1
|
Xiao L, Duan R, Zhou X, Liu S, Du Q, Ren T, Yeow EKL, Ta VD, Huang Y, Sun H. Extended Surface Bands Enabled Lasing Emission and Wavelength Switch from Sulfur Quantum Dots. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2408104. [PMID: 39295469 DOI: 10.1002/adma.202408104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 09/09/2024] [Indexed: 09/21/2024]
Abstract
The development of a lasing wavelength switch, particularly from a single inorganic gain material, is challenging but highly demanded for advanced photonics. Nonetheless, all current lasing emission of inorganic gain materials arises from band-edge states, and the inherent fixed bandgap limitation of the band-edge system leads to the inaccessibility of lasing wavelength switching from a single inorganic gain material. Here the realization of a single inorganic gain material-based lasing wavelength switch is reported by proposing an alternative lasing emission strategy, that is, lasing emission from surface gain. Previous efforts to achieve surface-gain-enabled lasing emission have been hindered by the limited gain volume provided by surface states due to the broad emission bandwidth and/or low emission efficiency. This challenge is overcome by introducing extended surface bands onto the surface of sulfur quantum dots. The extended surface bands contribute to a high photoluminescence quantum yield and narrow emission bandwidth, thereby providing sufficient gain volume and facilitating stimulated emission. When combined with whispering gallery mode microcavity, surface gain enabled lasing emission manifests an ultralow threshold of 8.3 µJ cm-2. Remarkably, the reconfigurable perturbation to surface gain, facilitated by molecular affinity, allows for the realization of the lasing wavelength switch from a single inorganic gain material.
Collapse
Affiliation(s)
- Lian Xiao
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Rui Duan
- Institute of Applied Physics and Materials Engineering, University of Macau, Macao, SAR, 999078, China
| | - Xuehong Zhou
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Sihang Liu
- Research Institute of Aero-Engine, Beihang University, No. 37 XueYuan Road, Haidian District, Beijing, 100083, China
| | - Quanchao Du
- School of Chemistry, Chemical Engineering & Biotechnology, Nanyang Technological University, Singapore, 637371, Singapore
| | - Tianhua Ren
- Institute of Applied Physics and Materials Engineering, University of Macau, Macao, SAR, 999078, China
| | - Edwin Kok Lee Yeow
- School of Chemistry, Chemical Engineering & Biotechnology, Nanyang Technological University, Singapore, 637371, Singapore
| | - Van Duong Ta
- Department of Optical Devices, Le Quy Don Technical University, Hanoi, 100000, Vietnam
| | - Yi Huang
- Research Institute of Aero-Engine, Beihang University, No. 37 XueYuan Road, Haidian District, Beijing, 100083, China
| | - Handong Sun
- Institute of Applied Physics and Materials Engineering, University of Macau, Macao, SAR, 999078, China
| |
Collapse
|
2
|
Yuan W, Fu H. All-optically controlled mode-coupling induced transparency with tunable efficiency in a microsphere resonator. OPTICS LETTERS 2024; 49:4421-4424. [PMID: 39090949 DOI: 10.1364/ol.522512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 06/19/2024] [Indexed: 08/04/2024]
Abstract
The optical analogs of electromagnetically induced transparency (EIT) have attracted vast attention recently. The generation and manipulation of EIT in microcavities have sparked research in both fundamental physics and photonic applications, including light storage, slow light propagation, and optical communication. In this Letter, the generation and tuning of an all-optically controlled mode-coupling induced transparency (MCIT) are proposed, experimentally demonstrated, and theoretically analyzed. The MCIT effect originated from the intermodal coupling between the plethora of modes generated in our fabricated optical microcavity, and the tuning of the transparency mode utilized the cavity's thermal bistability nature. Furthermore, based on our method, a novel, to the best of our knowledge, controlling of the mode shifting efficiency is also achieved with an increase up to two times and more. The proposed scheme paves a unique, simple, and efficient way to manipulate the induced transparency mode, which can be useful for applications like cavity lasing and thermal sensing.
