1
|
Chen S, Keto AB, El-Hawli A, Gahan LR, White JM, Krenske EH, Flynn BL. Steric Activation in the Nazarov Cyclization of Fully Substituted Divinyl Ketones. Chemistry 2024; 30:e202402779. [PMID: 39400403 DOI: 10.1002/chem.202402779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 10/09/2024] [Accepted: 10/10/2024] [Indexed: 10/15/2024]
Abstract
Fully substituted divinyl ketones (fsDVKs) have long been regarded as resistant to Nazarov cyclization (NC) unless they contain strategically positioned electronically activating substituents. Here, however, we show that fsDVKs bearing only electronically neutral alkyl or aryl groups actually undergo facile NC due to steric crowding in the pentadienyl cation intermediate, which raises its energy and reduces the barrier height to cyclization. Strongly ionizing and suitably bulky acid moieties further increase the energy of this intermediate cation, favoring cyclization. These features enable NCs of fsDVKs to be employed in the ready construction of multiple contiguous all-carbon quaternary stereocenters under mild conditions, in the absence of electronically activating groups.
Collapse
Affiliation(s)
- Shuqi Chen
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria, 3052, Australia
| | - Angus B Keto
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Ahmad El-Hawli
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria, 3052, Australia
| | - Lawrence R Gahan
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Jonathan M White
- School of Chemistry, Bio21 Institute, University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Elizabeth H Krenske
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Bernard L Flynn
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria, 3052, Australia
| |
Collapse
|
2
|
Fang K, Dou BH, Zhang FM, Wang YP, Shan ZR, Wang XY, Hou SH, Tu YQ, Ding TM. Expansion of Structure Property in Cascade Nazarov Cyclization and Cycloexpansion Reaction to Diverse Angular Tricycles and Total Synthesis of Nominal Madreporanone. Angew Chem Int Ed Engl 2024; 63:e202412337. [PMID: 39106111 DOI: 10.1002/anie.202412337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/02/2024] [Accepted: 08/04/2024] [Indexed: 08/09/2024]
Abstract
A cascade Nazarov cyclization/dicycloexpansions reaction was developed for the precise synthesis of the angularly fused M/5/N (M=5, 6; N=4-9, 13) tricyclic skeletons. The prioritized expansion of the first ring played a critical role in the transformations, due to the release of ring strain, and the nature of the substituents present on the substrate is another influencing factor. This pioneering cascade reaction features broad substrates scope (33 examples), short reaction time, exceptional yields (up to 95 %), and remarkable regioselectivities (>20 : 1). Exploiting the synthetic application of this cascade reaction, we successfully executed a succinct total synthesis of nominal madreporanone for the first time.
Collapse
Affiliation(s)
- Kun Fang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Bao-Heng Dou
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Fu-Min Zhang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Yun-Peng Wang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Zi-Rui Shan
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Xiao-Yu Wang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Si-Hua Hou
- School of Pharmaceutical Sciences, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yong-Qiang Tu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Tong-Mei Ding
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
3
|
Xue Y, Hou SH, Zhang X, Zhang FM, Zhang XM, Tu YQ. Total Synthesis of the Hexacyclic Sesterterpenoid Niduterpenoid B via Structural Reorganization Strategy. J Am Chem Soc 2024; 146:25445-25450. [PMID: 39235150 DOI: 10.1021/jacs.4c09555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2024]
Abstract
To date, it remains challenging to precisely and efficiently construct structurally intriguing polycarbocycles with densely packed stereocenters in organic synthesis. Niduterpenoid B, a naturally occurring ERα inhibitor, exemplifies this complexity with its intricate polycyclic network comprising 5 cyclopentane and 1 cyclopropane rings, featuring 13 contiguous stereocenters, including 4 all-carbon quaternary centers. In this work, we describe the first total synthesis of niduterpenoid B using a structural reorganization strategy. Key features include the following: (1) an efficient methoxy-controlled cascade reaction that precisely forges a highly functionalized tetraquinane (A-D rings) bearing sterically hindered contiguous quaternary stereocenters; (2) a rhodium-catalyzed [1 + 2] cycloaddition that facilitates the construction of a strained 3/5 bicycle (E-F rings) angularly fused with ring D.
