1
|
Darkwah-Owusu V, Yusof MAM, Sokama-Neuyam YA, Turkson JN, Fjelde I. A comprehensive review of remediation strategies for mitigating salt precipitation and enhancing CO 2 injectivity during CO 2 injection into saline aquifers. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 950:175232. [PMID: 39111444 DOI: 10.1016/j.scitotenv.2024.175232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/26/2024] [Accepted: 07/31/2024] [Indexed: 08/11/2024]
Abstract
Geological CO2 sequestration is a proven method for mitigating climate change by reducing atmospheric CO2 levels. However, CO2 injection often induces salt precipitation, leading to decreased formation permeability, which in turn limits CO2 injectivity and storage capacity. Conventional approaches, such as freshwater and low-salinity water injection, have been employed to mitigate salt precipitation. Despite their widespread use, these methods provide only temporary improvement and can be ineffective in some scenarios, resulting in long-term issues such as salt recrystallization and clay swelling. Given the complexity and significance of this issue, a comprehensive review of salt precipitation mechanisms and remediation techniques is essential. This paper critically examines the processes of salt precipitation during CO2 injection in saline aquifers and evaluates various remediation techniques aimed at improving CO2 injectivity. The paper reviews the influence of CO2 flow dynamics, geochemical reactions, and fluid properties on salt precipitation and pore throat accumulation, assessing the efficacy and limitations of existing mitigation methods. Additionally, the paper explores alternative techniques with potential for long-term CO2 sequestration, analyzing their advantages and drawbacks. Based on insights from the reviewed sources, the paper recommends exploring alternative treatment measures and the integration of hybrid solutions to enhance CO2 injectivity. The findings presented serve as a valuable reference for advancing research and practice in this critical area, offering a deeper understanding of the challenges and potential solutions for effective CO2 sequestration in saline aquifers.
Collapse
Affiliation(s)
- Victor Darkwah-Owusu
- Petroleum Engineering Department, Universiti Teknologi PETRONAS, 32610 Bandar Seri Iskandar, Malaysia; Centre of Reservoir Dynamics (CORED), Institute of Hydrocarbon Recovery, Universiti Teknologi PETRONAS, 32610 Bandar Seri Iskandar, Perak Darul Ridzuan, Malaysia.
| | - Muhammad Aslam Md Yusof
- Petroleum Engineering Department, Universiti Teknologi PETRONAS, 32610 Bandar Seri Iskandar, Malaysia.
| | - Yen A Sokama-Neuyam
- Department of Petroleum Engineering, Kwame Nkrumah University of Science and Technology, PMB, Kumasi, Ghana
| | - Joshua N Turkson
- Petroleum Engineering Department, Universiti Teknologi PETRONAS, 32610 Bandar Seri Iskandar, Malaysia; Centre of Reservoir Dynamics (CORED), Institute of Hydrocarbon Recovery, Universiti Teknologi PETRONAS, 32610 Bandar Seri Iskandar, Perak Darul Ridzuan, Malaysia
| | - Ingebret Fjelde
- Department of Energy & Technology, NORCE Norwegian Research Centre AS, 4021 Stavanger, Norway
| |
Collapse
|
2
|
Abukhadra MR, Fadl Allah A, Shaban M, Alenazi NA, Alqhtani HA, Bin-Jumah M, Allam AA, Bellucci S. Experimental and advanced equilibrium studies on the enhanced adsorption of phosphate, cadmium, and safranin dye pollutants using methoxy exfoliated glauconite. Front Chem 2024; 12:1471994. [PMID: 39569015 PMCID: PMC11576185 DOI: 10.3389/fchem.2024.1471994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Accepted: 10/17/2024] [Indexed: 11/22/2024] Open
Abstract
Natural glauconite, as a mixed-layered clay mineral, was subjected to exfoliation processes, producing silicate monolayers or individual sheets that were further modified with methanol into methoxy exfoliated glauconite (Mth/EXG). The structure was assessed as an enhanced adsorbent for three types of common water contaminants, including phosphate (PO4 3-), safranin-O dye (SFR), and cadmium metal ions (Cd2+). The Mth/EXG structure achieved promising adsorption capacities at the saturation points equal to 269.9 mg/g for PO4 3-, 312 mg/g for SFR, and 234.5 mg/g for Cd2+ which are significantly better than the reported values for several studied adsorbents of higher costs and complex production procedures. The adsorption processes and the predicted regulated mechanisms in terms of the adsorbate/adsorbent interface were illustrated based on the steric and energetic findings that correspond to the applied monolayer equilibrium model of one energy site. The structure displays active site densities of 82.5 mg/g (PO4 3-), 136.3 mg/g (SFR), and 83.4 mg/g (Cd2+), which illustrate the high uptake performance of SFR. Also, the steric parameters reflected the suitability of each existing site to be filled with 4 ions of PO4 3-, SFR, and Cd2+. The adsorption energy (less than 40 kJ/mol) in conjunction with free adsorption energy from D-R model (8-16 kJ/mol) and steric parameters validate the dominant impact of the multi-ionic physical mechanisms (hydrogen bonding and van der Waals forces), in addition to the assistant impact of some weak chemical processes that might be assigned to the formed inner-sphere complex. Also, these reactions all occurred spontaneously with exothermic behaviors according to the thermodynamic functions. Additionally, the structure exhibit significant affinity for the studied pollutants even in the existing of completive chemical including anions, cations and organic molecules.
