1
|
Deichmann M, Hansson FG, Jensen ED. Yeast-based screening platforms to understand and improve human health. Trends Biotechnol 2024; 42:1258-1272. [PMID: 38677901 DOI: 10.1016/j.tibtech.2024.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 04/01/2024] [Accepted: 04/03/2024] [Indexed: 04/29/2024]
Abstract
Detailed molecular understanding of the human organism is essential to develop effective therapies. Saccharomyces cerevisiae has been used extensively for acquiring insights into important aspects of human health, such as studying genetics and cell-cell communication, elucidating protein-protein interaction (PPI) networks, and investigating human G protein-coupled receptor (hGPCR) signaling. We highlight recent advances and opportunities of yeast-based technologies for cost-efficient chemical library screening on hGPCRs, accelerated deciphering of PPI networks with mating-based screening and selection, and accurate cell-cell communication with human immune cells. Overall, yeast-based technologies constitute an important platform to support basic understanding and innovative applications towards improving human health.
Collapse
Affiliation(s)
- Marcus Deichmann
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark
| | - Frederik G Hansson
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark
| | - Emil D Jensen
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark.
| |
Collapse
|
2
|
O'Connor E, Micklefield J, Cai Y. Searching for the optimal microbial factory: high-throughput biosensors and analytical techniques for screening small molecules. Curr Opin Biotechnol 2024; 87:103125. [PMID: 38547587 DOI: 10.1016/j.copbio.2024.103125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/06/2024] [Accepted: 03/07/2024] [Indexed: 06/09/2024]
Abstract
High-throughput screening technologies have been lacking in comparison to the plethora of high-throughput genetic diversification techniques developed in biotechnology. This review explores the challenges and advancements in high-throughput screening for high-value natural products, focusing on the critical need to expand ligand targets for biosensors and increase the throughput of analytical techniques in screening microbial cell libraries for optimal strain performance. The engineering techniques to broaden the scope of ligands for biosensors, such as transcription factors, G protein-coupled receptors and riboswitches are discussed. On the other hand, integration of microfluidics with traditional analytical methods is explored, covering fluorescence-activated cell sorting, Raman-activated cell sorting and mass spectrometry, emphasising recent developments in maximising throughput.
Collapse
Affiliation(s)
- Eloise O'Connor
- Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester M1 7DN, UK
| | - Jason Micklefield
- Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester M1 7DN, UK
| | - Yizhi Cai
- Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester M1 7DN, UK.
| |
Collapse
|
3
|
Holtz M, Acevedo-Rocha CG, Jensen MK. Combining enzyme and metabolic engineering for microbial supply of therapeutic phytochemicals. Curr Opin Biotechnol 2024; 87:103110. [PMID: 38503222 DOI: 10.1016/j.copbio.2024.103110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/27/2024] [Accepted: 02/29/2024] [Indexed: 03/21/2024]
Abstract
The history of pharmacology is deeply intertwined with plant-derived compounds, which continue to be crucial in drug development. However, their complex structures and limited availability in plants challenge drug discovery, optimization, development, and industrial production via chemical synthesis or natural extraction. This review delves into the integration of metabolic and enzyme engineering to leverage micro-organisms as platforms for the sustainable and reliable production of therapeutic phytochemicals. We argue that engineered microbes can serve a triple role in this paradigm: facilitating pathway discovery, acting as cell factories for scalable manufacturing, and functioning as platforms for chemical derivatization. Analyzing recent progress and outlining future directions, the review highlights microbial biotechnology's transformative potential in expanding plant-derived human therapeutics' discovery and supply chains.
