1
|
Sutter M, Utschig LM, Niklas J, Paul S, Kahan DN, Gupta S, Poluektov OG, Ferlez BH, Tefft NM, TerAvest MA, Hickey DP, Vermaas JV, Ralston CY, Kerfeld CA. Electrochemical cofactor recycling of bacterial microcompartments. Proc Natl Acad Sci U S A 2024; 121:e2414220121. [PMID: 39585991 PMCID: PMC11626177 DOI: 10.1073/pnas.2414220121] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 10/15/2024] [Indexed: 11/27/2024] Open
Abstract
Bacterial microcompartments (BMCs) are prokaryotic organelles that consist of a protein shell which sequesters metabolic reactions in its interior. While most of the substrates and products are relatively small and can permeate the shell, many of the encapsulated enzymes require cofactors that must be regenerated inside. We have analyzed the occurrence of an enzyme previously assigned as a cobalamin (vitamin B12) reductase and, curiously, found it in many unrelated BMC types that do not employ B12 cofactors. We propose Nicotinamide adenine dinucleotide (NAD+) regeneration as the function of this enzyme and name it Metabolosome Nicotinamide Adenine Dinucleotide Hydrogen (NADH) dehydrogenase (MNdh). Its partner shell protein BMC-TSE (tandem domain BMC shell protein of the single layer type for electron transfer) assists in passing the generated electrons to the outside. We support this hypothesis with bioinformatic analysis, functional assays, Electron Paramagnetic Resonance spectroscopy, protein voltammetry, and structural modeling verified with X-ray footprinting. This finding represents a paradigm for the BMC field, identifying a new, widely occurring route for cofactor recycling and a new function for the shell as separating redox environments.
Collapse
Affiliation(s)
- Markus Sutter
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI48824
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA94720
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA94720
| | - Lisa M. Utschig
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, IL60439
| | - Jens Niklas
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, IL60439
| | - Sathi Paul
- Molecular Foundry Division, Lawrence Berkeley National Laboratory, Berkeley, CA94720
| | - Darren N. Kahan
- Biophysics Graduate Program, University of California, Berkeley, CA94720
| | - Sayan Gupta
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA94720
| | - Oleg G. Poluektov
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, IL60439
| | - Bryan H. Ferlez
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI48824
| | - Nicholas M. Tefft
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI48824
| | - Michaela A. TerAvest
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI48824
| | - David P. Hickey
- Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, MI48824
| | - Josh V. Vermaas
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI48824
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI48824
| | - Corie Y. Ralston
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA94720
- Molecular Foundry Division, Lawrence Berkeley National Laboratory, Berkeley, CA94720
| | - Cheryl A. Kerfeld
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI48824
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA94720
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA94720
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI48824
| |
Collapse
|
2
|
Wang P, Li J, Li T, Li K, Ng PC, Wang S, Chriscoli V, Basle A, Marles-Wright J, Zhang YZ, Liu LN. Molecular principles of the assembly and construction of a carboxysome shell. SCIENCE ADVANCES 2024; 10:eadr4227. [PMID: 39612341 PMCID: PMC11606499 DOI: 10.1126/sciadv.adr4227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 10/25/2024] [Indexed: 12/01/2024]
Abstract
Intracellular compartmentalization enhances biological reactions, crucial for cellular function and survival. An example is the carboxysome, a bacterial microcompartment for CO2 fixation. The carboxysome uses a polyhedral protein shell made of hexamers, pentamers, and trimers to encapsulate Rubisco, increasing CO2 levels near Rubisco to enhance carboxylation. Despite their role in the global carbon cycle, the molecular mechanisms behind carboxysome shell assembly remain unclear. Here, we present a structural characterization of α-carboxysome shells generated from recombinant systems, which contain all shell proteins and the scaffolding protein CsoS2. Atomic-resolution cryo-electron microscopy of the shell assemblies, with a maximal size of 54 nm, unveil diverse assembly interfaces between shell proteins, detailed interactions of CsoS2 with shell proteins to drive shell assembly, and the formation of heterohexamers and heteropentamers by different shell protein paralogs, facilitating the assembly of larger empty shells. Our findings provide mechanistic insights into the construction principles of α-carboxysome shells and the role of CsoS2 in governing α-carboxysome assembly and functionality.