Collapse
Affiliation(s)
- Mostafa R Abukhadra
- Materials Technologies and their Applications Lab, Geology Department, Faculty of Science, Beni-Suef University, Beni Suef, Egypt
- Geology Department, Faculty of Science, Beni-Suef University, Beni Suef, Egypt
| | - Aya Fadl Allah
- Materials Technologies and their Applications Lab, Geology Department, Faculty of Science, Beni-Suef University, Beni Suef, Egypt
- Department of Chemistry, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| | - Mohamed Shaban
- Department of Physics, Faculty of Science, Islamic University of Madinah, Madinah, Saudi Arabia
| | - Noof A Alenazi
- Department of Chemistry, College of Science and Humanities in Al-Kharj, Prince Sattam bin Abdulaziz University, Al-kharj, Saudi Arabia
| | - Haifa A Alqhtani
- Department of Biology, college of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - May Bin-Jumah
- Department of Biology, college of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Ahmed A Allam
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University, Riyadh, Saudi Arabia
- Department of Zoology, Faculty of Science, Beni-suef University, Beni-suef, Egypt
| | | |
Collapse
|
3
|
Abukhadra MR, Allah AF, Shaban M, Alenazi NA, Alqhtani HA, Bin-Jumah M, Allam AA. Enhanced remediation of U(vi) ions from water resources using advanced forms of morphologically modified glauconite (nano-sheets and nano-rods): experimental and theoretical investigations. RSC Adv 2024; 14:28017-28034. [PMID: 39228761 PMCID: PMC11369765 DOI: 10.1039/d4ra05514d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 08/23/2024] [Indexed: 09/05/2024] Open
Abstract
Two forms of morphologically transformed glauconite (GL) involved exfoliated nanosheets (EXG) and nanorods (GRs), which were synthesized by facile exfoliating and scrolling modification under sonication. The two advanced forms (EXG and GRs) were applied as enhanced adsorbents for U(vi) ions and compared with using raw glauconite. The developed GRs structure displays higher saturation retention properties (319.5 mg g-1) in comparison with both EXG (264.8 mg g-1) and GL (237.9 mg g-1). This enhancement is assigned to the noticeable increment in the surface area (32.6 m2 g-1 (GL), 86.4 m2 g-1 (EXG), and 123.7 m2 g-1 (GRs)) in addition to the surface reactivity and exposure of effective siloxane groups. This was supported by the steric investigation based on the isotherm basics of the monolayer model of one energy site. The steric functions declared a strong increase in the density of the existing effective uptake receptors throughout the modification stages (GRs (112.1 mg g-1) > EXG (87.7 mg g-1) > 72.5 mg g-1 (GL)). Also, each active site can be filled with 4 U(vi) ions, donating the parallel orientation of these ions and the operation of multi-ionic mechanisms. The energetic functions, either the uptake energy (<13 kJ mol-1) or Gaussian energy (<5 kJ mol-1), validate the retention of U(vi) by physical reactions. These reactions displayed spontaneous properties and exothermic behaviors based on the investigated thermodynamic functions, including entropy, enthalpy, and internal energy. The structures also showed significant recyclability, indicating potential application on a realistic and commercial scale.
