into the modulation of wide-bandgap semiconductors and research into solar energy conversion.
Collapse
Affiliation(s)
- Hanbing Wang
- Key Laboratory of Automobile Materials of MOE and School of Materials Science and Engineering, Jilin University, Changchun, 130012, China.
| | - Yunqi Ning
- Key Laboratory of Automobile Materials of MOE and School of Materials Science and Engineering, Jilin University, Changchun, 130012, China.
| | - Qi Tang
- Key Laboratory of Automobile Materials of MOE and School of Materials Science and Engineering, Jilin University, Changchun, 130012, China.
| | - Xueyang Li
- Key Laboratory of Automobile Materials of MOE and School of Materials Science and Engineering, Jilin University, Changchun, 130012, China.
| | - Mengdi Hao
- Key Laboratory of Automobile Materials of MOE and School of Materials Science and Engineering, Jilin University, Changchun, 130012, China.
| | - Qun Wei
- Key Laboratory of Automobile Materials of MOE and School of Materials Science and Engineering, Jilin University, Changchun, 130012, China.
| | - Tingting Zhao
- Key Laboratory of Automobile Materials of MOE and School of Materials Science and Engineering, Jilin University, Changchun, 130012, China.
| | - Daqi Lv
- Key Laboratory of Automobile Materials of MOE and School of Materials Science and Engineering, Jilin University, Changchun, 130012, China.
| | - Hongwei Tian
- Key Laboratory of Automobile Materials of MOE and School of Materials Science and Engineering, Jilin University, Changchun, 130012, China.
| |
Collapse
|
28
|
Lu X, Li Y, He X, Song P, Chai Z. Heterogeneous Photocatalytic C(sp 2)-H Activation of Formate for Hydrocarboxylation of Alkenes. Chemistry 2024; 30:e202402003. [PMID: 38801064 DOI: 10.1002/chem.202402003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 05/24/2024] [Accepted: 05/27/2024] [Indexed: 05/29/2024]
Abstract
Light-driven carboxylation offers a promising approach for synthesizing valuable fine chemicals under mild conditions. Here we disclose a heterogeneous photocatalytic strategy of C(sp2)-H activation of formate for hydrocarboxylation of alkenes over zinc indium sulfide (ZnIn2S4) under visible light. This protocol functions well with a variety of substituted styrenes with good to excellent yields; it also works for unactivated alkenes albeit with lower yields. Mechanistic studies confirm the existence of CO2⋅- as a key intermediate. It was found that C(sp2)-H activation of formate is induced by S⋅ species on the surface of ZnIn2S4 via hydrogen atom transfer (HAT) instead of a photogenerated hole oxidation mechanism. Moreover, both cleavage of the C(sp2)-H of HCOO- and formation of a benzylic anion were found to be involved in the rate-determining step for the hydrocarboxylation of styrene.
Collapse
Affiliation(s)
- Xingkai Lu
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yan Li
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Xinyuan He
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Pengfei Song
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Zhigang Chai
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
29
|
Huang SY, Lin X, Yang HY, Dou XR, Shi WJ, Deng JH, Zhong DC, Gong YN, Lu TB. Covalent Bonding of Salen Metal Complexes with Pyrene Chromophores to Porous Polymers for Photocatalytic Hydrogen Evolution. Inorg Chem 2024; 63:13594-13601. [PMID: 38973091 DOI: 10.1021/acs.inorgchem.4c01774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/09/2024]
Abstract
The development of low-cost and efficient photocatalysts to achieve water splitting to hydrogen (H2) is highly desirable but remains challenging. Herein, we design and synthesize two porous polymers (Co-Salen-P and Fe-Salen-P) by covalent bonding of salen metal complexes and pyrene chromophores for photocatalytic H2 evolution. The catalytic results demonstrate that the two polymers exhibit excellent catalytic performance for H2 generation in the absence of additional noble-metal photosensitizers and cocatalysts. Particularly, the H2 generation rate of Co-Salen-P reaches as high as 542.5 μmol g-1 h-1, which is not only 6 times higher than that of Fe-Salen-P but also higher than a large amount of reported Pt-assisted photocatalytic systems. Systematic studies show that Co-Salen-P displays faster charge separation and transfer efficiencies, thereby accounting for the significantly improved photocatalytic activity. This study provides a facile and efficient way to fabricate high-performance photocatalysts for H2 production.
Collapse
Affiliation(s)
- Shu-Ying Huang
- Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science and Engineering, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Xiao Lin
- Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science and Engineering, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Hao-Yu Yang
- Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science and Engineering, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Xue-Rong Dou
- Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science and Engineering, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Wen-Jie Shi
- Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science and Engineering, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Ji-Hua Deng
- Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science and Engineering, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Di-Chang Zhong
- Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science and Engineering, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Yun-Nan Gong
- Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science and Engineering, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Tong-Bu Lu
- Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science and Engineering, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384, China
| |
Collapse
|
30
|
Zhang X, Li Z, Li H, Yang D, Ren Z, Zhang Y, Zhang J, Bu XH. Surface-Grafted Single-Atomic Pt-N x Complex with a Precisely Regulating Coordination Sphere for Efficient Electron Acceptor-Inducing Interfacial Electron Transfer. Angew Chem Int Ed Engl 2024; 63:e202404386. [PMID: 38720177 DOI: 10.1002/anie.202404386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Indexed: 07/16/2024]
Abstract
Based on the electron-withdrawing effect of the Pt(bpy)Cl2 molecule, a simple post-modification amide reaction was firstly used to graft it onto the surface of NH2-MIL-125, which performed as a highly efficient electron acceptor that induced the conversion of the photoinduced charge migration pathway from internal BDC→TiOx migration to external BDC→PtNx migration, significantly improving the efficiency of photoinduced electron transfer and separation. Furthermore, precisely regulating over the first coordination sphere of Pt single atoms was achieved using further post-modification with additional bipyridine to investigate the effect of Pt-Nx coordination numbers on reaction activity. The as-synthesized NML-PtN2 exhibited superior photocatalytic hydrogen evolution activity of 7.608 mmol g-1 h-1, a remarkable improvement of 225 and 2.26 times compared to pristine NH2-MIL-125 and NML-PtN4, respectively. In addition, the superior apparent quantum yield of 4.01 % (390 nm) and turnover frequency of 190.3 h-1 (0.78 wt % Pt SA; 129 times compared to Pt nanoparticles/NML) revealed the high solar utilization efficiency and hydrogen evolution activity of the material. And macroscopic color changes caused by the transition of carrier migration paths was first observed. It holds profound significance for the design of MOF-Molecule catalysts with efficient charge carrier separation and precise regulation of single-atom coordination sphere.