Collapse
Affiliation(s)
- Yuan Xue
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
- School of Pharmaceutical Sciences, School of Chemistry and Chemical Engineering, Frontier Scientific Center of Transformative Molecules, National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Si-Hua Hou
- School of Pharmaceutical Sciences, School of Chemistry and Chemical Engineering, Frontier Scientific Center of Transformative Molecules, National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xiang Zhang
- School of Pharmaceutical Sciences, School of Chemistry and Chemical Engineering, Frontier Scientific Center of Transformative Molecules, National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Fu-Min Zhang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Xiao-Ming Zhang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Yong-Qiang Tu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
- School of Pharmaceutical Sciences, School of Chemistry and Chemical Engineering, Frontier Scientific Center of Transformative Molecules, National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
4
|
Du J, Fu S, Liu B. A Photoinduced Radical Cascade Cyclization for the Synthesis of Angularly Fused Tricyclic Compounds. Org Lett 2024. [PMID: 38805032 DOI: 10.1021/acs.orglett.4c01497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
A photoinduced electron transfer (PET)-triggered cascade reaction has been devised for the conversion of second-generation enol silyl ethers into angularly fused tricyclic scaffolds. Utilizing readily available and cost-effective DCA and phenanthrene as the catalytic systems, this cascade transformation is achieved with high efficiency. The reaction demonstrates a good substrate scope and excellent stereoselectivity, thereby enriching the realm of PET-induced cascade reactions. Additionally, the radical adducts generated through this process can serve as valuable subunits for the synthesis of complex molecules.
Collapse
Affiliation(s)
- Jiaxin Du
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Shaomin Fu
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Bo Liu
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| |
Collapse
|
5
|
Wootton JM, Tam JKF, Unsworth WP. Cascade ring expansion reactions for the synthesis of medium-sized rings and macrocycles. Chem Commun (Camb) 2024; 60:4999-5009. [PMID: 38655659 DOI: 10.1039/d4cc01303d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
This Feature Article discusses recent advances in the development of cascade ring expansion reactions for the synthesis of medium-sized rings and macrocycles. Cascade ring expansion reactions have much potential for use in the synthesis of biologically important medium-sized rings and macrocycles, most notably as they don't require high dilution conditions, which are commonly used in established end-to-end macrocyclisation methods. Operation by cascade ring expansion method can allow large ring products to be accessed via rearrangements that proceed exclusively by normal-sized ring cyclisation steps. Ensuring that there is adequate thermodynamic driving force for ring expansion is a key challenge when designing such methods, especially for the expansion of normal-sized rings into medium-sized rings. This Article is predominantly focused on methods developed in our own laboratory, with selected works by other groups also discussed. Thermodynamic considerations, mechanism, reaction design, route planning and future perspective for this field are all covered.
Collapse
Affiliation(s)
- Jack M Wootton
- Department of Chemistry, University of York, Heslington, York, YO10 5DD, UK.
| | - Jerry K F Tam
- Department of Chemistry, University of York, Heslington, York, YO10 5DD, UK.
| | - William P Unsworth
- Department of Chemistry, University of York, Heslington, York, YO10 5DD, UK.
| |
Collapse
|
6
|
Yin JJ, Wang YP, Xue J, Zhou FF, Shan XQ, Zhu R, Fang K, Shi L, Zhang SY, Hou SH, Xia W, Tu YQ. Total Syntheses of Polycyclic Diterpenes Phomopsene, Methyl Phomopsenonate, and iso-Phomopsene via Reorganization of C-C Single Bonds. J Am Chem Soc 2023; 145:21170-21175. [PMID: 37605370 DOI: 10.1021/jacs.3c07044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2023]
Abstract
The first total syntheses of polycyclic diterpenes phomopsene (1), methyl phomopsenonate (2), and iso-phomopsene (3) have been accomplished through the unusual cascade reorganization of C-C single bonds. This approach features: (i) a synergistic Nazarov cyclization/double ring expansions in one-step, developed by authors, to rapid and stereospecific construction of the 5/5/5/5 tetraquinane scaffold bearing contiguous quaternary centers and (ii) a one-pot strategic ring expansion through Beckmann fragmentation/recombination to efficiently assemble the requisite 5/5/6/5 tetracyclic skeleton of the target molecules 1-3. This work enables us to determine that the correct structure of iso-phomopsene is, in fact, the C7 epimer of the originally assigned structure. Finally, the absolute configurations of three target molecules were confirmed through enantioselective synthesis.