Collapse
Affiliation(s)
- Maxence Holtz
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Carlos G Acevedo-Rocha
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Michael K Jensen
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs. Lyngby, Denmark.
| |
Collapse
|
4
|
Agyemang E, Gonneville AN, Tiruvadi-Krishnan S, Lamichhane R. Exploring GPCR conformational dynamics using single-molecule fluorescence. Methods 2024; 226:35-48. [PMID: 38604413 PMCID: PMC11098685 DOI: 10.1016/j.ymeth.2024.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 03/21/2024] [Accepted: 03/22/2024] [Indexed: 04/13/2024] Open
Abstract
G protein-coupled receptors (GPCRs) are membrane proteins that transmit specific external stimuli into cells by changing their conformation. This conformational change allows them to couple and activate G-proteins to initiate signal transduction. A critical challenge in studying and inferring these structural dynamics arises from the complexity of the cellular environment, including the presence of various endogenous factors. Due to the recent advances in cell-expression systems, membrane-protein purification techniques, and labeling approaches, it is now possible to study the structural dynamics of GPCRs at a single-molecule level both in vitro and in live cells. In this review, we discuss state-of-the-art techniques and strategies for expressing, purifying, and labeling GPCRs in the context of single-molecule research. We also highlight four recent studies that demonstrate the applications of single-molecule microscopy in revealing the dynamics of GPCRs. These techniques are also useful as complementary methods to verify the results obtained from other structural biology tools like cryo-electron microscopy and x-ray crystallography.
Collapse
Affiliation(s)
- Eugene Agyemang
- UT-ORNL Graduate School of Genome Science and Technology, The University of Tennessee, Knoxville, TN 37996, USA
| | - Alyssa N Gonneville
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| | - Sriram Tiruvadi-Krishnan
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| | - Rajan Lamichhane
- UT-ORNL Graduate School of Genome Science and Technology, The University of Tennessee, Knoxville, TN 37996, USA; Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA.
| |
Collapse
|
5
|
Mulvihill CJ, Lutgens JD, Gollihar JD, Bachanová P, Tramont C, Marcotte EM, Ellington AD, Gardner EC. A Humanized CB1R Yeast Biosensor Enables Facile Screening of Cannabinoid Compounds. Int J Mol Sci 2024; 25:6060. [PMID: 38892247 PMCID: PMC11173002 DOI: 10.3390/ijms25116060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 05/21/2024] [Accepted: 05/28/2024] [Indexed: 06/21/2024] Open
Abstract
Yeast expression of human G-protein-coupled receptors (GPCRs) can be used as a biosensor platform for the detection of pharmaceuticals. Cannabinoid receptor type 1 (CB1R) is of particular interest, given the cornucopia of natural and synthetic cannabinoids being explored as therapeutics. We show for the first time that engineering the N-terminus of CB1R allows for efficient signal transduction in yeast, and that engineering the sterol composition of the yeast membrane modulates its performance. Using an engineered cannabinoid biosensor, we demonstrate that large libraries of synthetic cannabinoids and terpenes can be quickly screened to elucidate known and novel structure-activity relationships. The biosensor strains offer a ready platform for evaluating the activity of new synthetic cannabinoids, monitoring drugs of abuse, and developing therapeutic molecules.
Collapse
Affiliation(s)
- Colleen J. Mulvihill
- Center for Systems and Synthetic Biology, Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA (C.T.)
| | - Joshua D. Lutgens
- Center for Systems and Synthetic Biology, Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA (C.T.)
| | - Jimmy D. Gollihar
- Antibody Discovery and Accelerated Protein Therapeutics, Center for Infectious Diseases, Houston Methodist Research Institute, Houston, TX 77030, USA;
| | - Petra Bachanová
- Center for Systems and Synthetic Biology, Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA (C.T.)
| | - Caitlin Tramont
- Center for Systems and Synthetic Biology, Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA (C.T.)
| | - Edward M. Marcotte
- Center for Systems and Synthetic Biology, Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA (C.T.)
| | - Andrew D. Ellington
- Center for Systems and Synthetic Biology, Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA (C.T.)
| | - Elizabeth C. Gardner
- Center for Systems and Synthetic Biology, Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA (C.T.)
- Department of Bioengineering, Rice University, 6100 Main St., Houston, TX 77005, USA
| |
Collapse
|
6
|
Abstract
This paper is the forty-fifth consecutive installment of the annual anthological review of research concerning the endogenous opioid system, summarizing articles published during 2022 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides and receptors as well as effects of opioid/opiate agonists and antagonists. The review is subdivided into the following specific topics: molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors (1), the roles of these opioid peptides and receptors in pain and analgesia in animals (2) and humans (3), opioid-sensitive and opioid-insensitive effects of nonopioid analgesics (4), opioid peptide and receptor involvement in tolerance and dependence (5), stress and social status (6), learning and memory (7), eating and drinking (8), drug abuse and alcohol (9), sexual activity and hormones, pregnancy, development and endocrinology (10), mental illness and mood (11), seizures and neurologic disorders (12), electrical-related activity and neurophysiology (13), general activity and locomotion (14), gastrointestinal, renal and hepatic functions (15), cardiovascular responses (16), respiration and thermoregulation (17), and immunological responses (18).