Collapse
Affiliation(s)
- Peng Wang
- MOE Key Laboratory of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System & College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Jianxun Li
- Marine Biotechnology Research Center, State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Tianpei Li
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK
| | - Kang Li
- MOE Key Laboratory of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System & College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Pei Cing Ng
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK
| | - Saimeng Wang
- Marine Biotechnology Research Center, State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Vincent Chriscoli
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK
| | - Arnaud Basle
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Jon Marles-Wright
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Yu-Zhong Zhang
- MOE Key Laboratory of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System & College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
- Marine Biotechnology Research Center, State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Lu-Ning Liu
- MOE Key Laboratory of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System & College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK
| |
Collapse
|
3
|
Li T, Chen T, Chang P, Ge X, Chriscoli V, Dykes GF, Wang Q, Liu LN. Uncovering the roles of the scaffolding protein CsoS2 in mediating the assembly and shape of the α-carboxysome shell. mBio 2024; 15:e0135824. [PMID: 39207096 PMCID: PMC11481516 DOI: 10.1128/mbio.01358-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 07/25/2024] [Indexed: 09/04/2024] Open
Abstract
Carboxysomes are proteinaceous organelles featuring icosahedral protein shells that enclose the carbon-fixing enzymes, ribulose-1,5-bisphosphate carboxylase oxygenase (Rubisco), along with carbonic anhydrase. The intrinsically disordered scaffolding protein CsoS2 plays a vital role in the construction of α-carboxysomes through bridging the shell and cargo enzymes. The N-terminal domain of CsoS2 binds Rubisco and facilitates Rubisco packaging within the α-carboxysome, whereas the C-terminal domain of CsoS2 (CsoS2-C) anchors to the shell and promotes shell assembly. However, the role of the middle region of CsoS2 (CsoS2-M) has remained elusive. Here, we conducted in-depth examinations on the function of CsoS2-M in the assembly of the α-carboxysome shell by generating a series of recombinant shell variants in the absence of cargos. Our results reveal that CsoS2-M assists CsoS2-C in the assembly of the α-carboxysome shell and plays an important role in shaping the α-carboxysome shell through enhancing the association of shell proteins on both the facet-facet interfaces and flat shell facets. Moreover, CsoS2-M is responsible for recruiting the C-terminal truncated isoform of CsoS2, CsoS2A, into α-carboxysomes, which is crucial for Rubisco encapsulation and packaging. This study not only deepens our knowledge of how the carboxysome shell is constructed and regulated but also lays the groundwork for engineering and repurposing carboxysome-based nanostructures for diverse biotechnological purposes. IMPORTANCE Carboxysomes are a paradigm of organelle-like structures in cyanobacteria and many proteobacteria. These nanoscale compartments enclose Rubisco and carbonic anhydrase within an icosahedral virus-like shell to improve CO2 fixation, playing a vital role in the global carbon cycle. Understanding how the carboxysomes are formed is not only important for basic research studies but also holds promise for repurposing carboxysomes in bioengineering applications. In this study, we focuses on a specific scaffolding protein called CsoS2, which is involved in facilitating the assembly of α-type carboxysomes. By deciphering the functions of different parts of CsoS2, especially its middle region, we provide new insights into how CsoS2 drives the stepwise assembly of the carboxysome at the molecular level. This knowledge will guide the rational design and reprogramming of carboxysome nanostructures for many biotechnological applications.
Collapse
Affiliation(s)
- Tianpei Li
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Taiyu Chen
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Ping Chang
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Xingwu Ge
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Vincent Chriscoli
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Gregory F. Dykes
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Qiang Wang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Lu-Ning Liu
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
- MOE Key Laboratory of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System & College of Marine Life Sciences, Ocean University of China, Qingdao, China
| |
Collapse
|
4
|
Trettel DS, Hoang Y, Vecchiarelli AG, Gonzalez-Esquer CR. A robust synthetic biology toolkit to advance carboxysome study and redesign. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.08.617227. [PMID: 39416180 PMCID: PMC11482911 DOI: 10.1101/2024.10.08.617227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Carboxysomes are polyhedral protein organelles that microorganisms use to facilitate carbon dioxide assimilation. They are composed of a modular protein shell which envelops an enzymatic core mainly comprised of physically coupled Rubisco and carbonic anhydrase. While the modular construction principles of carboxysomes make them attractive targets as customizable metabolic platforms, their size and complexity can be a hinderance. In this work, we design and validate a plasmid set - the pXpressome toolkit - in which α-carboxysomes are robustly expressed and remain intact and functional after purification. We tested this toolkit by introducing mutations which influence carboxysome structure and performance. We find that deletion of vertex-capping genes results in formation of larger carboxysomes while deletion of facet forming genes produces smaller particles, suggesting that adjusting the ratio of these proteins can rationally affect morphology. Through a series of fluorescently labeled constructs, we observe this toolkit leads to more uniform expression and better cell health than previously published carboxysome expression systems. Overall, the pXpressome toolkit facilitates the study and redesign of carboxysomes with robust performance and improved phenotype uniformity. The pXpressome toolkit will support efforts to remodel carboxysomes for enhanced carbon fixation or serve as a platform for other nanoencapsulation goals.