Collapse
Affiliation(s)
- Jun-Jie Yin
- School of Science (Shenzhen), School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Yun-Peng Wang
- School of Chemistry and Chemical Engineering, College of Pharmaceutical Sciences, Frontier Scientific Center of Transformative Molecules, Shanghai key Laboratory of Chiral Drugs and Engineering, Shanghai Jiao Tong University, Shanghai, Minhang 200240, China
| | - Jun Xue
- School of Chemistry and Chemical Engineering, College of Pharmaceutical Sciences, Frontier Scientific Center of Transformative Molecules, Shanghai key Laboratory of Chiral Drugs and Engineering, Shanghai Jiao Tong University, Shanghai, Minhang 200240, China
| | - Feng-Fan Zhou
- School of Chemistry and Chemical Engineering, College of Pharmaceutical Sciences, Frontier Scientific Center of Transformative Molecules, Shanghai key Laboratory of Chiral Drugs and Engineering, Shanghai Jiao Tong University, Shanghai, Minhang 200240, China
| | - Xing-Qian Shan
- School of Chemistry and Chemical Engineering, College of Pharmaceutical Sciences, Frontier Scientific Center of Transformative Molecules, Shanghai key Laboratory of Chiral Drugs and Engineering, Shanghai Jiao Tong University, Shanghai, Minhang 200240, China
| | - Rong Zhu
- School of Chemistry and Chemical Engineering, College of Pharmaceutical Sciences, Frontier Scientific Center of Transformative Molecules, Shanghai key Laboratory of Chiral Drugs and Engineering, Shanghai Jiao Tong University, Shanghai, Minhang 200240, China
| | - Kun Fang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Lei Shi
- School of Science (Shenzhen), School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Shu-Yu Zhang
- School of Chemistry and Chemical Engineering, College of Pharmaceutical Sciences, Frontier Scientific Center of Transformative Molecules, Shanghai key Laboratory of Chiral Drugs and Engineering, Shanghai Jiao Tong University, Shanghai, Minhang 200240, China
| | - Si-Hua Hou
- School of Chemistry and Chemical Engineering, College of Pharmaceutical Sciences, Frontier Scientific Center of Transformative Molecules, Shanghai key Laboratory of Chiral Drugs and Engineering, Shanghai Jiao Tong University, Shanghai, Minhang 200240, China
| | - Wujiong Xia
- School of Science (Shenzhen), School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Yong-Qiang Tu
- School of Chemistry and Chemical Engineering, College of Pharmaceutical Sciences, Frontier Scientific Center of Transformative Molecules, Shanghai key Laboratory of Chiral Drugs and Engineering, Shanghai Jiao Tong University, Shanghai, Minhang 200240, China
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
7
|
Wang AF, Tian JM, Zhao XJ, Li ZH, Zhang Y, Lu K, Wang H, Zhang SY, Tu YQ, Ding TM, Xie YY. Asymmetric Intramolecular Hydroalkylation of Internal Olefin with Cycloalkanone to Directly Access Polycyclic Systems. Angew Chem Int Ed Engl 2023; 62:e202308858. [PMID: 37462217 DOI: 10.1002/anie.202308858] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 07/17/2023] [Indexed: 08/04/2023]
Abstract
An asymmetric intramolecular hydroalkylation of unactivated internal olefins with tethered cyclic ketones was realized by the cooperative catalysis of a newly designed chiral amine (SPD-NH2 ) and PdII complex, providing straightforward access to either bridged or fused bicyclic systems containing three stereogenic centers with excellent enantioselectivity (up to 99 % ee) and diastereoselectivity (up to >20 : 1 dr). Notably, the bicyclic products could be conveniently transformed into a diverse range of key structures frequently found in bioactive terpenes, such as Δ6 -protoilludene, cracroson D, and vulgarisins. The steric hindrance between the Ar group of the SPD-NH2 catalyst and the branched chain of the substrate, hydrogen-bonding interactions between the N-H of the enamine motif and the C=O of the directing group MQ, and the counterion of the PdII complex were identified as key factors for excellent stereoinduction in this dual catalytic process by density functional theory calculations.
