1
|
Lin Z, Yao Q, Lai K, Jiao K, Zeng X, Lei G, Zhang T, Dai H. Cas12f1 gene drives propagate efficiently in herpesviruses and induce minimal resistance. Genome Biol 2024; 25:311. [PMID: 39696608 DOI: 10.1186/s13059-024-03455-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 12/04/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND Synthetic CRISPR-Cas9 gene drive has been developed to control harmful species. However, resistance to Cas9 gene drive can be acquired easily when DNA repair mechanisms patch up the genetic insults introduced by Cas9 and incorporate mutations to the sgRNA target. Although many strategies to reduce the occurrence of resistance have been developed so far, they are difficult to implement and not always effective. RESULTS Here, Cas12f1, a recently developed CRISPR-Cas system with minimal potential for causing mutations within target sequences, has been explored as a potential platform for yielding low-resistance in gene drives. We construct Cas9 and Cas12f1 gene drives in a fast-replicating DNA virus, HSV1. Cas9 and Cas12f1 gene drives are able to spread among the HSV1 population with specificity towards their target sites, and their transmission among HSV1 viruses is not significantly affected by the reduced fitness incurred by the viral carriers. Cas12f1 gene drives spread similarly as Cas9 gene drives at high introduction frequency but transmit more slowly than Cas9 gene drives at low introduction frequency. However, Cas12f1 gene drives outperform Cas9 gene drives because they reach higher penetration and induce lower resistance than Cas9 gene drives in all cases. CONCLUSIONS Due to lower resistance and higher penetration, Cas12f1 gene drives could potentially supplant Cas9 gene drives for population control.
Collapse
Affiliation(s)
- Zhuangjie Lin
- Department of Immunology, School of Basic Medicine, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Qiaorui Yao
- Department of Immunology, School of Basic Medicine, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Keyuan Lai
- Department of Immunology, School of Basic Medicine, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Kehua Jiao
- Department of Geriatric Medicine, Shanghai Health and Medical Center, Wuxi, Jiangshu Province, China
| | - Xianying Zeng
- Department of Immunology, School of Basic Medicine, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Guanxiong Lei
- Affiliated Hospital of Xiangnan University, Chenzhou, Hunan Province, China
- Key Laboratory of Medical Imaging and Artificial Intelligence of Hunan Province, Chenzhou, Hunan Province, China
| | - Tongwen Zhang
- Department of Immunology, School of Basic Medicine, Southern Medical University, Guangzhou, Guangdong Province, China.
- Vaccine Biotech (Shenzhen) LTD, Shenzhen, China, & Boji Biopharmaceutical, Guangzhou, China.
| | - Hongsheng Dai
- Department of Immunology, School of Basic Medicine, Southern Medical University, Guangzhou, Guangdong Province, China.
| |
Collapse
|
2
|
Chennuri PR, Zapletal J, Monfardini RD, Ndeffo-Mbah ML, Adelman ZN, Myles KM. Repeat mediated excision of gene drive elements for restoring wild-type populations. PLoS Genet 2024; 20:e1011450. [PMID: 39509462 PMCID: PMC11584131 DOI: 10.1371/journal.pgen.1011450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 11/22/2024] [Accepted: 10/04/2024] [Indexed: 11/15/2024] Open
Abstract
Here, we demonstrate that single strand annealing (SSA) can be co-opted for the precise autocatalytic excision of a drive element. We have termed this technology Repeat Mediated Excision of a Drive Element (ReMEDE). By engineering direct repeats flanking the drive allele and inducing a double-strand DNA break (DSB) at a second endonuclease target site within the allele, we increased the utilization of SSA repair. ReMEDE was incorporated into the mutagenic chain reaction (MCR) gene drive targeting the yellow gene of Drosophila melanogaster, successfully replacing drive alleles with wild-type alleles. Sequencing across the Cas9 target site confirmed transgene excision by SSA after pair-mated outcrosses with yReMEDE females, revealing ~4% inheritance of an engineered silent TcG marker sequence. However, phenotypically wild-type flies with alleles of indeterminate biogenesis also were observed, retaining the TGG sequence (~16%) or harboring a silent gGG mutation (~0.5%) at the PAM site. Additionally, ~14% of alleles in the F2 flies were intact or uncut paternally inherited alleles, indicating limited maternal deposition of Cas9 RNP. Although ReMEDE requires further research and development, the technology has some promising features as a gene drive mitigation strategy, notably its potential to restore wild-type populations without additional transgenic releases or large-scale environmental modifications.
