1
|
Tang S, Song H, Yu S. Enantioselective Propargylic C(sp 3)-H Acyloxylation Enabled by Photoexcited Copper Catalysis. Org Lett 2024. [PMID: 39515985 DOI: 10.1021/acs.orglett.4c03933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Direct C-H bond functionalization is an efficient method for modifying organic molecules. However, achieving high enantioselectivity and regioselectivity in asymmetric C-H functionalization, particularly of C(sp3)-H bonds, remains challenging. This study introduces an enantioselective propargylic C(sp3)-H acyloxylation using photoexcited copper catalysis. The reaction demonstrated tolerance for various alkynes and peroxides, producing chiral propargyl esters in high yields and enantiomeric excess. Furthermore, the method was successfully extended to a diverse array of carboxylic acids in the presence of di-tert-butyl peroxide (DTBP), significantly broadening its applicability.
Collapse
Affiliation(s)
- Sheng Tang
- State Key Laboratory of Analytical Chemistry for Life Science, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Hengxin Song
- State Key Laboratory of Analytical Chemistry for Life Science, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
- Shangdong Weifang Rainbow Chemical Co., LTD, Weifang 262737, China
| | - Shouyun Yu
- State Key Laboratory of Analytical Chemistry for Life Science, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
- Chemistry and Biomedicine Innovation Center (ChemBIC), ChemBioMed Interdisciplinary Research Center at Nanjing University, Nanjing 210023, China
| |
Collapse
|
2
|
Ghosh S, Mukherjee S. Doubly Stereoconvergent Propargylic Alkylation of α-Cyanocarbonyls: Enantioselective Construction of Vicinal Stereocenters. Org Lett 2024; 26:7733-7738. [PMID: 39213501 DOI: 10.1021/acs.orglett.4c02880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
An asymmetric propargylic alkylation of α-cyanocarbonyls is developed for the first time under cooperative Cu(I) and organocatalysis. With ethynyl benzoxazinanones as the propargylic electrophile, this decarboxylative doubly stereoconvergent reaction evades alkyne hydroamination to furnish acyclic α-propargylic cyanocarbonyls, bearing vicinal tertiary and quaternary stereocenters, with high diastereo- and enantioselectivity (up to >20:1 dr and 99.5:0.5 er).
Collapse
Affiliation(s)
- Suman Ghosh
- Department of Organic Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - Santanu Mukherjee
- Department of Organic Chemistry, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
3
|
Chang X, Zhang J, Cheng X, Lv X, Guo C. Ni/Cu Dual-Catalyzed Propargylation for the Stereodivergent Synthesis of Methohexital. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2406764. [PMID: 39049712 PMCID: PMC11423103 DOI: 10.1002/advs.202406764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/17/2024] [Indexed: 07/27/2024]
Abstract
The development of efficient methodologies for the controlled manufacture of specific stereoisomers bearing quaternary stereocenters has prompted advances in a variety of scientific disciplines including pharmaceutical chemistry, materials science, and chemical biology. However, complete control of the absolute and relative stereochemical configurations of alkyne derivatives remains an unmet synthetic challenge. Herein, a Ni/Cu dual-catalyzed asymmetric propargylic substitution reaction is presented to produce propargylated products with all-carbon quaternary stereocenters in high yields with significant diastereo- and enantioselectivities (up to >20:1 dr, >99% ee). The synthesis of all stereochemical variants of methohexital, a widely used sedative-hypnotic drug, exemplifies the efficacy of dual-catalyzed stereodivergent propargylation.