Collapse
Affiliation(s)
- Ai-Fang Wang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Jin-Miao Tian
- College of Pharmaceutical Sciences & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Xiao-Jing Zhao
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Zi-Hao Li
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Ye Zhang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Ka Lu
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Hong Wang
- College of Pharmaceutical Sciences & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Shu-Yu Zhang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Yong-Qiang Tu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Tong-Mei Ding
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Yu-Yang Xie
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| |
Collapse
|
8
|
Xu Z, Li X, Rose JA, Herzon SB. Finding activity through rigidity: syntheses of natural products containing tricyclic bridgehead carbon centers. Nat Prod Rep 2023; 40:1393-1431. [PMID: 37140079 PMCID: PMC10472132 DOI: 10.1039/d3np00008g] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Covering: up to 2022Tricyclic bridgehead carbon centers (TBCCs) are a synthetically challenging substructure found in many complex natural products. Here we review the syntheses of ten representative families of TBCC-containing isolates, with the goal of outlining the strategies and tactics used to install these centers, including a discussion of the evolution of the successful synthetic design. We provide a summary of common strategies to inform future synthetic endeavors.
Collapse
Affiliation(s)
- Zhi Xu
- Department of Chemistry, Yale University, New Haven, Connecticut, 06520, USA.
| | - Xin Li
- Department of Chemistry, Yale University, New Haven, Connecticut, 06520, USA.
| | - John A Rose
- Department of Chemistry, Yale University, New Haven, Connecticut, 06520, USA.
| | - Seth B Herzon
- Department of Chemistry, Yale University, New Haven, Connecticut, 06520, USA.
- Departments of Pharmacology and Therapeutic Radiology, Yale School of Medicine, New Haven, Connecticut, 06520, USA
| |
Collapse
|
9
|
Wang LN, Huang Z, Yu ZX. Synthesis of Polycyclic n/5/8 and n/5/5/5 Skeletons Using Rhodium-Catalyzed [5 + 2 + 1] Cycloaddition of Exocyclic-ene-vinylcyclopropanes and Carbon Monoxide. Org Lett 2023; 25:1732-1736. [PMID: 36881539 DOI: 10.1021/acs.orglett.3c00402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
Abstract
A rhodium-catalyzed [5 + 2 + 1] reaction of exocyclic-ene-vinylcyclopropanes (exo-ene-VCPs) and CO has been realized to access challenging tricyclic n/5/8 skeletons (n = 5, 6, 7), some of which are found in natural products. This reaction can be used to build tetracyclic n/5/5/5 skeletons (n = 5, 6), which are also found in natural products. In addition, 0.2 atm CO can be replaced by (CH2O)n as the CO surrogate to achieve the [5 + 2 + 1] reaction with similar efficiency.
Collapse
Affiliation(s)
- Lu-Ning Wang
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China
| | - Zhiqiang Huang
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China
| | - Zhi-Xiang Yu
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China
| |
Collapse
|
10
|
Shi L, Gao Z, Li Y, Dai Y, Liu Y, Shi L, Hao HD. Synthetic study toward the diterpenoid aberrarone. Beilstein J Org Chem 2022; 18:1625-1628. [DOI: 10.3762/bjoc.18.173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 11/16/2022] [Indexed: 12/05/2022] Open
Abstract
An approach to aberrarone, an antimalarial diterpenoid natural product with tetracyclic skeleton is reported. Key to the stereoselective preparation of the 6-5-5 tricyclic skeleton includes the mediation of Nagata reagent for constructing the C1 all-carbon quaternary centers and gold-catalyzed cyclopentenone synthesis through C–H insertion.
Collapse
|
11
|
Kato R, Saito H, Ikeuchi K, Suzuki T, Tanino K. Total Synthesis and Structural Revision of the 6,11-Epoxyisodaucane Natural Sesquiterpene Using an Anionic 8π Electrocyclic Reaction. Org Lett 2022; 24:7939-7943. [PMID: 36268969 DOI: 10.1021/acs.orglett.2c03068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A new synthetic strategy that forms a seven-membered carbocycle using an anionic 8π electrocyclic reaction facilitated the first total synthesis of the 6,11-epoxyisodaucane natural sesquiterpene in 9.0% yield over 10 steps in the longest linear sequence. The misassigned proposed stereochemistry was corrected by the synthesis of both the proposed structure and its C6 epimer. In addition, the 5-7-fused ring system was concisely constructed by tandem decyanation/five-membered-ring formation from an epoxynitrile.
Collapse
Affiliation(s)
- Ranmaru Kato
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo 060-0810, Japan
| | - Hiroki Saito
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo 060-0810, Japan
| | - Kazutada Ikeuchi
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Takahiro Suzuki
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Keiji Tanino
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
| |
Collapse
|