Collapse
Affiliation(s)
- Daniel S. Trettel
- Los Alamos National Laboratory, Bioscience Division, Microbial and Biome Sciences group, Los Alamos, NM, USA
| | - Y Hoang
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109 USA
| | - Anthony G. Vecchiarelli
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109 USA
| | - Cesar R. Gonzalez-Esquer
- Los Alamos National Laboratory, Bioscience Division, Microbial and Biome Sciences group, Los Alamos, NM, USA
| |
Collapse
|
5
|
Johnson ER, Kennedy NW, Mills CE, Liang S, Chandrasekar S, Nichols TM, Rybnicky GA, Tullman-Ercek D. Signal sequences target enzymes and structural proteins to bacterial microcompartments and are critical for microcompartment formation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.25.615066. [PMID: 39386669 PMCID: PMC11463388 DOI: 10.1101/2024.09.25.615066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Spatial organization of pathway enzymes has emerged as a promising tool to address several challenges in metabolic engineering, such as flux imbalances and off-target product formation. Bacterial microcompartments (MCPs) are a spatial organization strategy used natively by many bacteria to encapsulate metabolic pathways that produce toxic, volatile intermediates. Several recent studies have focused on engineering MCPs to encapsulate heterologous pathways of interest, but how this engineering affects MCP assembly and function is poorly understood. In this study, we investigated the role of signal sequences, short domains that target proteins to the MCP core, in the assembly of 1,2-propanediol utilization (Pdu) MCPs. We characterized two novel Pdu signal sequences on the structural proteins PduM and PduB, which constitutes the first report of metabolosome signal sequences on structural proteins rather than enzymes. We then explored the role of enzymatic and structural Pdu signal sequences on MCP assembly by deleting their encoding sequences from the genome alone and in combination. Deleting enzymatic signal sequences decreased MCP formation, but this defect could be recovered in some cases by overexpressing genes encoding the knocked-out signal sequence fused to a heterologous protein. By contrast, deleting structural signal sequences caused similar defects to knocking out the genes encoding the full length PduM and PduB proteins. Our results contribute to a growing understanding of how MCPs form and function in bacteria and provide strategies to mitigate assembly disruption when encapsulating heterologous pathways in MCPs.