Collapse
Affiliation(s)
- Pratima R Chennuri
- Department of Entomology and AgriLife Research, Texas A&M University, College Station, Texas, United States of America
| | - Josef Zapletal
- Department of Industrial and Systems Engineering, Texas A&M University, College Station, Texas, United States of America
| | - Raquel D Monfardini
- Department of Entomology and AgriLife Research, Texas A&M University, College Station, Texas, United States of America
| | - Martial Loth Ndeffo-Mbah
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas, United States of America
- Department of Epidemiology and Biostatistics, Texas A&M University, College Station, Texas, United States of America
| | - Zach N Adelman
- Department of Entomology and AgriLife Research, Texas A&M University, College Station, Texas, United States of America
| | - Kevin M Myles
- Department of Entomology and AgriLife Research, Texas A&M University, College Station, Texas, United States of America
| |
Collapse
|
3
|
Hou S, Chen J, Feng R, Xu X, Liang N, Champer J. A homing rescue gene drive with multiplexed gRNAs reaches high frequency in cage populations but generates functional resistance. J Genet Genomics 2024; 51:836-843. [PMID: 38599514 DOI: 10.1016/j.jgg.2024.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 04/02/2024] [Accepted: 04/02/2024] [Indexed: 04/12/2024]
Abstract
CRISPR homing gene drives have considerable potential for managing populations of medically and agriculturally significant insects. They operate by Cas9 cleavage followed by homology-directed repair, copying the drive allele to the wild-type chromosome and thus increasing in frequency and spreading throughout a population. However, resistance alleles formed by end-joining repair pose a significant obstacle. To address this, we create a homing drive targeting the essential hairy gene in Drosophila melanogaster. Nonfunctional resistance alleles are recessive lethal, while drive carriers have a recoded "rescue" version of hairy. The drive inheritance rate is moderate, and multigenerational cage studies show drive spread to 96%-97% of the population. However, the drive does not reach 100% due to the formation of functional resistance alleles despite using four gRNAs. These alleles have a large deletion but likely utilize an alternate start codon. Thus, revised designs targeting more essential regions of a gene may be necessary to avoid such functional resistance. Replacement of the rescue element's native 3' UTR with a homolog from another species increases drive inheritance by 13%-24%. This was possibly because of reduced homology between the rescue element and surrounding genomic DNA, which could also be an important design consideration for rescue gene drives.
Collapse
Affiliation(s)
- Shibo Hou
- Center for Bioinformatics, Center for Life Sciences, School of Life Sciences, Peking University, Beijing 100871, China
| | - Jingheng Chen
- Center for Bioinformatics, Center for Life Sciences, School of Life Sciences, Peking University, Beijing 100871, China
| | - Ruobing Feng
- Center for Bioinformatics, Center for Life Sciences, School of Life Sciences, Peking University, Beijing 100871, China
| | - Xuejiao Xu
- Center for Bioinformatics, Center for Life Sciences, School of Life Sciences, Peking University, Beijing 100871, China
| | - Nan Liang
- Center for Bioinformatics, Center for Life Sciences, School of Life Sciences, Peking University, Beijing 100871, China
| | - Jackson Champer
- Center for Bioinformatics, Center for Life Sciences, School of Life Sciences, Peking University, Beijing 100871, China.
| |
Collapse
|
4
|
Awan MJA, Naqvi RZ, Amin I, Mansoor S. Gene drive in plants emerges from infancy. TRENDS IN PLANT SCIENCE 2024; 29:108-110. [PMID: 37863729 DOI: 10.1016/j.tplants.2023.10.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/03/2023] [Accepted: 10/05/2023] [Indexed: 10/22/2023]
Abstract
Selfish genetic elements (SGEs) display biased transmission to offspring. However, their breeding potential has remained obscure. Wang et al. recently reported a natural gene-drive system that can be harnessed to prevent hybrid incompatibility and to develop a synthetic gene-drive (SGD) system for crop improvement.
Collapse
Affiliation(s)
- Muhammad Jawad Akbar Awan
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Constituent College of Pakistan Institute of Engineering and Applied Sciences, Jhang Road, Faisalabad, Pakistan
| | - Rubab Zahra Naqvi
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Constituent College of Pakistan Institute of Engineering and Applied Sciences, Jhang Road, Faisalabad, Pakistan
| | - Imran Amin
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Constituent College of Pakistan Institute of Engineering and Applied Sciences, Jhang Road, Faisalabad, Pakistan
| | - Shahid Mansoor
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Constituent College of Pakistan Institute of Engineering and Applied Sciences, Jhang Road, Faisalabad, Pakistan; International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan.
| |
Collapse
|
5
|
Chennuri PR, Zapletal J, Monfardini RD, Ndeffo-Mbah ML, Adelman ZN, Myles KM. Repeat mediated excision of gene drive elements for restoring wild-type populations. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.23.568397. [PMID: 38045402 PMCID: PMC10690251 DOI: 10.1101/2023.11.23.568397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
We demonstrate here that single strand annealing (SSA) repair can be co-opted for the precise autocatalytic excision of a drive element. Although SSA is not the predominant form of DNA repair in eukaryotic organisms, we increased the likelihood of its use by engineering direct repeats at sites flanking the drive allele, and then introducing a double-strand DNA break (DSB) at a second endonuclease target site encoded within the drive allele. We have termed this technology Repeat Mediated Excision of a Drive Element (ReMEDE). Incorporation of ReMEDE into the previously described mutagenic chain reaction (MCR) gene drive, targeting the yellow gene of Drosophila melanogaster, replaced drive alleles with wild-type alleles demonstrating proof-of-principle. Although the ReMEDE system requires further research and development, the technology has a number of attractive features as a gene drive mitigation strategy, chief among these the potential to restore a wild-type population without releasing additional transgenic organisms or large-scale environmental engineering efforts.