Collapse
|
3
|
Ruan J, Li Y, Lin J, Ren Z, Iqbal N, Guo D, Zhai T. Transferable microfiber laser arrays for high-sensitivity thermal sensing. NANOSCALE 2023; 15:16976-16983. [PMID: 37830124 DOI: 10.1039/d3nr03118g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
Functional microfibers have attracted extensive attention due to their potential in health monitoring, radiation cooling, power management and luminescence. Among these, polymer fiber-based microlasers have plentiful applications due to their merits of full color, high quality factor and simple fabrication. However, developing a facile approach to fabricate stable microfiber lasing devices for high-sensitivity thermal sensing is still challenging. In this research, we propose a design of a stable and transferable membrane inlaid with whispering-gallery-mode plasmon hybrid microlaser arrays for thermal sensing. By integrating plasmonic gold nanorods with polymer lasing microfiber arrays that are embedded in the polydimethylsiloxane matrix, whispering-gallery-mode lasing arrays with high quality are achieved. Based on the thermo-optical effect of the membrane, a tuning range of 1.462 nm for the lasing peak shift under temperature variation from 30.6 °C to 38.7 °C is obtained. The ultimate thermal sensing sensitivity can reach up to 0.181 nm °C-1 and the limit of detection is 0.131 °C, with a high figure of merit of 2.961 °C-1. Moreover, a stable laser linewidth can be maintained within the tuning range due to plasmon-improved photon confinement and PDMS-reduced scattering loss. This work is expected to provide a facile approach for the fabrication of high-sensitivity on-chip thermometry devices.
Collapse
Affiliation(s)
- Jun Ruan
- College of Physics and Optoelectronics, Faculty of Science, Beijing University of Technology, Beijing 100124, China.
| | - Yixuan Li
- College of Physics and Optoelectronics, Faculty of Science, Beijing University of Technology, Beijing 100124, China.
| | - Junzhe Lin
- College of Physics and Optoelectronics, Faculty of Science, Beijing University of Technology, Beijing 100124, China.
| | - Zihan Ren
- College of Physics and Optoelectronics, Faculty of Science, Beijing University of Technology, Beijing 100124, China.
| | - Naeem Iqbal
- College of Physics and Optoelectronics, Faculty of Science, Beijing University of Technology, Beijing 100124, China.
| | - Dan Guo
- College of Physics and Optoelectronics, Faculty of Science, Beijing University of Technology, Beijing 100124, China.
| | - Tianrui Zhai
- College of Physics and Optoelectronics, Faculty of Science, Beijing University of Technology, Beijing 100124, China.
| |
Collapse
|
4
|
Ge K, Ruan J, Liang N, Guo D, Cui L, Iqbal N, Zhai T. Two wavelength band emission WGM lasers via photo-isomerization. NANOPHOTONICS (BERLIN, GERMANY) 2023; 12:4087-4094. [PMID: 39635642 PMCID: PMC11502004 DOI: 10.1515/nanoph-2023-0522] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 10/08/2023] [Indexed: 12/07/2024]
Abstract
Wavelength switchable microcavity is indispensable component for various integrated photonic devices. However, achieving two wavelength band emission of the whispering gallery mode (WGM) laser is challenging. Here, we propose a strategy to realize two wavelength band emission WGM lasers activated by photo-isomerization based on excited-state intramolecular proton transfer (ESIPT) process in isolated/coupled polymer microfiber cavities. The WGM microcavity is built by highly polarized organic intramolecular charge-transfer (ICT) dye molecules. The two cooperative gain states of ICT dye molecules can be controlled by optimizing energy levels. Thereby, the lasing wavelength can be reversibly switched under photo-isomerization activated in the ESIPT energy-level progress. The photonic bar code can be generated by following the strategy of proposed design. This work provides a promising route to achieve switchable WGM laser in on-chip photonic integration.
Collapse
Affiliation(s)
- Kun Ge
- Faculty of Science, Beijing University of Technology, Beijing, 100124, China
| | - Jun Ruan
- Faculty of Science, Beijing University of Technology, Beijing, 100124, China
| | - Ningning Liang
- Faculty of Science, Beijing University of Technology, Beijing, 100124, China
| | - Dan Guo
- Faculty of Science, Beijing University of Technology, Beijing, 100124, China
| | - Libin Cui
- Faculty of Science, Beijing University of Technology, Beijing, 100124, China
| | - Naeem Iqbal
- Faculty of Science, Beijing University of Technology, Beijing, 100124, China
| | - Tianrui Zhai
- Faculty of Science, Beijing University of Technology, Beijing, 100124, China
| |
Collapse
|
5
|
Jiang Z, He L, Yang Z, Qiu H, Chen X, Yu X, Li W. Ultra-wideband-responsive photon conversion through co-sensitization in lanthanide nanocrystals. Nat Commun 2023; 14:827. [PMID: 36788239 PMCID: PMC9929054 DOI: 10.1038/s41467-023-36510-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 02/03/2023] [Indexed: 02/16/2023] Open
Abstract
Distinctive upconversion or downshifting of lanthanide nanocrystals holds promise for biomedical and photonic applications. However, either process requires high-energy lasers at discrete wavelengths for excitation. Here we demonstrate that co-sensitization can break this limitation with ultrawide excitation bands. We achieve co-sensitization by employing Nd3+ and Ho3+ as the co-sensitizers with complementary absorptions from the ultraviolet to infrared region. Symmetric penta-layer core-shell nanostructure enables tunable fluorescence in the visible and the second near-infrared window when incorporating different activators (Er3+, Ho3+, Pr3+, and Tm3+). Transient spectra confirm the directional energy transfer from sensitizers to activators through the bridge of Yb3+. We validate the features of the nanocrystals for low-powered white light-emitting diode-mediated whole-body angiography of mice with a signal-to-noise ratio of 12.3 and excitation-regulated encryption. This co-sensitization strategy paves a new way in lanthanide nanocrystals for multidirectional photon conversion manipulation and excitation-bandwidth-regulated fluorescence applications.