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, Flushing, NY 11367, USA.
| |
Collapse
|
7
|
Jin Z, Vighi A, Dong Y, Bureau JA, Ignea C. Engineering membrane architecture for biotechnological applications. Biotechnol Adv 2023; 64:108118. [PMID: 36773706 DOI: 10.1016/j.biotechadv.2023.108118] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 02/02/2023] [Accepted: 02/06/2023] [Indexed: 02/12/2023]
Abstract
Cellular membranes, predominantly described as a dynamic bilayer, are composed of different lipids, transmembrane proteins, and carbohydrates. Most research on biological membranes focuses on the identification, characterization, and mechanistic aspects of their different components. These studies provide a fundamental understanding of membrane structure, function, and dynamics, establishing a basis for the development of membrane engineering strategies. To date, approaches in this field concentrate on membrane adaptation to harsh conditions during industrial fermentation, which can be caused by temperature, osmotic, or organic solvent stress. With advances in the field of metabolic engineering and synthetic biology, recent breakthroughs include proof of concept microbial production of essential medicines, such as cannabinoids and vinblastine. However, long pathways, low yields, and host adaptation continue to pose challenges to the efficient scale up production of many important compounds. The lipid bilayer is profoundly linked to the activity of heterologous membrane-bound enzymes and transport of metabolites. Therefore, strategies for improving enzyme performance, facilitating pathway reconstruction, and enabling storage of products to increase the yields directly involve cellular membranes. At the forefront of membrane engineering research are re-emerging approaches in lipid research and synthetic biology that manipulate membrane size and composition and target lipid profiles across species. This review summarizes engineering strategies applied to cellular membranes and discusses the challenges and future perspectives, particularly with regards to their applications in host engineering and bioproduction.
Collapse
Affiliation(s)
- Zimo Jin
- Department of Bioengineering, McGill University, Montreal, Quebec H3A 0E9, Canada
| | - Asia Vighi
- Department of Bioengineering, McGill University, Montreal, Quebec H3A 0E9, Canada
| | - Yueming Dong
- Department of Bioengineering, McGill University, Montreal, Quebec H3A 0E9, Canada
| | | | - Codruta Ignea
- Department of Bioengineering, McGill University, Montreal, Quebec H3A 0E9, Canada.
| |
Collapse
|
8
|
Mazzeo F, Meccariello R. Cannabis and Paternal Epigenetic Inheritance. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:ijerph20095663. [PMID: 37174181 PMCID: PMC10177768 DOI: 10.3390/ijerph20095663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/19/2023] [Accepted: 04/23/2023] [Indexed: 05/15/2023]
Abstract
Cannabis is the most widely used illicit drug in Western counties and its abuse is particularly high in male adolescents and young adults. Its main psychotropic component, the cannabinoid delta-9-tetrahydrocannabinol (Δ9-THC), interferes in the endogenous endocannabinoid system. This signaling system is involved in the control of many biological activities, including the formation of high-quality male gametes. Direct adverse effects of Δ9-THC in male reproduction are well known in both animal models and humans. Nevertheless, the possibility of long-term effects due to epigenetic mechanisms has recently been reported. In this review, we summarize the main advances in the field suggesting the need to pay attention to the possible long-term epigenetic risks for the reproductive health of cannabis users and the health of their offspring.