Collapse
Affiliation(s)
- Elizabeth R. Johnson
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois, USA
| | - Nolan W. Kennedy
- Interdisciplinary Biological Sciences Program, Northwestern University, Evanston, Illinois, USA
| | - Carolyn. E. Mills
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois, USA
| | - Shiqi Liang
- Interdisciplinary Biological Sciences Program, Northwestern University, Evanston, Illinois, USA
| | - Swetha Chandrasekar
- Department of Chemistry and Biochemistry, Loyola University Chicago, Chicago, Illinois, USA
| | - Taylor M. Nichols
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois, USA
| | - Grant A Rybnicky
- Interdisciplinary Biological Sciences Program, Northwestern University, Evanston, Illinois, USA
- Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois, USA
- Center for Synthetic Biology, Northwestern University, Evanston, Illinois, USA
| | - Danielle Tullman-Ercek
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois, USA
- Center for Synthetic Biology, Northwestern University, Evanston, Illinois, USA
| |
Collapse
|
6
|
Li Q, Ruscheweyh HJ, Østergaard LH, Libertella M, Simonsen KS, Sunagawa S, Scoma A, Schwab C. Trait-based study predicts glycerol/diol dehydratases as a key function of the gut microbiota of hindgut-fermenting carnivores. MICROBIOME 2024; 12:178. [PMID: 39300575 DOI: 10.1186/s40168-024-01863-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 06/25/2024] [Indexed: 09/22/2024]
Abstract
BACKGROUND Microbial pdu and cob-cbi-hem gene clusters encode the key enzyme glycerol/diol dehydratase (PduCDE), which mediates the transformation of dietary nutrients glycerol and 1,2-propanediol (1,2-PD) to a variety of metabolites, and enzymes for cobalamin synthesis, a co-factor and shared good of microbial communities. It was the aim of this study to relate pdu as a multipurpose functional trait to environmental conditions and microbial community composition. We collected fecal samples from wild animal species living in captivity with different gut physiology and diet (n = 55, in total 104 samples), determined occurrence and diversity of pdu and cob-cbi-hem using a novel approach combining metagenomics with quantification of metabolic and genetic biomarkers, and conducted in vitro fermentations to test for trait-based activity. RESULTS Fecal levels of the glycerol transformation product 1,3-propanediol (1,3-PD) were higher in hindgut than foregut fermenters. Gene-based analyses indicated that pduC harboring taxa are common feature of captive wild animal fecal microbiota that occur more frequently and at higher abundance in hindgut fermenters. Phylogenetic analysis of genomes reconstructed from metagenomic sequences identified captive wild animal fecal microbiota as taxonomically rich with a total of 4150 species and > 1800 novel species but pointed at only 56 species that at least partially harbored pdu and cbi-cob-hem. While taxonomic diversity was highest in fecal samples of foregut-fermenting herbivores, higher pduC abundance and higher diversity of pdu/cbi-cob-hem related to higher potential for glycerol and 1,2-PD utilization of the less diverse microbiota of hindgut-fermenting carnivores in vitro. CONCLUSION Our approach combining metabolite and gene biomarker analysis with metagenomics and phenotypic characterization identified Pdu as a common function of fecal microbiota of captive wild animals shared by few taxa and stratified the potential of fecal microbiota for glycerol/1,2-PD utilization and cobalamin synthesis depending on diet and physiology of the host. This trait-based study suggests that the ability to utilize glycerol/1,2-PD is a key function of hindgut-fermenting carnivores, which does not relate to overall community diversity but links to the potential for cobalamin formation. Video Abstract.
Collapse
Affiliation(s)
- Qing Li
- Department of Biological and Chemical Engineering, Aarhus University, Gustav Wieds Vej 10, 8000, Arhus, Denmark
- Present address: National Food Institute, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Hans-Joachim Ruscheweyh
- Department of Biology, Institute of Microbiology and Swiss Institute of Bioinformatics, ETH Zürich, Vladimir-Prelog-Weg 4, 8093, Zurich, Switzerland
| | - Lærke Hartmann Østergaard
- Department of Biological and Chemical Engineering, Aarhus University, Gustav Wieds Vej 10, 8000, Arhus, Denmark
| | - Micael Libertella
- Department of Biological and Chemical Engineering, Aarhus University, Gustav Wieds Vej 10, 8000, Arhus, Denmark
| | | | - Shinichi Sunagawa
- Department of Biology, Institute of Microbiology and Swiss Institute of Bioinformatics, ETH Zürich, Vladimir-Prelog-Weg 4, 8093, Zurich, Switzerland
| | - Alberto Scoma
- Department of Biological and Chemical Engineering, Aarhus University, Gustav Wieds Vej 10, 8000, Arhus, Denmark
| | - Clarissa Schwab
- Department of Biological and Chemical Engineering, Aarhus University, Gustav Wieds Vej 10, 8000, Arhus, Denmark.