Collapse
Affiliation(s)
- Xihao Chang
- College of Materials and Chemistry & School of Plant Protection, Anhui Agricultural University, Hefei, 230036, China
| | - Jiayin Zhang
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Xiang Cheng
- College of Materials and Chemistry & School of Plant Protection, Anhui Agricultural University, Hefei, 230036, China
| | - Xianhai Lv
- College of Materials and Chemistry & School of Plant Protection, Anhui Agricultural University, Hefei, 230036, China
| | - Chang Guo
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|
4
|
Lin TY, Li MD, Wang R, Wang X. Copper-Catalyzed Remote Asymmetric Yne-Allylic Substitution of Yne-Allylic Esters with Anthrones. Org Lett 2024; 26:5758-5763. [PMID: 38949506 DOI: 10.1021/acs.orglett.4c01916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Anthrones are key structural motifs in many natural products and pharmaceutical chemicals. However, due to its unique tricyclic aromatic structure, the synthetic space for the development of chiral anthrone derivatives is largely limited. By utilizing the potential of the copper-catalyzed remote asymmetric yne-allylic substitution reaction, we describe the first example of copper-catalyzed highly regio- and enantioselective remote yne-allylic substitution on various yne-allylic esters with anthrones under a mild reaction condition, which afforded a range of enantioenriched 1,3-enynes with exhibiting broad functional group tolerance across 51 examples.
Collapse
Affiliation(s)
- Tao-Yan Lin
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, School of Chemistry and Materials Science, Huaibei Normal University, Huaibei, Anhui 235000, P.R. China
| | - Meng-Die Li
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, School of Chemistry and Materials Science, Huaibei Normal University, Huaibei, Anhui 235000, P.R. China
| | - Rui Wang
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, School of Chemistry and Materials Science, Huaibei Normal University, Huaibei, Anhui 235000, P.R. China
| | - Xinru Wang
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, School of Chemistry and Materials Science, Huaibei Normal University, Huaibei, Anhui 235000, P.R. China
| |
Collapse
|
5
|
Lu HY, Li ZH, Lin GQ, He ZT. Asymmetric copper-catalyzed alkynylallylic monofluoroalkylations with fluorinated malonates. Chem Commun (Camb) 2024; 60:4210-4213. [PMID: 38525587 DOI: 10.1039/d4cc00371c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2024]
Abstract
The unprecedented copper-catalyzed asymmetric alkynylallylic monofluoroalkylation reaction is described via the use of 1,3-enynes and fluorinated malonates. A series of 1,4-enynes bearing a monofluoroalkyl unit are achieved in high yields, excellent regio- and enantioselectivity and high E/Z selectivity. The asymmetric propargylic monofluoroalkylation is also developed. The reliability and synthetic value of the work are highlighted by a gram-scale test and a couple of downstream transformations. Preliminary mechanistic studies unveil a negative nonlinear effect for the catalytic process.
Collapse
Affiliation(s)
- Han-Yu Lu
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Shanghai, 200032, China
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Shanghai, 200032, China.
| | - Zi-Han Li
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Shanghai, 200032, China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Shanghai, 200032, China.
| | - Guo-Qiang Lin
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Shanghai, 200032, China
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Zhi-Tao He
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Shanghai, 200032, China.
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- Ningbo Zhongke Creation Center of New Materials, Ningbo, 315899, China
| |
Collapse
|
6
|
Qian HD, Li X, Yin T, Qian WF, Zhao C, Zhu C, Xu H. Remote copper-catalyzed enantioselective substitution of yne-thiophene carbonates. Sci China Chem 2024; 67:1175-1180. [DOI: 10.1007/s11426-023-1922-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 01/05/2024] [Indexed: 10/08/2024]
|
7
|
Iqbal S, Farhanaz, Roohi, Zaheer MR, Shankar K, Hussain MK, Zia Q, Rehman MT, AlAjmi MF, Gupta A. Visible-light promoted catalyst-free (VLCF) multi-component synthesis of spiro indolo-quinazolinone-pyrrolo[3,4-a]pyrrolizine hybrids: evaluation of in vitro anticancer activity, molecular docking, MD simulation and DFT studies. J Biomol Struct Dyn 2024; 42:3145-3165. [PMID: 37227775 DOI: 10.1080/07391102.2023.2214229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 05/01/2023] [Indexed: 05/27/2023]
Abstract