Collapse
Affiliation(s)
- Mostafa R Abukhadra
- Materials Technologies and Their Applications Lab, Geology Department, Faculty of Science, Beni-Suef University Beni Suef City Egypt
- Geology Department, Faculty of Science, Beni-Suef University Egypt
| | - Aya Fadl Allah
- Materials Technologies and Their Applications Lab, Geology Department, Faculty of Science, Beni-Suef University Beni Suef City Egypt
- Department of Chemistry, Faculty of Science, Beni-Suef University 62514 Beni-Suef City Egypt
| | - Mohamed Shaban
- Department of Physics, Faculty of Science, Islamic University of Madinah Madinah 42351 Saudi Arabia
| | - Noof A Alenazi
- Department of Chemistry, College of Science and Humanities in Al-Kharj, Prince Sattam bin Abdulaziz University Al-kharj 11942 Saudi Arabia
| | - Haifa A Alqhtani
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University P. O. BOX 84428 Riyadh 11671 Saudi Arabia
| | - May Bin-Jumah
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University P. O. BOX 84428 Riyadh 11671 Saudi Arabia
| | - Ahmed A Allam
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University Riyadh 11623 Saudi Arabia
- Department of Zoology, Faculty of Science, Beni-Suef University Beni-suef 65211 Egypt
| |
Collapse
|
4
|
Allah AF, Abdel-Khalek AA, El-Sherbeeny AM, Al Zoubi W, Abukhadra MR. Synthesis and Characterization of Iron-Rich Glauconite Nanorods by a Facile Sonochemical Method for Instantaneous and Eco-friendly Elimination of Malachite Green Dye from Aquatic Environments. ACS OMEGA 2023; 8:49347-49361. [PMID: 38162761 PMCID: PMC10753568 DOI: 10.1021/acsomega.3c07870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/20/2023] [Accepted: 11/30/2023] [Indexed: 01/03/2024]
Abstract
Novel glauconite nanorods (GNRs) were synthesized by the sonication-induced chemical expansion and scrolling process of natural glauconite. The synthetic nanostructure was characterized by different analytical techniques as a superior adsorbent for the malachite green dye (MG). The synthetic GNRs were detected as porous nanorods with an average length of 150 nm to 5 μm, an average diameter of 25 to 200 nm, and a specific surface area of 123.7 m2/g. As an adsorbent for MG, the synthetic GNRs showed superior uptake capacity up to 1265.6 mg/g at the saturation stage, which is higher than most of the recently developed highly adsorbent dyes. The adsorption behavior and mechanistic properties were depicted by using modern and traditional equilibrium modeling. The kinetic assumption of the pseudo-first-order model (R2 > 0.94) and the classic isotherm of the Langmuir equilibrium model (R2 > 0.97) were used to describe the adsorption reactions. The steric investigation demonstrates that each active site on the surface of GNRs can adsorb up to three MG molecules (n = 2.19-2.48) in vertical orientation involving multimolecular mechanisms. Also, the determined active site density (577.89 mg/g) demonstrates the enrichment of the surface of GNRs with numerous adsorption receptors with strong affinity for the MG dye. The energetic study, including Gaussian energy (6.27-7.97 kJ/mol) and adsorption energy (9.45-10.43 kJ/mol), revealed that GNRs had physically adsorbed the dye, which might involve electrostatic attraction, hydrogen bonding, van der Waals forces, and dipole forces. The internal energy, enthalpy, and entropy determined the exothermic and spontaneous uptake of MG.