Collapse
Affiliation(s)
- Xinghao Zhang
- School of Materials Science and Engineering National Institute for Advanced Materials, TKL of Metal and Molecule-Based Material Chemistry, Nankai University, Tianjin, 300350, China
| | - Zhigang Li
- School of Materials Science and Engineering National Institute for Advanced Materials, TKL of Metal and Molecule-Based Material Chemistry, Nankai University, Tianjin, 300350, China
| | - Hanxi Li
- School of Materials Science and Engineering National Institute for Advanced Materials, TKL of Metal and Molecule-Based Material Chemistry, Nankai University, Tianjin, 300350, China
| | - Di Yang
- School of Materials Science and Engineering National Institute for Advanced Materials, TKL of Metal and Molecule-Based Material Chemistry, Nankai University, Tianjin, 300350, China
| | - Zenghuan Ren
- College of Chemistry Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin, 300071, China
| | - Yinqiang Zhang
- School of Materials Science and Engineering National Institute for Advanced Materials, TKL of Metal and Molecule-Based Material Chemistry, Nankai University, Tianjin, 300350, China
| | - Jijie Zhang
- School of Materials Science and Engineering National Institute for Advanced Materials, TKL of Metal and Molecule-Based Material Chemistry, Nankai University, Tianjin, 300350, China
| | - Xian-He Bu
- School of Materials Science and Engineering National Institute for Advanced Materials, TKL of Metal and Molecule-Based Material Chemistry, Nankai University, Tianjin, 300350, China
- College of Chemistry Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin, 300071, China
| |
Collapse
|
31
|
Yin Y, Xu Y, Zhang H, Zheng H, Xu Z, Xu C, Zuo G, Yang S, He H, Liu Y. Interfacial tuning in FeP/ZnIn 2S 4 Ohm heterojunction: Enhanced photocatalytic hydrogen production via Zn-P charge bridging. J Colloid Interface Sci 2024; 666:648-658. [PMID: 38570207 DOI: 10.1016/j.jcis.2024.03.194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/21/2024] [Accepted: 03/28/2024] [Indexed: 04/05/2024]
Abstract
Interfacial regulation is key to photocatalytic performance, yet modulating interfacial charge transfer in heterostructures remains challenging. Herein, a novel nanoflower-like FeP/ZnIn2S4 Ohm heterostructure is first designed, with Zn atoms in ZnIn2S4 (ZIS) acting as potential anchoring sites around P atoms, forming liganded Zn-P bonds. Combining 1D FeP nanowires and 2D ZIS nanosheets enhances the mobility of photogenerated electrons. The synergistic chain-type "electron pickup" mechanism of the Ohm heterojunction coupled with the Zn-P bond speeds up electron transport at the interface. The Ohm heterojunction initiates an internal electric field, creating a driving force to further transfer photogenerated electrons through the Zn-P rapid electron transport channel to FeP, which acts as a reservoir for active sites to release H2. The optimized FeP/ZIS demonstrates a remarkable H2 evolution rate at 4.36 mmol h-1 g-1, 3.6 times that of pristine ZIS. This work provides novel insights into optimizing photocarrier dynamics via interfacial microenvironment modulation.
Collapse
Affiliation(s)
- Yingjiaqi Yin
- Department of Municipal Engineering, School of Civil Engineering, Southeast University, Nanjing 210096, China; School of Environment, Nanjing Normal University, Jiangsu Engineering Lab of Water and Soil Eco-Remediation, Nanjing 210023, China
| | - Yan Xu
- Department of Municipal Engineering, School of Civil Engineering, Southeast University, Nanjing 210096, China
| | - Huayang Zhang
- Chair for Photonics and Optoelectronics, Nano-Institute Munich, Department of Physics, Ludwig-Maximilians-University Munich, 80539 Munich, Germany
| | - Hongcen Zheng
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Zhe Xu
- School of Environment, Nanjing Normal University, Jiangsu Engineering Lab of Water and Soil Eco-Remediation, Nanjing 210023, China
| | - Chenmin Xu
- School of Environment, Nanjing Normal University, Jiangsu Engineering Lab of Water and Soil Eco-Remediation, Nanjing 210023, China
| | - Gancheng Zuo
- School of Environment, Nanjing Normal University, Jiangsu Engineering Lab of Water and Soil Eco-Remediation, Nanjing 210023, China; State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China.
| | - Shaogui Yang
- School of Environment, Nanjing Normal University, Jiangsu Engineering Lab of Water and Soil Eco-Remediation, Nanjing 210023, China
| | - Huan He
- School of Environment, Nanjing Normal University, Jiangsu Engineering Lab of Water and Soil Eco-Remediation, Nanjing 210023, China
| | - Yazi Liu
- School of Environment, Nanjing Normal University, Jiangsu Engineering Lab of Water and Soil Eco-Remediation, Nanjing 210023, China; State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China; Department of Chemical Engineering, Curtin University, GPO Box U1987, Perth, WA 6845, Australia.
| |
Collapse
|
32
|
Wu F, Zhang X, Wang L, Li G, Huang J, Song A, Meng A, Li Z. Enhanced Spin-Polarized Electric Field Modulating p-Band Center on Ni-Doped CdS for Boosting Photocatalytic Hydrogen Evolution. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309439. [PMID: 38267824 DOI: 10.1002/smll.202309439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 01/05/2024] [Indexed: 01/26/2024]
Abstract
It is a challenge to regulate charge separation dynamics and redox reaction kinetics at the atomic level to synergistically boost photocatalytic hydrogen (H2) evolution. Herein, a robust Ni-doped CdS (Ni-CdS) photocatalyst is synthesized by incorporating highly dispersed Ni atoms into the CdS lattice in substitution for Cd atoms. Combined characterizations with theoretical analysis indicate that local lattice distortion and S-vacancy of Ni-CdS induced by Ni incorporation lead to an increased dipole moment and enhanced spin-polarized electric field, which promotes the separation and transfer of photoinduced carriers. In this contribution, charge redistribution caused by enhanced internal electric field results in the downshift of the S p-band center, which is conducive to the desorption of intermediate H* for boosting the H2 evolution reaction. Accordingly, the Ni-CdS photocatalyst shows a remarkably improved photocatalytic performance with an H2 evolution rate of 20.28 mmol g-1 h-1 under visible-light irradiation, which is 5.58 times higher than that of pristine CdS. This work supplied an insightful understanding that the enhanced polarization electric field governs the p-band center for efficient photocatalytic H2 evolution activity.
Collapse
Affiliation(s)
- Fei Wu
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Xinlei Zhang
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Lei Wang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Guicun Li
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Jianfeng Huang
- School of Material Science and Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, P. R. China
| | - Aili Song
- Qingdao Huanghai University, Qingdao, 266000, P. R. China
| | - Alan Meng
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Zhenjiang Li
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| |
Collapse
|
33
|
Ren Z, Li Y, Ren Q, Zhang X, Fan X, Liu X, Fan J, Shen S, Tang Z, Xue Y. Unveiling the Role of Sulfur Vacancies in Enhanced Photocatalytic Activity of Hybrids Photocatalysts. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1009. [PMID: 38921884 PMCID: PMC11207092 DOI: 10.3390/nano14121009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/26/2024] [Accepted: 05/30/2024] [Indexed: 06/27/2024]
Abstract
Photocatalysis represents a sustainable strategy for addressing energy shortages and global warming. The main challenges in the photocatalytic process include limited light absorption, rapid recombination of photo-induced carriers, and poor surface catalytic activity for reactant molecules. Defect engineering in photocatalysts has been proven to be an efficient approach for improving solar-to-chemical energy conversion. Sulfur vacancies can adjust the electron structure, act as electron reservoirs, and provide abundant adsorption and activate sites, leading to enhanced photocatalytic activity. In this work, we aim to elucidate the role of sulfur vacancies in photocatalytic reactions and provide valuable insights for engineering high-efficiency photocatalysts with abundant sulfur vacancies in the future. First, we delve into the fundamental understanding of photocatalysis. Subsequently, various strategies for fabricating sulfur vacancies in photocatalysts are summarized, along with the corresponding characterization techniques. More importantly, the enhanced photocatalytic mechanism, focusing on three key factors, including electron structure, charge transfer, and the surface catalytic reaction, is discussed in detail. Finally, the future opportunities and challenges in sulfur vacancy engineering for photocatalysis are identified.