A new and highly efficient visible-light-promoted catalyst free (VLCF) strategy for neat and clean synthesis of spiro indolo-quinazolinone-pyrrolo[3,4-a]pyrrolizine hybrids (6a-d) has been introduced. We have performed visible-light triggered 1,3-Dipolar cycloaddition reaction of maleimide (5a-d) with azomethine ylide generated in situ derived from tryptanthrin (3) and L-proline (4) to obtain desired products (6a-d) in good to excellent yield. Authentication and characterization of product was done using various spectroscopic techniques such as IR, 1H NMR, 13C NMR, Mass spectrometry and single crystal XRD analysis. To explain the reaction spontaneity, product stability, reactivity as well as possible mode of the interaction a quantum chemical investigation was performed and depicted through DFT studies. The synthesized compound 6a was also evaluated for anti-proliferative activity against a panel of five cancer cell lines (MCF-7, MDA-MB-231, HeLa, PC-3 and Ishikawa) and normal human embryonic kidney (HEK-293) cell line by using MTT assay. Compound 6a showed very good in vitro anti-proliferative activity (IC50 = 6.58-17.98 μM) against four cancer cell lines and no cytotoxicity against normal HEK-293. In order to evaluate the anticancer potential of compounds 6a-d, molecular docking was performed against wild type and mutant EGFR. The results suggest that all the compounds occupied the active site of both enzymes, with a strong binding energy (-10.2 to -11.5 kcal/mol). These results have been confirmed by molecular dynamics simulation by evaluating root mean square deviation (RMSD) and root mean square fluctuation (RMSF), along with principal component analysis (PCA).Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Safia Iqbal
- Department of Chemistry, Aligarh Muslim University, Aligarh, India
| | - Farhanaz
- Department of Chemistry, Aligarh Muslim University, Aligarh, India
| | - Roohi
- Protein Research Laboratory, Department of Bioengineering, Integral University, Lucknow, India
| | - Mohd Rehan Zaheer
- Department of Chemistry, R.M.P.S.P. Girls Post Graduate College, Basti, India
| | - Krapa Shankar
- Sun Pharmaceutical industries Ltd, Sarhaul, Sector 18, Gurgaon, India
| | | | - Qamar Zia
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Al Majma'ah, Saudi Arabia
| | - Md Tabish Rehman
- Department of pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mohamed F AlAjmi
- Department of pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Anamika Gupta
- Department of Chemistry, Aligarh Muslim University, Aligarh, India
| |
Collapse
|
8
|
Li MD, Wang ZH, Zhu H, Wang XR, Wang JR, Lin TY. Copper-Catalyzed Remote Enantioselective Sulfonylation of Yne-Allylic Esters with Sodium Sulfinates. Angew Chem Int Ed Engl 2023; 62:e202313911. [PMID: 37953441 DOI: 10.1002/anie.202313911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/07/2023] [Accepted: 11/10/2023] [Indexed: 11/14/2023]
Abstract
Impressive progress has been made in the copper-catalyzed asymmetric propargylic substitution (APS) reaction, but its use in remote asymmetric yne-allylic substitution remains a challenging topic. Herein, we report the first remote enantioselective copper-catalyzed sulfonylation of yne-allylic esters with sodium sulfinates. The reaction is assumed to occur via a copper-vinylvinylidene species as the key reactive intermediate. The use of readily available starting materials, the mild reaction conditions, and the excellent regio-, enantio- and stereoselectivity, as well as broad substrate scope (>70 examples), show the practicality and attractiveness of this method.
Collapse
Affiliation(s)
- Meng-Die Li
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, School of Chemistry and Materials Science, Huaibei Normal University, Huaibei, Anhui, 235000, P. R. China
| | - Zi-Han Wang
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, School of Chemistry and Materials Science, Huaibei Normal University, Huaibei, Anhui, 235000, P. R. China
| | - Hui Zhu
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, School of Chemistry and Materials Science, Huaibei Normal University, Huaibei, Anhui, 235000, P. R. China
| | - Xin-Ru Wang
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, School of Chemistry and Materials Science, Huaibei Normal University, Huaibei, Anhui, 235000, P. R. China
| | - Jia-Run Wang
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, School of Chemistry and Materials Science, Huaibei Normal University, Huaibei, Anhui, 235000, P. R. China
| | - Tao-Yan Lin
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, School of Chemistry and Materials Science, Huaibei Normal University, Huaibei, Anhui, 235000, P. R. China
| |
Collapse
|
9
|
Zuo H, Zhang C, Zhang Y, Niu D. Base-Promoted Glycosylation Allows Protecting Group-Free and Stereoselective O-Glycosylation of Carboxylic Acids. Angew Chem Int Ed Engl 2023; 62:e202309887. [PMID: 37590127 DOI: 10.1002/anie.202309887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/15/2023] [Accepted: 08/16/2023] [Indexed: 08/19/2023]
Abstract
Here we report a simple and general method to achieve fully unprotected, stereoselective glycosylation of carboxylic acids, employing bench-stable allyl glycosyl sulfones as donors. Running the glycosylation reaction under basic conditions was crucial for the efficiencies and selectivities. Both the donor activation stage and the glycosidic bond forming stage of the process are compatible with free hydroxyl groups, thereby allowing for the use of fully unprotected glycosyl donors. This transformation is stereoconvergent, occurs under mild and metal-free conditions at ambient temperature with visible light (455 nm) irradiation, and displays remarkable scope with respect to both reaction partners. Many natural products and commercial drugs, including an acid derived from the complex anticancer agent taxol, were efficiently glycosylated. Experimental studies provide insights into the origin of the stereochemical outcome.