Collapse
Affiliation(s)
- Zhao Jiang
- grid.16821.3c0000 0004 0368 8293State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240 P. R. China
| | - Liangrui He
- grid.16821.3c0000 0004 0368 8293State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240 P. R. China
| | - Zhiwen Yang
- grid.16821.3c0000 0004 0368 8293State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240 P. R. China
| | - Huibin Qiu
- grid.16821.3c0000 0004 0368 8293State Key Laboratory of Metal Matrix Composites, Frontiers Science Centre for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240 P. R. China
| | - Xiaoyuan Chen
- grid.4280.e0000 0001 2180 6431Yong Loo Lin School of Medicine and Faculty of Engineering, National University of Singapore, Singapore, 117597 Singapore
| | - Xujiang Yu
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China.
| | - Wanwan Li
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China.
| |
Collapse
|
6
|
Malhotra K, Hrovat D, Kumar B, Qu G, Houten JV, Ahmed R, Piunno PAE, Gunning PT, Krull UJ. Lanthanide-Doped Upconversion Nanoparticles: Exploring A Treasure Trove of NIR-Mediated Emerging Applications. ACS APPLIED MATERIALS & INTERFACES 2023; 15:2499-2528. [PMID: 36602515 DOI: 10.1021/acsami.2c12370] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Lanthanide-doped upconversion nanoparticles (UCNPs) possess the remarkable ability to convert multiple near-infrared (NIR) photons into higher energy ultraviolet-visible (UV-vis) photons, making them a prime candidate for several advanced applications within the realm of nanotechnology. Compared to traditional organic fluorophores and quantum dots (QDs), UCNPs possess narrower emission bands (fwhm of 10-50 nm), large anti-Stokes shifts, low toxicity, high chemical stability, and resistance to photobleaching and blinking. In addition, unlike UV-vis excitation, NIR excitation is nondestructive at lower power intensities and has high tissue penetration depths (up to 2 mm) with low autofluorescence and scattering. Together, these properties make UCNPs exceedingly favored for advanced bioanalytical and theranostic applications, where these systems have been well-explored. UCNPs are also well-suited for bioimaging, optically modulating chemistries, forensic science, and other state-of-the-art research applications. In this review, an up-to-date account of emerging applications in UCNP research, beyond bioanalytical and theranostics, are presented including optogenetics, super-resolution imaging, encoded barcodes, fingerprinting, NIR vision, UCNP-assisted photochemical manipulations, optical tweezers, 3D printing, lasing, NIR-II imaging, UCNP-molecule nanohybrids, and UCNP-based persistent luminescent nanocrystals.