Collapse
Affiliation(s)
- Zhenxing Ren
- Institute of Applied Chemistry, Shanxi University, Taiyuan 030006, China; (Z.R.)
| | - Yang Li
- Institute of Applied Chemistry, Shanxi University, Taiyuan 030006, China; (Z.R.)
| | - Qiuyu Ren
- Institute of Applied Chemistry, Shanxi University, Taiyuan 030006, China; (Z.R.)
| | - Xiaojie Zhang
- National & Local Joint Engineering Research Center for Mineral Salt Deep Utilization, Huaiyin Institute of Technology, Huaian 223003, China
| | - Xiaofan Fan
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China (J.F.)
| | - Xinjuan Liu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China (J.F.)
| | - Jinchen Fan
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China (J.F.)
| | - Shuling Shen
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China (J.F.)
| | - Zhihong Tang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China (J.F.)
| | - Yuhua Xue
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China (J.F.)
| |
Collapse
|
34
|
Zhao H, Wang J. Supported nano-sized precious metal catalysts for oxidation of catalytic volatile organic compounds. Phys Chem Chem Phys 2024; 26:15804-15817. [PMID: 38775810 DOI: 10.1039/d3cp05812c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
Volatile organic compounds (VOCs) are common contaminants found as indoor as well as outdoor pollutants, which can induce acute or chronic health hazards to the human physiological system. The catalytic oxidation method is widely considered as one of the effective methods for removing VOCs, and the development of highly effective catalysts is highly urgent for booming this interesting field. This review focuses on the recent progress of VOC oxidation catalyzed by supported nano-sized precious metal catalysts, and discusses the effects of metal composition, supports, size, and morphology on the catalytic activity. In addition, the roles played by both nano-sized precious metals and supports in enhancing the performance of catalytic VOCs are also systematically discussed, which will guide the further development of more advanced VOC catalysts.
Collapse
Affiliation(s)
- Hui Zhao
- Capital Construction Office, Changzhou University, Changzhou 213164, China
| | - Jipeng Wang
- School of Environmental Science and Engineering, Changzhou University, Changzhou, Jiangsu Province 213164, China.
| |
Collapse
|
35
|
Wang J, He J, Ma J, Wang X, Feng C, Zhou Q, Zhang H, Wang Y. In-Sb Covalent Bonds over Sb 2Se 3/In 2Se 3 Heterojunction for Enhanced Photoelectrochemical Water Splitting. Inorg Chem 2024; 63:10068-10078. [PMID: 38758008 DOI: 10.1021/acs.inorgchem.4c01388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
Antimony selenide is a promising P-type photocatalyst, but it has a large number of deep energy level defects, leading to severe carrier recombination. The construction of a heterojunction is a common way to resolve this problem. However, the conventional heterojunction system inevitably introduces interface defects. Herein, we employ in situ synthesis to epitaxially grow In2Se3 nanosheets on Sb2Se3 nanorods and form In-Sb covalent interfacial bonds. This petal-shaped heterostructure reduced interface defects and enhanced the efficiency of carrier separation and transport. In this work, the photocurrent density in the proposed Sb2Se3/In2Se3 photocathode is 0.485 mA cm-2 at 0 VRHE, which is 30 times higher than that of pristine Sb2Se3 and it has prominent long-term stability for 24 h without obvious decay. The results reveal that the synergy of the bidirectional built-in electric field constructed between In2Se3 and Sb2Se3 and the solid In-Sb interfacial bonds together build a high-efficiency transport channel for the photogenerated carriers that display enhanced photoelectrochemical (PEC) water-splitting performance. This work provides efficient guidance for reducing interface defects via the in situ synthesis and construction of interfacial bonds.
Collapse
Affiliation(s)
- Junyu Wang
- State Key Laboratory of Power Transmission Equipment Technology, School of Chemistry and Chemical Engineering, Chongqing University, 174 Shazheng Street, Shapingba District, Chongqing 400044, P. R. China
| | - Jialing He
- State Key Laboratory of Power Transmission Equipment Technology, School of Chemistry and Chemical Engineering, Chongqing University, 174 Shazheng Street, Shapingba District, Chongqing 400044, P. R. China
| | - Jinling Ma
- State Key Laboratory of Power Transmission Equipment Technology, School of Chemistry and Chemical Engineering, Chongqing University, 174 Shazheng Street, Shapingba District, Chongqing 400044, P. R. China
| | - Xiaodong Wang
- State Key Laboratory of Power Transmission Equipment Technology, School of Chemistry and Chemical Engineering, Chongqing University, 174 Shazheng Street, Shapingba District, Chongqing 400044, P. R. China
| | - Chuanzhen Feng
- State Key Laboratory of Power Transmission Equipment Technology, School of Chemistry and Chemical Engineering, Chongqing University, 174 Shazheng Street, Shapingba District, Chongqing 400044, P. R. China
| | - Qingxia Zhou
- State Key Laboratory of Power Transmission Equipment Technology, School of Chemistry and Chemical Engineering, Chongqing University, 174 Shazheng Street, Shapingba District, Chongqing 400044, P. R. China
| | - Huijuan Zhang
- State Key Laboratory of Power Transmission Equipment Technology, School of Chemistry and Chemical Engineering, Chongqing University, 174 Shazheng Street, Shapingba District, Chongqing 400044, P. R. China
| | - Yu Wang
- State Key Laboratory of Power Transmission Equipment Technology, School of Chemistry and Chemical Engineering, Chongqing University, 174 Shazheng Street, Shapingba District, Chongqing 400044, P. R. China
| |
Collapse
|
36
|
Wang X, Jin Y, Zheng T, Li N, Han Y, Yu B, Wang K, Qi D, Wang T, Jiang J. Crystalline nanosheets of three-dimensional supramolecular frameworks with uniform thickness and high stability. Chem Sci 2024; 15:7586-7595. [PMID: 38784730 PMCID: PMC11110140 DOI: 10.1039/d4sc00656a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 04/14/2024] [Indexed: 05/25/2024] Open
Abstract
Fabricating three dimensional (3D) supramolecular frameworks (SMFs) into stable crystalline nanosheets remains a great challenge due to the homogeneous and weak inter-building block interactions along 3D directions. Herein, crystalline nanosheets of a 3D SMF with a uniform thickness of 4.8 ± 0.1 nm immobilized with Pt nanocrystals on the surface (Q[8]/Pt NSs) were fabricated via the solid-liquid reaction between cucurbit[8]uril/H2PtCl6 single crystals and hydrazine hydrate with the help of gas and heat yielded during the reaction process. A series of experiments and theoretical calculations reveal the ultrahigh stability of Q[8]/Pt NSs due to the high density hydrogen bonding interaction among neighboring Q[8] molecules. This in turn endows Q[8]/Pt NSs with excellent photocatalytic and continuous thermocatalytic CO oxidation performance, representing the thus-far reported best Pt nano-material-based catalysts.
Collapse
Affiliation(s)
- Xinxin Wang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing Beijing 100083 China
| | - Yucheng Jin
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing Beijing 100083 China
| | - Tianyu Zheng
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing Beijing 100083 China
| | - Ning Li
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing Beijing 100083 China
| | - Yuesheng Han
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing Beijing 100083 China
| | - Baoqiu Yu
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing Beijing 100083 China
| | - Kang Wang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing Beijing 100083 China
| | - Dongdong Qi
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing Beijing 100083 China
| | - Tianyu Wang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing Beijing 100083 China
| | - Jianzhuang Jiang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing Beijing 100083 China
| |
Collapse
|
37
|
Zhang H, Gao Y, Meng S, Wang Z, Wang P, Wang Z, Qiu C, Chen S, Weng B, Zheng Y. Metal Sulfide S-Scheme Homojunction for Photocatalytic Selective Phenylcarbinol Oxidation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400099. [PMID: 38417112 PMCID: PMC11077664 DOI: 10.1002/advs.202400099] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 01/31/2024] [Indexed: 03/01/2024]
Abstract
Metal sulfide-based homojunction photocatalysts are extensively explored with improved photocatalytic performance. However, the construction of metal sulfide-based S-scheme homojunction remains a challenge. Herein, the fabrication of 2D CdIn2S4 nanosheets coated 3D CdIn2S4 octahedra (referred to as 2D/3D n-CIS/o-CIS) S-scheme homojunction photocatalyst is reported by simply adjustment of polyvinyl pyrrolidone amount during the solvothermal synthesis. The formation of S-scheme homojunction within n-CIS/o-CIS is systematically investigated via a series of characterizations, which can generate an internal electric field to facilitate the separation and migration of photogenerated electron-hole pairs. The 2D/3D n-CIS/o-CIS composite exhibits significantly improved photocatalytic activity and stability in the selective oxidation of phenylcarbinol (PhCH2OH) to benzaldehyde (PhCHO) when compared to pure n-CIS and o-CIS samples under visible light irradiation. It is hoped that this work can contribute novel insights into the development of metal sulfides S-scheme homojunction photocatalysts for solar energy conversion.