Collapse
Affiliation(s)
- Hao Zuo
- Department of Emergency, State Key Laboratory of Biotherapy, West China Hospital, School of Chemical Engineering, Sichuan University, No. 17 Renmin Nan Road, Chengdu, 610041, China
| | - Chen Zhang
- Department of Emergency, State Key Laboratory of Biotherapy, West China Hospital, School of Chemical Engineering, Sichuan University, No. 17 Renmin Nan Road, Chengdu, 610041, China
| | - Yang Zhang
- Department of Emergency, State Key Laboratory of Biotherapy, West China Hospital, School of Chemical Engineering, Sichuan University, No. 17 Renmin Nan Road, Chengdu, 610041, China
| | - Dawen Niu
- Department of Emergency, State Key Laboratory of Biotherapy, West China Hospital, School of Chemical Engineering, Sichuan University, No. 17 Renmin Nan Road, Chengdu, 610041, China
| |
Collapse
|
10
|
Xu C, Zhang H, Lan S, Liu J, Yang S, Zhang Q, Fang X. Copper-Catalysed Rearrangement of Cyclic Ethynylethylene Carbonates: Synthetic Applications and Mechanistic Studies. Angew Chem Int Ed Engl 2023; 62:e202219064. [PMID: 36759324 DOI: 10.1002/anie.202219064] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 02/06/2023] [Accepted: 02/09/2023] [Indexed: 02/11/2023]
Abstract
Transition-metal-catalysed reactions of cyclic ethynylethylene carbonates have been intensively studied because of their robustness in new bond formation and diversified molecule construction. Known reaction modes usually involve a substitution step occurring at either the propargylic or terminal alkyne positions. Here, we report an unprecedented reaction pattern in which cyclic ethynylethylene carbonates first undergo a rearrangement to release allenal intermediates, which subsequently react with diverse nucleophiles to furnish synthetically useful allylic and propargylic allenols, phosphorus ylides, and cyclopropylidene ketones through an addition process rather than a substitution pathway. The products enable various further transformations, and mechanistic studies and theoretical calculations reveal that the reaction does not proceed via a semipinacol type [1,2]-hydride shift, but through base-mediated deprotonation as the key step to induce the rearrangement.