Collapse
Affiliation(s)
- Filomena Mazzeo
- Dipartimento di Scienze Economiche, Giuridiche, Informatiche e Motorie, Università di Napoli Parthenope, Nola, 80035 Naples, Italy
- Department of Economics, Law, Cybersecurity and Sports Sciences, University of Naples "Parthenope", Nola, 80133 Naples, Italy
| | - Rosaria Meccariello
- Dipartimento di Scienze Motorie e del Benessere, Università di Napoli Parthenope, 80133 Napoli, Italy
- Department of Movement Sciences and Wellbeing, University "Parthenope", 80133 Naples, Italy
| |
Collapse
|
9
|
Harrington AW, Liu C, Phillips N, Nepomuceno D, Kuei C, Chang J, Chen W, Sutton SW, O'Malley D, Pham L, Yao X, Sun S, Bonaventure P. Identification and characterization of select oxysterols as ligands for GPR17. Br J Pharmacol 2023; 180:401-421. [PMID: 36214386 DOI: 10.1111/bph.15969] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 09/28/2022] [Accepted: 09/30/2022] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND AND PURPOSE G-protein coupled receptor 17 (GPR17) is an orphan receptor involved in the process of myelination, due to its ability to inhibit the maturation of oligodendrocyte progenitor cells (OPCs) into myelinating oligodendrocytes. Despite multiple claims that the biological ligand has been identified, it remains an orphan receptor. EXPERIMENTAL APPROACH Seventy-seven oxysterols were screened in a cell-free [35 S]GTPγS binding assay using membranes from cells expressing GPR17. The positive hits were characterized using adenosine 3',5' cyclic monophosphate (cAMP), inositol monophosphate (IP1) and calcium mobilization assays, with results confirmed in rat primary oligodendrocytes. Rat and pig brain extracts were separated by high-performance liquid chromatography (HPLC) and endogenous activator(s) were identified in receptor activation assays. Gene expression studies of GPR17, and CYP46A1 (cytochrome P450 family 46 subfamily A member 1) enzymes responsible for the conversion of cholesterol into specific oxysterols, were performed using quantitative real-time PCR. KEY RESULTS Five oxysterols were able to stimulate GPR17 activity, including the brain cholesterol, 24(S)-hydroxycholesterol (24S-HC). A specific brain fraction from rat and pig extracts containing 24S-HC activates GPR17 in vitro. Expression of Gpr17 during mouse brain development correlates with the expression of Cyp46a1 and the levels of 24S-HC itself. Other active oxysterols have low brain concentrations below effective ranges. CONCLUSIONS AND IMPLICATIONS Oxysterols, including but not limited to 24S-HC, could be physiological activators for GPR17 and thus potentially regulate OPC differentiation and myelination through activation of the receptor.
Collapse
Affiliation(s)
| | - Changlu Liu
- Janssen Research & Development, LLC, San Diego, California, USA
| | - Naomi Phillips
- Janssen Research & Development, LLC, San Diego, California, USA
| | | | - Chester Kuei
- Janssen Research & Development, LLC, San Diego, California, USA
| | - Joseph Chang
- Janssen Research & Development, LLC, San Diego, California, USA
| | - Weixuan Chen
- Janssen Research & Development, LLC, San Diego, California, USA
| | - Steven W Sutton
- Janssen Research & Development, LLC, San Diego, California, USA
| | - Daniel O'Malley
- Janssen Research & Development, LLC, San Diego, California, USA
| | - Ly Pham
- Janssen Research & Development, LLC, San Diego, California, USA
| | - Xiang Yao
- Janssen Research & Development, LLC, San Diego, California, USA
| | - Siquan Sun
- Janssen Research & Development, LLC, San Diego, California, USA
| | | |
Collapse
|
10
|
Abstract
Chemical biosensors are an increasingly ubiquitous part of our lives. Beyond enzyme-coupled assays, recent synthetic biology advances now allow us to hijack more complex biosensing systems to respond to difficult to detect analytes, such as chemical small molecules. Here, we briefly overview recent advances in the biosensing of small molecules, including nucleic acid aptamers, allosteric transcription factors, and two-component systems. We then look more closely at a recently developed chemical sensing system, G protein-coupled receptor (GPCR)-based sensors. Finally, we consider the chemical sensing capabilities of the largest GPCR subfamily, olfactory receptors (ORs). We examine ORs' role in nature, their potential as a biomedical target, and their ability to detect compounds not amenable for detection using other biological scaffolds. We conclude by evaluating the current challenges, opportunities, and future applications of GPCR- and OR-based sensors.