Collapse
Affiliation(s)
- Huijun Zhang
- Key Laboratory of Green and Precise Synthetic Chemistry and ApplicationsMinistry of EducationCollege of Chemistry and Materials ScienceHuaibei Normal UniversityHuaibei235000P. R. China
| | - Yujie Gao
- cMACSDepartment of Microbial and Molecular SystemsKU LeuvenCelestijnenlaan 200FLeuven3001Belgium
| | - Sugang Meng
- Key Laboratory of Green and Precise Synthetic Chemistry and ApplicationsMinistry of EducationCollege of Chemistry and Materials ScienceHuaibei Normal UniversityHuaibei235000P. R. China
- High Field Magnetic LaboratoryHefei Institutes of Physical ScienceChinese Academy of SciencesHefei230031P. R. China
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical EngineeringShihezi UniversityShihezi832003P. R. China
| | - Zengrong Wang
- High Field Magnetic LaboratoryHefei Institutes of Physical ScienceChinese Academy of SciencesHefei230031P. R. China
| | - Peixian Wang
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical EngineeringShihezi UniversityShihezi832003P. R. China
| | - Zhongliao Wang
- Key Laboratory of Green and Precise Synthetic Chemistry and ApplicationsMinistry of EducationCollege of Chemistry and Materials ScienceHuaibei Normal UniversityHuaibei235000P. R. China
| | - Chengwei Qiu
- State Key Lab of Photocatalysis on Energy and EnvironmentCollege of ChemistryFuzhou UniversityFuzhou350116P. R. China
| | - Shifu Chen
- Key Laboratory of Green and Precise Synthetic Chemistry and ApplicationsMinistry of EducationCollege of Chemistry and Materials ScienceHuaibei Normal UniversityHuaibei235000P. R. China
| | - Bo Weng
- cMACSDepartment of Microbial and Molecular SystemsKU LeuvenCelestijnenlaan 200FLeuven3001Belgium
- CAS Key Laboratory of Urban Pollutant ConversionInstitute of Urban Environment, Chinese Academy of Sciences1799 Jimei RoadXiamen361021P. R. China
- University of Chinese Academy of Sciences19A Yuquan RoadBeijing100049P. R. China
| | - Yu‐Ming Zheng
- CAS Key Laboratory of Urban Pollutant ConversionInstitute of Urban Environment, Chinese Academy of Sciences1799 Jimei RoadXiamen361021P. R. China
- University of Chinese Academy of Sciences19A Yuquan RoadBeijing100049P. R. China
| |
Collapse
|
38
|
Wu S, Li X, Liu J, Wu H, Xu H, Bai W, Mao L, Shi X. Effective Photocatalytic Ethanol Reforming into High-Value-Added Multicarbon Compound Coupled with H 2 Production Over Pt-S 3 Sites at Pt SA-ZnIn 2S 4 Interface. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307386. [PMID: 38084447 DOI: 10.1002/smll.202307386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 11/28/2023] [Indexed: 12/22/2023]
Abstract
Selective photocatalytic production of high-value acetaldehyde concurrently with H2 from bioethanol is an appealing approach to meet the urgent environment and energy issues. However, the difficult ethanol dehydrogenation and insufficient active sites for proton reduction within the catalysts, and the long spatial distance between these two sites always restrict their catalytic activity. Here, guided by the strong metal-substrate interaction effect, an atomic-level catalyst design strategy to construct Pt-S3 single atom on ZnIn2S4 nanosheets (PtSA-ZIS) is demonstrated. As active center with optimized H adsorption energy to facilitate H2 evolution reaction, the unique Pt single atom also donates electrons to its neighboring S atoms with electron-enriched sites formed to activate the O─H bond in *CH3CHOH and promote the desorption of *CH3CHO. Thus, the synergy between Pt single atom and ZIS together will reduce the energy barrier for the ethanol oxidization to acetaldehyde, and also narrow the spatial distance for proton mass transfer. These features enable PtSA-ZIS photocatalyst to produce acetaldehyde with a selectivity of ≈100%, which will spontaneously transform into 1,1-diethoxyethane via acetalization to avoid volatilization. Meanwhile, a remarkable H2 evolution rate (184.4 µmol h-1) is achieved with a high apparent quantum efficiency of 10.50% at 400 nm.
Collapse
Affiliation(s)
- Shiting Wu
- New Energy Materials Research Center, College of Materials & Environmental Engineering, Hangzhou Dianzi University, Hangzhou, 310018, P. R. China
| | - Xiaohui Li
- Department of Applied Chemistry, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, P. R. China
| | - Jiaqi Liu
- New Energy Materials Research Center, College of Materials & Environmental Engineering, Hangzhou Dianzi University, Hangzhou, 310018, P. R. China
| | - Hanfeng Wu
- New Energy Materials Research Center, College of Materials & Environmental Engineering, Hangzhou Dianzi University, Hangzhou, 310018, P. R. China
| | - Hanshuai Xu
- Department of Applied Chemistry, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, P. R. China
| | - Wangfeng Bai
- New Energy Materials Research Center, College of Materials & Environmental Engineering, Hangzhou Dianzi University, Hangzhou, 310018, P. R. China
| | - Liang Mao
- School of Materials Science and Physics, China University of Mining and Technology, Xuzhou, 221116, P. R. China
| | - Xiaowei Shi
- Department of Applied Chemistry, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, P. R. China
| |
Collapse
|
39
|
Cheng X, Cheng K, Zhou X, Shi M, Jiang G, Du J. Transition metal single-atoms supported on hexagonal ZnIn 2S 4 monolayers for the hydrogen evolution reaction. Phys Chem Chem Phys 2024; 26:11631-11640. [PMID: 38546425 DOI: 10.1039/d4cp00107a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2024]
Abstract
Herein, we report a series of 5d transition metal (TM) single atoms supported on ZIS as promising catalysts for the hydrogen evolution reaction using first-principles calculations. The binding behaviors of TMs with the ZIS surface in single-atom catalyst formation are analysed using the adsorption energy (Eads), partial density of states (PDOS), charge density difference (CDD), and crystal orbital Hamilton population (COHP). The TM@ZIS (TM = Ta, W, Re, Os, Ir, and Pt) shows excellent hydrogen evolution performance with the Gibbs free energy (ΔGH*) values from -0.120 to 0.128 eV. The Tafel and Heyrovsky reaction mechanisms to drive H2 formation are also identified.
Collapse
Affiliation(s)
- Xiujuan Cheng
- College of Physics, Sichuan University, Chengdu 610064, China.
- Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065, China
| | - Kunyang Cheng
- Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065, China
| | - Xuying Zhou
- Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065, China
| | - Mingyang Shi
- College of Physics, Sichuan University, Chengdu 610064, China.
| | - Gang Jiang
- Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065, China
| | - Jiguang Du
- College of Physics, Sichuan University, Chengdu 610064, China.
| |
Collapse
|
40
|
Li Z, Lu X, Guo C, Ji S, Liu H, Guo C, Lu X, Wang C, Yan W, Liu B, Wu W, Horton JH, Xin S, Wang Y. Solvent-free selective hydrogenation of nitroaromatics to azoxy compounds over Co single atoms decorated on Nb 2O 5 nanomeshes. Nat Commun 2024; 15:3195. [PMID: 38609380 PMCID: PMC11015025 DOI: 10.1038/s41467-024-47402-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 04/01/2024] [Indexed: 04/14/2024] Open
Abstract
The solvent-free selective hydrogenation of nitroaromatics to azoxy compounds is highly important, yet challenging. Herein, we report an efficient strategy to construct individually dispersed Co atoms decorated on niobium pentaoxide nanomeshes with unique geometric and electronic properties. The use of this supported Co single atom catalysts in the selective hydrogenation of nitrobenzene to azoxybenzene results in high catalytic activity and selectivity, with 99% selectivity and 99% conversion within 0.5 h. Remarkably, it delivers an exceptionally high turnover frequency of 40377 h-1, which is amongst similar state-of-the-art catalysts. In addition, it demonstrates remarkable recyclability, reaction scalability, and wide substrate scope. Density functional theory calculations reveal that the catalytic activity and selectivity are significantly promoted by the unique electronic properties and strong electronic metal-support interaction in Co1/Nb2O5. The absence of precious metals, toxic solvents, and reagents makes this catalyst more appealing for synthesizing azoxy compounds from nitroaromatics. Our findings suggest the great potential of this strategy to access single atom catalysts with boosted activity and selectivity, thus offering blueprints for the design of nanomaterials for organocatalysis.
Collapse
Affiliation(s)
- Zhijun Li
- National Key Laboratory of Continental Shale Oil, College of Chemistry and Chemical Engineering, Northeast Petroleum University, Daqing, PR China.
| | - Xiaowen Lu
- National Key Laboratory of Continental Shale Oil, College of Chemistry and Chemical Engineering, Northeast Petroleum University, Daqing, PR China
| | - Cong Guo
- Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, PR China
| | - Siqi Ji
- National Key Laboratory of Continental Shale Oil, College of Chemistry and Chemical Engineering, Northeast Petroleum University, Daqing, PR China
| | - Hongxue Liu
- National Key Laboratory of Continental Shale Oil, College of Chemistry and Chemical Engineering, Northeast Petroleum University, Daqing, PR China
| | - Chunmin Guo
- National Key Laboratory of Continental Shale Oil, College of Chemistry and Chemical Engineering, Northeast Petroleum University, Daqing, PR China
| | - Xue Lu
- National Key Laboratory of Continental Shale Oil, College of Chemistry and Chemical Engineering, Northeast Petroleum University, Daqing, PR China
| | - Chao Wang
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, PR China
| | - Wensheng Yan
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, PR China
| | - Bingyu Liu
- National Center for International Research on Catalytic Technology, School of Chemistry and Material Sciences, Heilongjiang University, Harbin, PR China
| | - Wei Wu
- National Center for International Research on Catalytic Technology, School of Chemistry and Material Sciences, Heilongjiang University, Harbin, PR China
| | - J Hugh Horton
- National Key Laboratory of Continental Shale Oil, College of Chemistry and Chemical Engineering, Northeast Petroleum University, Daqing, PR China
- Department of Chemistry, Queen's University, Kingston, Canada
| | - Shixuan Xin
- National Key Laboratory of Continental Shale Oil, College of Chemistry and Chemical Engineering, Northeast Petroleum University, Daqing, PR China
| | - Yu Wang
- Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, PR China.
| |
Collapse
|
41
|
Bao T, Tang C, Li S, Qi Y, Zhang J, She P, Rao H, Qin JS. Hollow structured CdS@ZnIn 2S 4 Z-scheme heterojunction for bifunctional photocatalytic hydrogen evolution and selective benzylamine oxidation. J Colloid Interface Sci 2024; 659:788-798. [PMID: 38215615 DOI: 10.1016/j.jcis.2023.12.175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/22/2023] [Accepted: 12/29/2023] [Indexed: 01/14/2024]
Abstract
Photocatalytic hydrogen evolution (PHE) is frequently constrained by inadequate light utilization and the rapid combination rate of the photogenerated electron-hole pairs. Additionally, conventional PHE processes are often facilitated by the addition of sacrificial reagents to consume photo-induced holes, which makes this approach economically unfavorable. Herein, we designed a spatially separated bifunctional cocatalyst decorated Z-scheme heterojunction of hollow structured CdS (HCdS) @ZnIn2S4 (ZIS), which was prepared by a sacrificial hard template method followed by photo-deposition. Consequently, PdOx@HCdS@ZIS@Pt exhibited efficient PHE (86.38 mmol·g-1·h-1) and benzylamine (BA) oxidation coupling (164.75 mmol·g-1·h-1) with high selectivity (97.34 %). The unique hollow core-shelled morphology and bifunctional cocatalyst loading in this work hold great potential for the design and synthesis of bifunctional Z-scheme photocatalysts.
Collapse
Affiliation(s)
- Tengfei Bao
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, International Center of Future Science, Jilin University, 2699 Qianjin Street, Changchun 130012, PR China; Key Laboratory of Surface and Interface Chemistry of Jilin Province, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, PR China
| | - Chenxi Tang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, International Center of Future Science, Jilin University, 2699 Qianjin Street, Changchun 130012, PR China; Key Laboratory of Surface and Interface Chemistry of Jilin Province, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, PR China
| | - Shuming Li
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, International Center of Future Science, Jilin University, 2699 Qianjin Street, Changchun 130012, PR China; Key Laboratory of Surface and Interface Chemistry of Jilin Province, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, PR China
| | - Yuanyuan Qi
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, International Center of Future Science, Jilin University, 2699 Qianjin Street, Changchun 130012, PR China
| | - Jing Zhang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, International Center of Future Science, Jilin University, 2699 Qianjin Street, Changchun 130012, PR China
| | - Ping She
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, International Center of Future Science, Jilin University, 2699 Qianjin Street, Changchun 130012, PR China; Key Laboratory of Surface and Interface Chemistry of Jilin Province, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, PR China
| | - Heng Rao
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, International Center of Future Science, Jilin University, 2699 Qianjin Street, Changchun 130012, PR China.
| | - Jun-Sheng Qin
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, International Center of Future Science, Jilin University, 2699 Qianjin Street, Changchun 130012, PR China
| |
Collapse
|
42
|
Wang X, Liu B, Ma S, Zhang Y, Wang L, Zhu G, Huang W, Wang S. Induced dipole moments in amorphous ZnCdS catalysts facilitate photocatalytic H 2 evolution. Nat Commun 2024; 15:2600. [PMID: 38521830 PMCID: PMC10960824 DOI: 10.1038/s41467-024-47022-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 03/18/2024] [Indexed: 03/25/2024] Open
Abstract
Amorphous semiconductors without perfect crystalline lattice structures are usually considered to be unfavorable for photocatalysis due to the presence of enriched trap states and defects. Here we demonstrate that breaking long-range atomic order in an amorphous ZnCdS photocatalyst can induce dipole moments and generate strong electric fields within the particles which facilitates charge separation and transfer. Loading 1 wt.% of low-cost Co-MoSx cocatalysts to the ZnCdS material increases the H2 evolution rate to 70.13 mmol g-1 h-1, which is over 5 times higher than its crystalline counterpart and is stable over the long-term up to 160 h. A flexible 20 cm × 20 cm Co-MoSx/ZnCdS film is prepared by a facile blade-coating technique and can generate numerous observable H2 bubbles under natural sunlight, exhibiting potential for scale-up solar H2 production.