| |
Collapse
|
7
|
Chatterjee A, Kaval KG, Garsin DA. Role of ethanolamine utilization and bacterial microcompartment formation in Listeria monocytogenes intracellular infection. Infect Immun 2024; 92:e0016224. [PMID: 38752742 PMCID: PMC11237587 DOI: 10.1128/iai.00162-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 04/18/2024] [Indexed: 05/28/2024] Open
Abstract
Ethanolamine (EA) affects the colonization and pathogenicity of certain human bacterial pathogens in the gastrointestinal tract. However, EA can also affect the intracellular survival and replication of host cell invasive bacteria such as Listeria monocytogenes (LMO) and Salmonella enterica serovar Typhimurium (S. Typhimurium). The EA utilization (eut) genes can be categorized as regulatory, enzymatic, or structural, and previous work in LMO showed that loss of genes encoding functions for the enzymatic breakdown of EA inhibited LMO intracellular replication. In this work, we sought to further characterize the role of EA utilization during LMO infection of host cells. Unlike what was previously observed for S. Typhimurium, in LMO, an EA regulator mutant (ΔeutV) was equally deficient in intracellular replication compared to an EA metabolism mutant (ΔeutB), and this was consistent across Caco-2, RAW 264.7, and THP-1 cell lines. The structural genes encode proteins that self-assemble into bacterial microcompartments (BMCs) that encase the enzymes necessary for EA metabolism. For the first time, native EUT BMCs were fluorescently tagged, and EUT BMC formation was observed in vitro and in vivo. Interestingly, BMC formation was observed in bacteria infecting Caco-2 cells, but not the macrophage cell lines. Finally, the cellular immune response of Caco-2 cells to infection with eut mutants was examined, and it was discovered that ΔeutB and ΔeutV mutants similarly elevated the expression of inflammatory cytokines. In conclusion, EA sensing and utilization during LMO intracellular infection are important for optimal LMO replication and immune evasion but are not always concomitant with BMC formation.IMPORTANCEListeria monocytogenes (LMO) is a bacterial pathogen that can cause severe disease in immunocompromised individuals when consumed in contaminated food. It can replicate inside of mammalian cells, escaping detection by the immune system. Therefore, understanding the features of this human pathogen that contribute to its infectiousness and intracellular lifestyle is important. In this work we demonstrate that genes encoding both regulators and enzymes of EA metabolism are important for optimal growth inside mammalian cells. Moreover, the formation of specialized compartments to enable EA metabolism were visualized by tagging with a fluorescent protein and found to form when LMO infects some mammalian cell types, but not others. Interestingly, the formation of the compartments was associated with features consistent with an early stage of the intracellular infection. By characterizing bacterial metabolic pathways that contribute to survival in host environments, we hope to positively impact knowledge and facilitate new treatment strategies.
Collapse
Affiliation(s)
- Ayan Chatterjee
- Department of Microbiology and Molecular Genetics, The University of Texas Health Science Center, Houston, Texas, USA
| | - Karan Gautam Kaval
- Department of Microbiology and Molecular Genetics, The University of Texas Health Science Center, Houston, Texas, USA
| | - Danielle A. Garsin
- Department of Microbiology and Molecular Genetics, The University of Texas Health Science Center, Houston, Texas, USA
| |
Collapse
|
8
|
Gu S, Bradley-Clarke J, Rose RS, Warren MJ, Pickersgill RW. Enzyme-cargo encapsulation peptides bind between tessellating tiles of the bacterial microcompartment shell. J Biol Chem 2024; 300:107357. [PMID: 38735476 PMCID: PMC11157265 DOI: 10.1016/j.jbc.2024.107357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 04/11/2024] [Accepted: 04/14/2024] [Indexed: 05/14/2024] Open
Abstract
Bacterial microcompartments are prokaryotic organelles comprising encapsulated enzymes within a thin protein shell. They facilitate metabolic processing including propanediol, choline, glycerol, and ethanolamine utilization, and they accelerate carbon fixation in cyanobacteria. Enzymes targeted to the inside of the microcompartment frequently possess a cargo-encapsulation peptide, but the site to which the peptide binds is unclear. We provide evidence that the encapsulation peptides bind to the hydrophobic groove formed between tessellating subunits of the shell proteins. In silico docking studies provide a compelling model of peptide binding to this prominent hydrophobic groove. This result is consistent with the now widely accepted view that the convex side of the shell oligomers faces the lumen of the microcompartment. The binding of the encapsulation peptide to the groove between tessellating shell protein tiles explains why it has been difficult to define the peptide binding site using other methods, provides a mechanism by which encapsulation-peptide bearing enzymes can promote shell assembly, and explains how the presence of cargo affects the size and shape of the bacterial microcompartment. This knowledge may be exploited in engineering microcompartments or disease prevention by hampering cargo encapsulation.