Collapse
Affiliation(s)
- Pratima R Chennuri
- Department of Entomology and AgriLife Research, Texas A&M University, College Station, TX 77843, USA
| | - Josef Zapletal
- Department of Industrial and Systems Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Raquel D Monfardini
- Department of Entomology and AgriLife Research, Texas A&M University, College Station, TX 77843, USA
| | - Martial Loth Ndeffo-Mbah
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX 77843, USA
- Department of Epidemiology and Biostatistics, Texas A&M University, College Station, TX 77843, USA
| | - Zach N Adelman
- Department of Entomology and AgriLife Research, Texas A&M University, College Station, TX 77843, USA
| | - Kevin M Myles
- Department of Entomology and AgriLife Research, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
6
|
Möller L, Aird EJ, Schröder MS, Kobel L, Kissling L, van de Venn L, Corn JE. Recursive Editing improves homology-directed repair through retargeting of undesired outcomes. Nat Commun 2022; 13:4550. [PMID: 35931681 PMCID: PMC9356142 DOI: 10.1038/s41467-022-31944-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 07/11/2022] [Indexed: 12/30/2022] Open
Abstract
CRISPR-Cas induced homology-directed repair (HDR) enables the installation of a broad range of precise genomic modifications from an exogenous donor template. However, applications of HDR in human cells are often hampered by poor efficiency, stemming from a preference for error-prone end joining pathways that yield short insertions and deletions. Here, we describe Recursive Editing, an HDR improvement strategy that selectively retargets undesired indel outcomes to create additional opportunities to produce the desired HDR allele. We introduce a software tool, named REtarget, that enables the rational design of Recursive Editing experiments. Using REtarget-designed guide RNAs in single editing reactions, Recursive Editing can simultaneously boost HDR efficiencies and reduce undesired indels. We also harness REtarget to generate databases for particularly effective Recursive Editing sites across the genome, to endogenously tag proteins, and to target pathogenic mutations. Recursive Editing constitutes an easy-to-use approach without potentially deleterious cell manipulations and little added experimental burden.
Collapse
Affiliation(s)
- Lukas Möller
- Institute of Molecular Health Sciences, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Eric J Aird
- Institute of Molecular Health Sciences, Department of Biology, ETH Zurich, Zurich, Switzerland.
| | - Markus S Schröder
- Institute of Molecular Health Sciences, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Lena Kobel
- Institute of Molecular Health Sciences, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Lucas Kissling
- Institute of Molecular Health Sciences, Department of Biology, ETH Zurich, Zurich, Switzerland
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
| | - Lilly van de Venn
- Institute of Molecular Health Sciences, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Jacob E Corn
- Institute of Molecular Health Sciences, Department of Biology, ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
7
|
Bodai Z, Bishop AL, Gantz VM, Komor AC. Targeting double-strand break indel byproducts with secondary guide RNAs improves Cas9 HDR-mediated genome editing efficiencies. Nat Commun 2022; 13:2351. [PMID: 35534455 PMCID: PMC9085776 DOI: 10.1038/s41467-022-29989-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 04/07/2022] [Indexed: 12/26/2022] Open
Abstract
Programmable double-strand DNA breaks (DSBs) can be harnessed for precision genome editing through manipulation of the homology-directed repair (HDR) pathway. However, end-joining repair pathways often outcompete HDR and introduce insertions and deletions of bases (indels) at the DSB site, decreasing precision outcomes. It has been shown that indel sequences for a given DSB site are reproducible and can even be predicted. Here, we report a general strategy (the "double tap" method) to improve HDR-mediated precision genome editing efficiencies that takes advantage of the reproducible nature of indel sequences. The method simply involves the use of multiple gRNAs: a primary gRNA that targets the wild-type genomic sequence, and one or more secondary gRNAs that target the most common indel sequence(s), which in effect provides a "second chance" at HDR-mediated editing. This proof-of-principle study presents the double tap method as a simple yet effective option for enhancing precision editing in mammalian cells.
Collapse
Affiliation(s)
- Zsolt Bodai
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA, 92093, USA
| | - Alena L Bishop
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California San Diego, La Jolla, CA, 92093, USA
| | - Valentino M Gantz
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California San Diego, La Jolla, CA, 92093, USA
| | - Alexis C Komor
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA, 92093, USA.
| |
Collapse
|