Collapse
Affiliation(s)
- Xin Wang
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, 710072, China
| | - Boyan Liu
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, 710072, China
| | - Siqing Ma
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, 710072, China
| | - Yingjuan Zhang
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, 710072, China
| | - Lianzhou Wang
- Nanomaterials Centre, Australian Institute for Bioengineering and Nanotechnology and School of Chemical Engineering, The University of Queensland, Brisbane, QLD, 4072, Australia.
| | - Gangqiang Zhu
- School of Physics and Information Technology, Shaanxi Normal University, Xi'an, 710062, China.
| | - Wei Huang
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, 710072, China.
| | - Songcan Wang
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, 710072, China.
| |
Collapse
|
43
|
Liu S, Qi W, Yang X, Guo X, Liu J, Zhu Y, Yang MQ, Yang M. Surface Reconstruction on Metal Nitride during Photo-oxidation. Angew Chem Int Ed Engl 2024; 63:e202315034. [PMID: 38352980 DOI: 10.1002/anie.202315034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Indexed: 02/29/2024]
Abstract
The efficient conversion and storage of solar energy for chemical fuel production presents a challenge in sustainable energy technologies. Metal nitrides (MNs) possess unique structures that make them multi-functional catalysts for water splitting. However, the thermodynamic instability of MNs often results in the formation of surface oxide layers and ambiguous reaction mechanisms. Herein, we present on the photo-induced reconstruction of a Mo-rich@Co-rich bi-layer on ternary cobalt-molybdenum nitride (Co3 Mo3 N) surfaces, resulting in improved effectiveness for solar water splitting. During a photo-oxidation process, the uniform initial surface oxide layer is reconstructed into an amorphous Co-rich oxide surface layer and a subsurface Mo-N layer. The Co-rich outer layer provides active sites for photocatalytic oxygen evolution reaction (POER), while the Mo-rich sublayer promotes charge transfer and enhances the oxidation resistance of Co3 Mo3 N. Additionally, the surface reconstruction yields a shortened Co-Mo bond length, weakening the adsorption of hydrogen and resulting in improved performance for both photocatalytic hydrogen evolution reaction (PHER) and POER. This work provides insight into the surface structure-to-activity relationships of MNs in solar energy conversion, and is expected to have significant implications for the design of metal nitride-based catalysts in sustainable energy technologies.
Collapse
Affiliation(s)
- Siqi Liu
- School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, Liaoning, P. R. China
| | - Weiliang Qi
- School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, Liaoning, P. R. China
| | - Xuhui Yang
- College of Environmental Science and Engineering, Fujian Key Laboratory of Pollution Control & Resource Reuse, Fujian Normal University, Fuzhou, 350007, Fujian, P. R. China
| | - Xuyun Guo
- Department of Applied Physics, The Hong Kong Polytechnic University, Hong Kong, 999077, P. R. China
| | - Jue Liu
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, 37831, United States
| | - Ye Zhu
- Department of Applied Physics, The Hong Kong Polytechnic University, Hong Kong, 999077, P. R. China
| | - Min-Quan Yang
- College of Environmental Science and Engineering, Fujian Key Laboratory of Pollution Control & Resource Reuse, Fujian Normal University, Fuzhou, 350007, Fujian, P. R. China
| | - Minghui Yang
- School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, Liaoning, P. R. China
| |
Collapse
|
44
|
Pan F, Long L, Li Z, Yan S, Wang L, Lv G, Zhang J, Chen J, Liang G, Wang D. Substitutional Cd Dopant as Photohole Transfer Mediator Boosting Photoelectrochemical Solar Energy Conversion of 2D Cd-ZnIn 2 S 4 Photoanode. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2304846. [PMID: 37910867 DOI: 10.1002/smll.202304846] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 09/24/2023] [Indexed: 11/03/2023]
Abstract
Fast recombination dynamics of photocarriers competing with sluggish surface photohole oxidation kinetics severely restricts the photoelectrochemical (PEC) conversion efficiency of photoanode. Here, a defect engineering strategy is developed to regulate photohole transfer and interfacial injection dynamics of 2D ZnIn2 S4 (ZIS). Via selectively introducing substitutional Cd dopant at Zn sites of the ZIS basal plane, energy band structure and surface electrochemical activity are successfully modulated in the Cd-doped ZIS (Cd-ZIS) nanosheet array photoanode. Comprehensive characterizations manifest that a shallow acceptor level induced by Cd doping and superior electrochemical activity make surface Cd dopants simultaneously act as capture centers and active sites to mediate photohole dynamics at the reaction interface. In depth photocarrier dynamics analysis demonstrates that highly efficient photohole capture of Cd dopants brings about effective space separation of photocarriers and acceleration of surface reaction kinetics. Therefore, the optimum 2D Cd-ZIS achieves excellent PEC solar energy conversion efficiency with a photocurrent density of 5.1 mA cm-2 at 1.23 VRHE and a record of applied bias photon-to-current efficiency (ABPE) of 3.0%. This work sheds light on a microstructure design strategy to effectively regulate photohole dynamics for the next-generation semiconducting PEC photoanodes.
Collapse
Affiliation(s)
- Feng Pan
- Micro-Electronics Research Institute and School of Electronics and Information, Hangzhou Dianzi University, 1158, 2nd Street, Baiyang Street, Hangzhou, 310018, China
| | - Liyuan Long
- Micro-Electronics Research Institute and School of Electronics and Information, Hangzhou Dianzi University, 1158, 2nd Street, Baiyang Street, Hangzhou, 310018, China
- Key Laboratory of Excited-State Materials of Zhejiang Province, Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
| | - Zhenyu Li
- Micro-Electronics Research Institute and School of Electronics and Information, Hangzhou Dianzi University, 1158, 2nd Street, Baiyang Street, Hangzhou, 310018, China
| | - Shiming Yan
- Micro-Electronics Research Institute and School of Electronics and Information, Hangzhou Dianzi University, 1158, 2nd Street, Baiyang Street, Hangzhou, 310018, China
| | - Lei Wang
- Hubei Key Laboratory of Low Dimensional Optoelectronic Materials and Devices, Hubei University of Arts and Science, 441053, 296 Longzhong Road, Xiangyang, 441053, China
| | - Gangyang Lv
- Micro-Electronics Research Institute and School of Electronics and Information, Hangzhou Dianzi University, 1158, 2nd Street, Baiyang Street, Hangzhou, 310018, China
| | - Junjun Zhang
- Micro-Electronics Research Institute and School of Electronics and Information, Hangzhou Dianzi University, 1158, 2nd Street, Baiyang Street, Hangzhou, 310018, China
| | - Jiahui Chen
- Micro-Electronics Research Institute and School of Electronics and Information, Hangzhou Dianzi University, 1158, 2nd Street, Baiyang Street, Hangzhou, 310018, China
| | - Guijie Liang
- Hubei Key Laboratory of Low Dimensional Optoelectronic Materials and Devices, Hubei University of Arts and Science, 441053, 296 Longzhong Road, Xiangyang, 441053, China
| | - Dunhui Wang
- Micro-Electronics Research Institute and School of Electronics and Information, Hangzhou Dianzi University, 1158, 2nd Street, Baiyang Street, Hangzhou, 310018, China
| |
Collapse
|
45
|
Yue W, Xu Z, Tayyab M, Wang L, Ye Z, Zhang J. Schottky junction enhanced H 2 evolution for graphitic carbon nitride-NiS composite photocatalysts. J Colloid Interface Sci 2024; 657:133-141. [PMID: 38035416 DOI: 10.1016/j.jcis.2023.11.092] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 11/10/2023] [Accepted: 11/15/2023] [Indexed: 12/02/2023]
Abstract
As one of the most promising photocatalysts for H2 evolution, graphitic carbon nitride (CN) has many appealing attributes. However, the activity of pristine CN remains unsatisfactory due to severe charge carrier recombination and lack of active sites. In this study, we report a two-step approach for the synthesis of CN nanotubes (TCN) loaded with NiS nanoparticles. The resulting composite photocatalysts gave a H2 evolution rate of 752.9 μmol g-1 h-1, which is 42.3 times higher compared to the pristine CN photocatalyst. Experimental and simulation results showed that the Schottky junction which was formed between TCN and NiS was key to achieving high activity. This is because the formation of Schottky junction prevented the backflow of electrons from NiS to TCN, which improved charge separation efficiency. More importantly, it also led to the accumulation of electrons on NiS, which significantly weakened the SH bond, such that the intermediate hydrogen species desorbed more easily from NiS surface to promote H2 evolution activity.