Collapse
Affiliation(s)
- Karan Malhotra
- Chemical Sensors Group, Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, OntarioL5L 1C6, Canada
| | - David Hrovat
- Chemical Sensors Group, Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, OntarioL5L 1C6, Canada
- Gunning Group, Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, OntarioL5L 1C6, Canada
| | - Balmiki Kumar
- Chemical Sensors Group, Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, OntarioL5L 1C6, Canada
| | - Grace Qu
- Chemical Sensors Group, Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, OntarioL5L 1C6, Canada
| | - Justin Van Houten
- Chemical Sensors Group, Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, OntarioL5L 1C6, Canada
| | - Reda Ahmed
- Chemical Sensors Group, Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, OntarioL5L 1C6, Canada
| | - Paul A E Piunno
- Chemical Sensors Group, Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, OntarioL5L 1C6, Canada
| | - Patrick T Gunning
- Gunning Group, Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, OntarioL5L 1C6, Canada
| | - Ulrich J Krull
- Chemical Sensors Group, Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, OntarioL5L 1C6, Canada
| |
Collapse
|
7
|
Yin B, Jia H, Wang H, Chen R, Xu L, Zhao YS, Zhang C, Yao J. Magnetic-Field-Driven Reconfigurable Microsphere Arrays for Laser Display Pixels. ACS NANO 2022; 17:1187-1195. [PMID: 36410359 DOI: 10.1021/acsnano.2c08766] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Reconfigurable microlaser arrays are essential to the construction of display panels where the individual pixel should be highly tunable in resonance mode, optical polarization, and lasing wavelength upon external control signals. Here we demonstrate a facile yet reliable approach to fabrication of organic microlaser pixels, in which the assembly of microsphere arrays on each pixel is controlled according to the near-field magnetostatic confinement. The geometrical configuration of diamagnetic microspheres could be readily modulated with the near-field potential traps by using the external field to alternate the saturation magnetization of the underneath micromagnet. The motion of microspheres can be modulated among several states upon applied field, and the reconfigurable microsphere array is thus achieved with high spatial precision and rapid temporal response. Moreover, both isolated and coupled spheres serve as low-threshold microlasers with tunable optical resonance modes, whereas the switching between the vertical and horizontal alignments of coupled spheres manipulates the polarization of lasing outputs. By repeating the magnetostatic confinement on the same substrate, the full-color laser display pixels with magnetically tunable color expression capability are successfully achieved.
Collapse
Affiliation(s)
- Baipeng Yin
- Key Laboratory of Photochemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Hao Jia
- Key Laboratory of Photochemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hong Wang
- Key Laboratory of Photochemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Rui Chen
- Key Laboratory of Photochemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lixin Xu
- Key Laboratory of Photochemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yong Sheng Zhao
- Key Laboratory of Photochemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chuang Zhang
- Key Laboratory of Photochemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Jiannian Yao
- Key Laboratory of Photochemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
8
|
Jiang B, Hu Y, Ren L, Zhou H, Shi L, Zhang X. Four- and five-photon upconversion lasing from rare earth elements under continuous-wave pump and room temperature. NANOPHOTONICS (BERLIN, GERMANY) 2022; 11:4315-4322. [PMID: 39634535 PMCID: PMC11501746 DOI: 10.1515/nanoph-2022-0360] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/01/2022] [Accepted: 08/02/2022] [Indexed: 12/07/2024]
Abstract
Benefited from abundant long-lived intermediate energy levels of rear earth elements, large anti-Stokes lasing can be realized by multi-photon upconversion processes, which does not demand rigorous phase match and ultrahigh pump power. Here, we have fabricated an Er-doped silica microsphere with an ultrahigh intrinsic quality factor of 1.2 × 108. By continuous-wave (CW) excitation at 1535 nm, four- and five-photon upconversion lasers are achieved simultaneously under room temperature, in which the lasing thresholds are estimated as 176 and 600 μW, respectively. Beside the ultralow thresholds, the microlaser also exhibits good stability of lasing intensity for practical applications. The four- and five-photon upconversion lasing from rare earth elements have not been separately demonstrated under CW pump and room temperature until this work. This demonstration provides a prospect to realizing high-performance short-wavelength laser by pumping low-energy photons.
Collapse
Affiliation(s)
- Bo Jiang
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan430074, China
| | - Yuchan Hu
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan430074, China
| | - Linhao Ren
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan430074, China
| | - Han Zhou
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan430074, China
| | - Lei Shi
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan430074, China
- Optics Valley Laboratory, Wuhan430074, China
| | - Xinliang Zhang
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan430074, China
- Optics Valley Laboratory, Wuhan430074, China
| |
Collapse
|
9
|
Pan X, Ren J, Zeng J, Liu M, Fang Z, Ju Q. Unravelling phase and morphology evolution of NaYbF 4 upconversion nanoparticles via modulating reaction parameters. Inorg Chem Front 2022. [DOI: 10.1039/d2qi00877g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The phase and morphology evolutions of NaYbF4 upconversion nanocrystals have been systemically explored through modulating the experiment parameters in a canonical high-temperature co-precipitation method.
Collapse
Affiliation(s)
- Xuechun Pan
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, P.R. China
| | - Jilou Ren
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, P.R. China
| | - Jianfeng Zeng
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, P.R. China
| | - Mingyue Liu
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, P.R. China
| | - Zhenlan Fang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, P.R. China
| | - Qiang Ju
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, P.R. China
| |
Collapse
|