Collapse
Affiliation(s)
- Shuang Gu
- School of Biological and Behavioral Sciences, Queen Mary University of London, London, UK
| | - Jack Bradley-Clarke
- School of Biological and Behavioral Sciences, Queen Mary University of London, London, UK
| | - Ruth-Sarah Rose
- School of Biological and Behavioral Sciences, Queen Mary University of London, London, UK
| | - Martin J Warren
- School of Biosciences, University of Kent, Canterbury, Kent, UK
| | - Richard W Pickersgill
- School of Biological and Behavioral Sciences, Queen Mary University of London, London, UK.
| |
Collapse
|
9
|
Yang Y, Zwijnenburg MA, Gardner AM, Adamczyk S, Yang J, Sun Y, Jiang Q, Cowan AJ, Sprick RS, Liu LN, Cooper AI. Conjugated Polymer/Recombinant Escherichia coli Biohybrid Systems for Photobiocatalytic Hydrogen Production. ACS NANO 2024; 18:13484-13495. [PMID: 38739725 PMCID: PMC11140839 DOI: 10.1021/acsnano.3c10668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 04/12/2024] [Accepted: 04/24/2024] [Indexed: 05/16/2024]
Abstract
Biohybrid photocatalysts are composite materials that combine the efficient light-absorbing properties of synthetic materials with the highly evolved metabolic pathways and self-repair mechanisms of biological systems. Here, we show the potential of conjugated polymers as photosensitizers in biohybrid systems by combining a series of polymer nanoparticles with engineered Escherichia coli cells. Under simulated solar light irradiation, the biohybrid system consisting of fluorene/dibenzo [b,d]thiophene sulfone copolymer (LP41) and recombinant E. coli (i.e., a LP41/HydA BL21 biohybrid) shows a sacrificial hydrogen evolution rate of 3.442 mmol g-1 h-1 (normalized to polymer amount). It is over 30 times higher than the polymer photocatalyst alone (0.105 mmol g-1 h-1), while no detectable hydrogen was generated from the E. coli cells alone, demonstrating the strong synergy between the polymer nanoparticles and bacterial cells. The differences in the physical interactions between synthetic materials and microorganisms, as well as redox energy level alignment, elucidate the trends in photochemical activity. Our results suggest that organic semiconductors may offer advantages, such as solution processability, low toxicity, and more tunable surface interactions with the biological components over inorganic materials.
Collapse
Affiliation(s)
- Ying Yang
- Materials
Innovation Factory and Department of Chemistry, University of Liverpool, Liverpool L7 3NY, United
Kingdom
- Institute
of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, United
Kingdom
| | | | - Adrian M. Gardner
- Stephenson
Institute for Renewable Energy and the Department of Chemistry, University of Liverpool, Liverpool L69 7ZD, United Kingdom
- Early
Career Laser Laboratory, University of Liverpool, Liverpool L69 3BX, United Kingdom
| | - Sylwia Adamczyk
- Macromolecular
Chemistry Group and Institute for Polymer Technology, Bergische Universität Wuppertal, Gauss-Straße 20, D-42097 Wuppertal, Germany
| | - Jing Yang
- Materials
Innovation Factory and Department of Chemistry, University of Liverpool, Liverpool L7 3NY, United
Kingdom
- Institute
of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, United
Kingdom
| | - Yaqi Sun
- Institute
of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, United
Kingdom
| | - Qiuyao Jiang
- Institute
of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, United
Kingdom
| | - Alexander J. Cowan
- Stephenson
Institute for Renewable Energy and the Department of Chemistry, University of Liverpool, Liverpool L69 7ZD, United Kingdom
- Early
Career Laser Laboratory, University of Liverpool, Liverpool L69 3BX, United Kingdom
| | - Reiner Sebastian Sprick
- Department
of Pure and Applied Chemistry, University
of Strathclyde, Glasgow G1 1XL, United
Kingdom
| | - Lu-Ning Liu
- Institute
of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, United
Kingdom
- MOE Key Laboratory
of Evolution and Marine Biodiversity, Frontiers Science Center for
Deep Ocean Multispheres and Earth System & College of Marine Life
Sciences, Ocean University of China, Qingdao 266003, China
| | - Andrew I. Cooper
- Materials
Innovation Factory and Department of Chemistry, University of Liverpool, Liverpool L7 3NY, United
Kingdom
| |
Collapse
|
10
|