Collapse
Affiliation(s)
- Wenhui Yue
- Key Laboratory for Advanced Materials, Shanghai Engineering Research Center for Multi-media Environmental Catalysis and Resource Utilization, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, PR China
| | - Zehong Xu
- Key Laboratory for Advanced Materials, Shanghai Engineering Research Center for Multi-media Environmental Catalysis and Resource Utilization, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, PR China
| | - Muhammad Tayyab
- Key Laboratory for Advanced Materials, Shanghai Engineering Research Center for Multi-media Environmental Catalysis and Resource Utilization, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, PR China
| | - Lingzhi Wang
- Key Laboratory for Advanced Materials, Shanghai Engineering Research Center for Multi-media Environmental Catalysis and Resource Utilization, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, PR China
| | - Ziwei Ye
- Key Laboratory for Advanced Materials, Shanghai Engineering Research Center for Multi-media Environmental Catalysis and Resource Utilization, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, PR China.
| | - Jinlong Zhang
- Key Laboratory for Advanced Materials, Shanghai Engineering Research Center for Multi-media Environmental Catalysis and Resource Utilization, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, PR China.
| |
Collapse
|
46
|
Wang W, Zhang W, Deng C, Sheng H, Zhao J. Accelerated Photocatalytic Carbon Dioxide Reduction and Water Oxidation under Spatial Synergy. Angew Chem Int Ed Engl 2024; 63:e202317969. [PMID: 38155103 DOI: 10.1002/anie.202317969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 12/27/2023] [Accepted: 12/28/2023] [Indexed: 12/30/2023]
Abstract
Photocatalytic conversion of CO2 and H2 O into fuels and oxygen is a highly promising solution for carbon-neutral recycling. Traditionally, researchers have studied CO2 reduction and H2 O oxidation separately, overlooking potential synergistic interplay between these processes. This study introduces an innovative approach, spatial synergy, which encourages synergistic progress by bringing the two half-reactions into atomic proximity. To facilitate this, we developed a defective ZnIn2 S4 -supported single-atom Cu catalyst (Cu-SA/D-ZIS), which demonstrates remarkable catalytic performance with CO2 reduction rates of 112.5 μmol g-1 h-1 and water oxidation rates of 52.3 μmol g-1 h-1 , exhibiting a six-fold enhancement over D-ZIS. The structural characterization results indicated that the trapping effect of vacancy associates on single-atom copper led to the formation of an unsaturated coordination structure, Cu-S3 , consequently giving rise to the CuZn 'VS ⋅⋅VZn " defect complexes. FT-IR studies coupled with theoretical calculations reveal the spatially synergistic CO2 reduction and water oxidation on CuZn 'VS ⋅⋅VZn ", where the breakage of O-H in water oxidation is synchronized with the formation of *COOH, significantly lowering the energy barrier. Notably, this study introduces and, for the first time, substantiates the spatial synergy effect in CO2 reduction and H2 O oxidation through a combination of experimental and theoretical analyses, providing a fresh insight in optimizing photocatalytic system.
Collapse
Affiliation(s)
- Wei Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, P. R. China
- University of Chinese Academy of Sciences, 100049, Beijing, P. R. China
| | - Wanyi Zhang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, P. R. China
- University of Chinese Academy of Sciences, 100049, Beijing, P. R. China
| | - Chaoyuan Deng
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, P. R. China
- University of Chinese Academy of Sciences, 100049, Beijing, P. R. China
| | - Hua Sheng
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, P. R. China
- University of Chinese Academy of Sciences, 100049, Beijing, P. R. China
| | - Jincai Zhao
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, P. R. China
- University of Chinese Academy of Sciences, 100049, Beijing, P. R. China
| |
Collapse
|
47
|
Du C, Fang K, Zhang H, Xu J, Sun MA, Yang S. Improved solar-driven water purification using an eco-friendly and cost-effective aerogel-based interfacial evaporator with exceptional photocatalytic capabilities. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 351:119916. [PMID: 38150926 DOI: 10.1016/j.jenvman.2023.119916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/30/2023] [Accepted: 12/11/2023] [Indexed: 12/29/2023]
Abstract
As a promising solution to address the global challenge of freshwater scarcity, solar-powered interfacial steam generation has undergone notable advancements. This study introduces a novel solar-driven interfacial evaporation membrane (ZnIn2S4@SiO2/ACSA, ZSAS) comprising a ZnIn2S4@SiO2 composite and a black sodium alginate aerogel infused with activated carbon. The ZSAS membrane demonstrates exceptional light absorption and thermal insulation, leading to elevated surface temperatures and reduced heat dissipation into the bulk water. Furthermore, the incorporation of AC reinforces the mechanical properties of the ZSAS membrane and enhances the water purification performance. These collective features result in an impressive evaporation rate of 1.485 kg m-2 h-1 and a high photothermal conversion efficiency of 91.2% under 1 sun irradiation for the optimal ZSAS membrane. Moreover, the optimal ZSAS membrane can effectively remove salts, heavy metal ions, and organic pollutants, benefitting from its superior evaporation separation effect and the photocatalytic properties of the ZnIn2S4@SiO2 composite.
Collapse
Affiliation(s)
- Cui Du
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, PR China
| | - Kun Fang
- School of Chemistry and Chemical Engineering, Yangzhou University, 180 Siwangting Road, Yangzhou, Jiangsu, 225002, PR China
| | - Huanying Zhang
- School of Chemistry and Chemical Engineering, Yangzhou University, 180 Siwangting Road, Yangzhou, Jiangsu, 225002, PR China
| | - Jing Xu
- School of Chemistry and Chemical Engineering, Yangzhou University, 180 Siwangting Road, Yangzhou, Jiangsu, 225002, PR China
| | - Ming-An Sun
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, PR China.
| | - Shengyang Yang
- School of Chemistry and Chemical Engineering, Yangzhou University, 180 Siwangting Road, Yangzhou, Jiangsu, 225002, PR China.
| |
Collapse
|
48
|
Wang Z, Peng L, Zhu P, Wang W, Yang C, Hu HY, Wu Q. Electron Redistribution in Iridium-Iron Dual-Metal-Atom Active Sites Enables Synergistic Enhancement for H 2O 2 Decomposition. ACS NANO 2024; 18:2885-2897. [PMID: 38236146 DOI: 10.1021/acsnano.3c07223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Developing efficient heterogeneous H2O2 decomposition catalysts under neutral conditions is of great importance in many fields such as clinical therapy, sewage treatment, and semiconductor manufacturing but still suffers from low intrinsic activity and ambiguous mechanism understanding. Herein, we constructed activated carbon supported with an Ir-Fe dual-metal-atom active sites catalyst (IrFe-AC) by using a facile method based on a pulsed laser. The electron redistribution in Ir-Fe dual-metal-atom active sites leads to the formation of double reductive metal active sites, which can strengthen the metal-H2O2 interaction and boost the H2O2 decomposition performance of Ir-Fe dual-metal-atom active sites. Ir-Fe dual-metal-atom active sites show a high second-order reaction rate constant of 3.53 × 106 M-1·min-1, which is ∼106 times higher than that of Fe3O4. IrFe-AC is effective in removing excess intracellular reactive oxygen species, protecting DNA, and reducing inflammation under oxidative stress, indicating its therapeutic potential against oxidative stress-related diseases. This study could advance the mechanism understanding of H2O2 decomposition by heterogeneous catalysts and provide guidance for the rational design of high-performance catalysts for H2O2 decomposition.