Collapse
Affiliation(s)
- Chao Xu
- State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, University of Chinese Academy of Sciences, Fuzhou, 350100, China
| | - Hao Zhang
- State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, University of Chinese Academy of Sciences, Fuzhou, 350100, China
| | - Shouang Lan
- State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, University of Chinese Academy of Sciences, Fuzhou, 350100, China
| | - Jinggong Liu
- Orthopedics Department, Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou, 510120, China
| | - Shuang Yang
- State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, University of Chinese Academy of Sciences, Fuzhou, 350100, China
| | - Qi Zhang
- Institute of Industry & Equipment Technology, Anhui Province Key Lab of Aerospace Structural Parts Forming Technology and Equipment, Hefei University of Technology, Hefei, 230009, China
| | - Xinqiang Fang
- State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, University of Chinese Academy of Sciences, Fuzhou, 350100, China
| |
Collapse
|
11
|
Interplay of diruthenium catalyst in controlling enantioselective propargylic substitution reactions with visible light-generated alkyl radicals. Nat Commun 2023; 14:859. [PMID: 36823151 PMCID: PMC9950057 DOI: 10.1038/s41467-023-36453-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 01/26/2023] [Indexed: 02/25/2023] Open
Abstract
Transition metal-catalyzed enantioselective free radical substitution reactions have recently attracted attention as convenient and important building tools in synthetic chemistry, although construction of stereogenic carbon centers at the propargylic position of propargylic alcohols by reactions with free radicals remains unchallenged. Here we present a strategy to control enantioselective propargylic substitution reactions with alkyl radicals under photoredox conditions by applying dual photoredox and diruthenium catalytic system, where the photoredox catalyst generates alkyl radicals from 4-alkyl-1,4-dihydropyridines, and the diruthenium core with a chiral ligand traps propargylic alcohols and alkyl radicals to guide enantioselective alkylation at the propargylic position, leading to high yields of propargylic alkylated products containing a quaternary stereogenic carbon center at the propargylic position with a high enantioselectivity. The result described in this paper provides the successful example of transition metal-catalyzed enantioselective propargylic substitution reactions with free alkyl radicals.
Collapse
|
12
|
Zhu J, Wang Y, Charlack AD, Wang YM. Enantioselective and Diastereodivergent Allylation of Propargylic C-H Bonds. J Am Chem Soc 2022; 144:15480-15487. [PMID: 35976157 PMCID: PMC9437123 DOI: 10.1021/jacs.2c07297] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
An iridium-catalyzed stereoselective coupling of allylic ethers and alkynes to generate 3,4-substituted 1,5-enynes is reported. Under optimized conditions, the coupling products are formed with excellent regio-, diastereo-, and enantioselectivities, and the protocol is functional group tolerant. Moreover, we report conditions that allow the reaction to proceed with complete reversal of diastereoselectivity. Mechanistic studies are consistent with an unprecedented dual role for the iridium catalyst, enabling the propargylic deprotonation of the alkyne through π-coordination, as well as the generation of a π-allyl species from the allylic ether starting material.
Collapse
Affiliation(s)
- Jin Zhu
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania15260, United States
| | - Yidong Wang
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania15260, United States
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu225002, China
| | - Aaron D Charlack
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania15260, United States
| | - Yi-Ming Wang
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania15260, United States
| |
Collapse
|
13
|
Swain M, Bunnell TB, Kim J, Kwon O. Dealkenylative Alkynylation Using Catalytic Fe II and Vitamin C. J Am Chem Soc 2022; 144:14828-14837. [PMID: 35929075 PMCID: PMC9731399 DOI: 10.1021/jacs.2c05980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In this paper, we report the synthesis of alkyl-tethered alkynes through ozone-mediated and FeII-catalyzed dealkenylative alkynylation of unactivated alkenes in the presence of alkynyl sulfones. This one-pot reaction, which employs a combination of a catalytic FeII salt and l-ascorbic acid, proceeds under mild conditions with good efficiency, high stereoselectivity, and broad functional group compatibility. In contrast to our previous FeII-mediated reductive fragmentation of α-methoxyhydroperoxides, the FeII-catalyzed process was devised through a thorough kinetic analysis of the multiple competing radical (redox) pathways. We highlight the potential of this dealkenylative alkynylation through multiple post-synthetic transformations and late-stage diversifications of complex molecules, including natural products and pharmaceuticals.
Collapse
Affiliation(s)
- Manisha Swain
- Department of Chemistry and Biochemistry, University of California─Los Angeles, Los Angeles, California 90095-1569, United States
| | - Thomas B Bunnell
- Department of Chemistry and Biochemistry, University of California─Los Angeles, Los Angeles, California 90095-1569, United States
| | - Jacob Kim
- Department of Chemistry and Biochemistry, University of California─Los Angeles, Los Angeles, California 90095-1569, United States
| | - Ohyun Kwon
- Department of Chemistry and Biochemistry, University of California─Los Angeles, Los Angeles, California 90095-1569, United States
| |
Collapse
|