Collapse
Affiliation(s)
- Amisha Patel
- School
of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Pamela Peralta-Yahya
- School
of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States,School
of Chemistry and Biochemistry, Georgia Institute
of Technology, Atlanta, Georgia 30332, United States,E-mail:
| |
Collapse
|
11
|
Shaw WM, Zhang Y, Lu X, Khalil AS, Ladds G, Luo X, Ellis T. Screening microbially produced Δ 9-tetrahydrocannabinol using a yeast biosensor workflow. Nat Commun 2022; 13:5509. [PMID: 36127350 PMCID: PMC9489785 DOI: 10.1038/s41467-022-33207-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 09/07/2022] [Indexed: 12/03/2022] Open
Abstract
Microbial production of cannabinoids promises to provide a consistent, cheaper, and more sustainable supply of these important therapeutic molecules. However, scaling production to compete with traditional plant-based sources is challenging. Our ability to make strain variants greatly exceeds our capacity to screen and identify high producers, creating a bottleneck in metabolic engineering efforts. Here, we present a yeast-based biosensor for detecting microbially produced Δ9-tetrahydrocannabinol (THC) to increase throughput and lower the cost of screening. We port five human cannabinoid G protein-coupled receptors (GPCRs) into yeast, showing the cannabinoid type 2 receptor, CB2R, can couple to the yeast pheromone response pathway and report on the concentration of a variety of cannabinoids over a wide dynamic and operational range. We demonstrate that our cannabinoid biosensor can detect THC from microbial cell culture and use this as a tool for measuring relative production yields from a library of Δ9-tetrahydrocannabinol acid synthase (THCAS) mutants. Microbial production of cannabinoids promises a cheaper and more sustainable route to these important therapeutic molecules, but strain improvement and screening is challenging. Here, the authors develop a yeast-based Δ9-tetrahydrocannabinol (THC) biosensor for screening microbial mutant libraries.
Collapse
Affiliation(s)
- William M Shaw
- Biological Design Center, Boston University, Boston, MA, 02215, USA.,Department of Biomedical Engineering, Boston University, Boston, MA, 02215, USA.,Department of Bioengineering, Imperial College London, London, SW7 2AZ, UK.,Imperial College Centre for Synthetic Biology, Imperial College London, London, SW7 2AZ, UK
| | - Yunfeng Zhang
- Center for Synthetic Biochemistry, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Xinyu Lu
- Department of Bioengineering, Imperial College London, London, SW7 2AZ, UK.,Imperial College Centre for Synthetic Biology, Imperial College London, London, SW7 2AZ, UK
| | - Ahmad S Khalil
- Biological Design Center, Boston University, Boston, MA, 02215, USA.,Department of Biomedical Engineering, Boston University, Boston, MA, 02215, USA.,Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02115, USA
| | - Graham Ladds
- Department of Pharmacology, University of Cambridge, Cambridge, CB2 1PD, UK
| | - Xiaozhou Luo
- Center for Synthetic Biochemistry, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Tom Ellis
- Department of Bioengineering, Imperial College London, London, SW7 2AZ, UK. .,Imperial College Centre for Synthetic Biology, Imperial College London, London, SW7 2AZ, UK.
| |
Collapse
|
12
|
Dhakal S, Macreadie I. The Use of Yeast in Biosensing. Microorganisms 2022; 10:1772. [PMID: 36144374 PMCID: PMC9505958 DOI: 10.3390/microorganisms10091772] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/24/2022] [Accepted: 08/30/2022] [Indexed: 11/18/2022] Open
Abstract
Yeast has been used as a model for several diseases as it is the simplest unicellular eukaryote, safe and easy to culture and harbors most of the fundamental processes that are present in almost all higher eukaryotes, including humans. From understanding the pathogenesis of disease to drug discovery studies, yeast has served as an important biosensor. It is not only due to the conservation of genetics, amenable modification of its genome and easily accessible analytical methods, but also some characteristic features such as its ability to survive with defective mitochondria, making it a highly flexible microbe for designing whole-cell biosensing systems. The aim of this review is to report on how yeasts have been utilized as biosensors, reporting on responses to various stimuli.
Collapse
Affiliation(s)
| | - Ian Macreadie
- School of Science, RMIT University, Bundoora, VIC 3083, Australia
| |
Collapse
|