Collapse
Affiliation(s)
- Zhiwei Wang
- Shenzhen Key Laboratory of Ecological Remediation and Carbon Sequestration, Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Institute of Environment and Ecology, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, People's Republic of China
| | - Lu Peng
- Shenzhen Key Laboratory of Ecological Remediation and Carbon Sequestration, Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Institute of Environment and Ecology, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, People's Republic of China
| | - Ping Zhu
- Shenzhen Key Laboratory of Ecological Remediation and Carbon Sequestration, Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Institute of Environment and Ecology, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, People's Republic of China
| | - Wenlong Wang
- Shenzhen Key Laboratory of Ecological Remediation and Carbon Sequestration, Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Institute of Environment and Ecology, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, People's Republic of China
| | - Cheng Yang
- Institute of Materials Research, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, People's Republic of China
| | - Hong-Ying Hu
- Environmental Protection Key Laboratory of Microorganism Application and Risk Control, Environmental Simulation and Pollution Control State Key Joint Laboratory, Beijing Laboratory for Environmental Frontier Technologies, School of Environment, Tsinghua University, Beijing 100084, People's Republic of China
| | - Qianyuan Wu
- Shenzhen Key Laboratory of Ecological Remediation and Carbon Sequestration, Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Institute of Environment and Ecology, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, People's Republic of China
| |
Collapse
|
49
|
Guo C, Huang Z, Long X, Sun Y, Ma P, Zheng Q, Lu H, Yi X, Chen Z. Interfacial electric field construction of hollow PdS QDs/Zn 1-xCd xS solid solution with enhanced photocatalytic hydrogen evolution. NANOSCALE 2024; 16:1147-1155. [PMID: 38186376 DOI: 10.1039/d3nr05518c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
The regulation of hollow morphology, band structure modulation of solid solution, and introduction of cocatalysts greatly promote the separation of electron-hole pairs in photocatalytic processes, which is of great significance for the process of photocatalytic hydrogen evolution (PHE). In this study, we constructed Zn1-xCdxS hollow solid solution photocatalysts using template and ion exchange methods, and successfully loaded PdS quantum dots (PdS QDs) onto the solid solution through in situ sulfidation. Significantly, the 0.5 wt% PdS QDs/Zn0.6Cd0.4S composite material achieved a H2 production rate of 27.63 mmol g-1 h-1 in the PHE process. The hollow structure of the composite material enhances processes such as light reflection and scattering, the band structure modulation of the solid solution enables the electron-hole pairs to reach an optimal exciton recombination balance, and the modification of PdS QDs provides abundant sites for oxidation, thereby promoting the proton reduction and hydrogen evolution rate. This work provides valuable guidance for the rational design of efficient composite PHE catalysts with strong internal electric field.
Collapse
Affiliation(s)
- Cheng Guo
- College of Materials, Key Laboratory of High Performance Ceramics Fibers (Xiamen University), Ministry of Education, Xiamen University, Xiamen 361005, China.
| | - Zongyi Huang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Xinrui Long
- College of Materials, Key Laboratory of High Performance Ceramics Fibers (Xiamen University), Ministry of Education, Xiamen University, Xiamen 361005, China.
| | - Yuchen Sun
- College of Materials, Key Laboratory of High Performance Ceramics Fibers (Xiamen University), Ministry of Education, Xiamen University, Xiamen 361005, China.
| | - Pengfei Ma
- Technology Center, China Tobacco Fujian Industrial Co., Ltd, Xiamen 361021, China
| | - Quanxing Zheng
- Technology Center, China Tobacco Fujian Industrial Co., Ltd, Xiamen 361021, China
| | - Hongliang Lu
- Technology Center, China Tobacco Fujian Industrial Co., Ltd, Xiamen 361021, China
| | - Xiaodong Yi
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Zhou Chen
- College of Materials, Key Laboratory of High Performance Ceramics Fibers (Xiamen University), Ministry of Education, Xiamen University, Xiamen 361005, China.
| |
Collapse
|
50
|
Chang JW, Su KH, Pao CW, Tsai JJ, Su CJ, Chen JL, Lyu LM, Kuo CH, Su AC, Yang HC, Lai YH, Jeng US. Arrayed Pt Single Atoms via Phosphotungstic Acids Intercalated in Silicate Nanochannels for Efficient Hydrogen Evolution Reactions. ACS NANO 2024; 18:1611-1620. [PMID: 38166379 PMCID: PMC10795682 DOI: 10.1021/acsnano.3c09656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 12/07/2023] [Accepted: 12/12/2023] [Indexed: 01/04/2024]
Abstract
Single-atom catalysts, known for their high activity, have garnered significant interest. Currently, single-atom catalysts were prepared mainly on 2D substrates with random distribution. Here, we report a strategy for preparing arrayed single Pt (Pt1) atoms, which are templated through coordination with phosphotungstic acids (PTA) intercalated inside hexagonally packed silicate nanochannels for a high single Pt-atom loading of ca. 3.0 wt %. X-ray absorption spectroscopy, high-angle annular dark-field scanning transmission electron microscopy, and energy-dispersive X-ray spectroscopy, in conjunction with the density-functional theory calculation, collectively indicate that the Pt single atoms are stabilized via a four-oxygen coordination on the PTA within the nanochannels' inner walls. The critical reduction in the Pt-adsorption energy to nearly the cohesive energy of Pt clustering is attributed to the interaction between PTA and the silicate substrate. Consequently, the transition from single-atom dispersion to clustering of Pt atoms can be controlled by adjusting the number density of PTA intercalated within the silicate nanochannels, specifically when the number ratio of Pt atoms to PTA changes from 3.7 to 18. The 3D organized Pt1-PTA pairs, facilitated by the arrayed silicate nanochannels, demonstrate high and stable efficiency with a hydrogen production rate of ca. 300 mmol/h/gPt─approximately twice that of the best-reported Pt efficiency in polyoxometalate-based photocatalytic systems.
Collapse
Affiliation(s)
- Je-Wei Chang
- Department
of Chemical Engineering, National Tsing
Hua University, Hsinchu 300044, Taiwan
- National
Synchrotron Radiation Research Center, Hsinchu Science Park, Hsinchu 300092, Taiwan
| | - Kuan-Hsuan Su
- Department
of Chemistry, Fu Jen Catholic University, New Taipei City 241037, Taiwan
| | - Chih-Wen Pao
- National
Synchrotron Radiation Research Center, Hsinchu Science Park, Hsinchu 300092, Taiwan
| | - Jin-Jia Tsai
- Department
of Chemistry, Tunghai University, Taichung 407302, Taiwan
| | - Chun-Jen Su
- National
Synchrotron Radiation Research Center, Hsinchu Science Park, Hsinchu 300092, Taiwan
| | - Jeng-Lung Chen
- National
Synchrotron Radiation Research Center, Hsinchu Science Park, Hsinchu 300092, Taiwan
| | - Lian-Ming Lyu
- Department
of Applied Chemistry, National Yang Ming
Chiao Tung University, Hsinchu 300093, Taiwan
| | - Chun-Hong Kuo
- Department
of Applied Chemistry, National Yang Ming
Chiao Tung University, Hsinchu 300093, Taiwan
| | - An-Chung Su
- Department
of Chemical Engineering, National Tsing
Hua University, Hsinchu 300044, Taiwan
| | - Hsiao-Ching Yang
- Department
of Chemistry, Fu Jen Catholic University, New Taipei City 241037, Taiwan
| | - Ying-Huang Lai
- Department
of Chemistry, Tunghai University, Taichung 407302, Taiwan
| | - U-Ser Jeng
- Department
of Chemical Engineering, National Tsing
Hua University, Hsinchu 300044, Taiwan
- National
Synchrotron Radiation Research Center, Hsinchu Science Park, Hsinchu 300092, Taiwan
- College
of
Semiconductor Research, National Tsing Hua
University, Hsinchu 300044, Taiwan
| |
Collapse
|