Collapse
Affiliation(s)
- Aya Fadl Allah
- Materials
Technologies and their Applications Lab, Geology Department, Faculty
of Science, Beni-Suef University, Beni-Suef City 62511, Egypt
- Department
of Chemistry, Faculty of Science, Beni-Suef
University, Beni-Suef
City 62514, Egypt
| | - Ahmed A. Abdel-Khalek
- Department
of Chemistry, Faculty of Science, Beni-Suef
University, Beni-Suef
City 62514, Egypt
| | - Ahmed M. El-Sherbeeny
- Industrial
Engineering Department, College of Engineering, King Saud University, P.O. Box 800, Riyadh 11421, Saudi Arabia
| | - Wail Al Zoubi
- Materials
Electrochemistry Laboratory, School of Materials Science and Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Mostafa R. Abukhadra
- Materials
Technologies and their Applications Lab, Geology Department, Faculty
of Science, Beni-Suef University, Beni-Suef City 62511, Egypt
- Geology
Department, Faculty of Science, Beni-Suef
University, Beni-Suef
City 62511, Egypt
| |
Collapse
|
5
|
Krause AJ, Sluijs A, van der Ploeg R, Lenton TM, Pogge von Strandmann PAE. Enhanced clay formation key in sustaining the Middle Eocene Climatic Optimum. NATURE GEOSCIENCE 2023; 16:730-738. [PMID: 37564379 PMCID: PMC10409649 DOI: 10.1038/s41561-023-01234-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 06/26/2023] [Indexed: 08/12/2023]
Abstract
The Middle Eocene Climatic Optimum (around 40 million years ago) was a roughly 400,000-year-long global warming phase associated with an increase in atmospheric CO2 concentrations and deep-ocean acidification that interrupted the Eocene's long-term cooling trend. The unusually long duration, compared with early Eocene global warming phases, is puzzling as temperature-dependent silicate weathering should have provided a negative feedback, drawing down CO2 over this timescale. Here we investigate silicate weathering during this climate warming event by measuring lithium isotope ratios (reported as δ7Li), which are a tracer for silicate weathering processes, from a suite of open-ocean carbonate-rich sediments. We find a positive δ7Li excursion-the only one identified for a warming event so far -of ~3‰. Box model simulations support this signal to reflect a global shift from congruent weathering, with secondary mineral dissolution, to incongruent weathering, with secondary mineral formation. We surmise that, before the climatic optimum, there was considerable soil shielding of the continents. An increase in continental volcanism initiated the warming event, but it was sustained by an increase in clay formation, which sequestered carbonate-forming cations, short-circuiting the carbonate-silicate cycle. Clay mineral dynamics may play an important role in the carbon cycle for climatic events occurring over intermediate (i.e., 100,000 year) timeframes.
Collapse
Affiliation(s)
| | - Appy Sluijs
- Department of Earth Sciences, Faculty of Geosciences, Utrecht University, Utrecht, The Netherlands
| | - Robin van der Ploeg
- Department of Earth Sciences, Faculty of Geosciences, Utrecht University, Utrecht, The Netherlands
- Shell Global Solutions International B.V., Amsterdam, The Netherlands
| | | | | |
Collapse
|
6
|
Revisiting Glauconite Geochronology: Lessons Learned from In Situ Radiometric Dating of a Glauconite-Rich Cretaceous Shelfal Sequence. MINERALS 2022. [DOI: 10.3390/min12070818] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The scarcity of well-preserved and directly dateable sedimentary sequences is a major impediment to inferring the Earth’s paleo-environmental evolution. The authigenic mineral glauconite can potentially provide absolute stratigraphic ages for sedimentary sequences and constraints on paleo-depositional conditions. This requires improved approaches for measuring and interpreting glauconite formation ages. Here, glauconite from a Cretaceous shelfal sequence (Langenstein, northern Germany) was characterized using petrographical, geochemical (EMP), andmineralogical (XRD) screening methods before in situ Rb-Sr dating via LA-ICP-MS/MS. The obtained glauconite ages (~101 to 97 Ma) partly overlap with the depositional age of the Langenstein sequence (±3 Ma), but without the expected stratigraphic age progression, which we attribute to detrital and diagenetic illitic phase impurities inside the glauconites. Using a novel age deconvolution approach, which combines the new Rb-Sr dataset with published K-Ar ages, we recalculate the glauconite bulk ages to obtain stratigraphically significant ‘pure’ glauconite ages (~100 to 96 Ma). Thus, our results show that pristine ages can be preserved in mineralogically complex glauconite grains even under burial diagenetic conditions (T < 65 °C; <1500 m depth), confirming that glauconite could be a suitable archive for paleo-environmental reconstructions and direct sediment dating.
Collapse
|