Chatterjee A, Kaval KG, Garsin DA. Role of Ethanolamine Utilization and Bacterial Microcompartment Formation in Listeria monocytogenes Intracellular Infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.19.572424. [PMID: 38187703 PMCID: PMC10769209 DOI: 10.1101/2023.12.19.572424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Ethanolamine (EA) affects the colonization and pathogenicity of certain human bacterial pathogens in the gastrointestinal tract. However, EA can also affect the intracellular survival and replication of host-cell invasive bacteria such as Listeria monocytogenes (LMO) and Salmonella enterica serovar Typhimurium ( S. Typhimurium). The EA utilization ( eut) genes can be categorized as regulatory, enzymatic, or structural, and previous work in LMO showed that loss of genes encoding functions for the enzymatic breakdown of EA inhibited LMO intracellular replication. In this work, we sought to further characterize the role of EA utilization during LMO infection of host cells. Unlike what was previously observed for S. Typhimurium, in LMO, an EA regulator mutant ( ΔeutV) was equally deficient in intracellular replication compared to an EA metabolism mutant ( ΔeutB ), and this was consistent across Caco-2, RAW 264.7 and THP-1 cell lines. The structural genes encode proteins that self-assemble into bacterial microcompartments (BMCs) that encase the enzymes necessary for EA metabolism. For the first time, native EUT BMCs were fluorescently tagged, and EUT BMC formation was observed in vitro, and in vivo. Interestingly, BMC formation was observed in bacteria infecting Caco-2 cells, but not the macrophage cell lines. Finally, the cellular immune response of Caco-2 cells to infection with eut mutants was examined, and it was discovered that ΔeutB and ΔeutV mutants similarly elevated the expression of inflammatory cytokines. In conclusion, EA sensing and utilization during LMO intracellular infection are important for optimal LMO replication and immune evasion but are not always concomitant with BMC formation.
Collapse
|
11
|
Trettel DS, Pacheco SL, Laskie AK, Gonzalez-Esquer CR. Modeling bacterial microcompartment architectures for enhanced cyanobacterial carbon fixation. FRONTIERS IN PLANT SCIENCE 2024; 15:1346759. [PMID: 38425792 PMCID: PMC10902431 DOI: 10.3389/fpls.2024.1346759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 01/30/2024] [Indexed: 03/02/2024]
Abstract
The carboxysome is a bacterial microcompartment (BMC) which plays a central role in the cyanobacterial CO2-concentrating mechanism. These proteinaceous structures consist of an outer protein shell that partitions Rubisco and carbonic anhydrase from the rest of the cytosol, thereby providing a favorable microenvironment that enhances carbon fixation. The modular nature of carboxysomal architectures makes them attractive for a variety of biotechnological applications such as carbon capture and utilization. In silico approaches, such as molecular dynamics (MD) simulations, can support future carboxysome redesign efforts by providing new spatio-temporal insights on their structure and function beyond in vivo experimental limitations. However, specific computational studies on carboxysomes are limited. Fortunately, all BMC (including the carboxysome) are highly structurally conserved which allows for practical inferences to be made between classes. Here, we review simulations on BMC architectures which shed light on (1) permeation events through the shell and (2) assembly pathways. These models predict the biophysical properties surrounding the central pore in BMC-H shell subunits, which in turn dictate the efficiency of substrate diffusion. Meanwhile, simulations on BMC assembly demonstrate that assembly pathway is largely dictated kinetically by cargo interactions while final morphology is dependent on shell factors. Overall, these findings are contextualized within the wider experimental BMC literature and framed within the opportunities for carboxysome redesign for biomanufacturing and enhanced carbon fixation.
Collapse
Affiliation(s)
- Daniel S. Trettel
- Los Alamos National Laboratory, Bioscience Division, Microbial and Biome Sciences Group, Los Alamos, NM, United States
| | | | | | | |
Collapse
|
12
|
Barthe L, Soldan V, Garcia-Alles LF. Assessment of oligomerization of bacterial micro-compartment shell components with the tripartite GFP reporter technology. PLoS One 2023; 18:e0294760. [PMID: 38011088 PMCID: PMC10681173 DOI: 10.1371/journal.pone.0294760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 11/08/2023] [Indexed: 11/29/2023] Open
Abstract
Bacterial micro-compartments (BMC) are complex macromolecular assemblies that participate in varied metabolic processes in about 20% of bacterial species. Most of these organisms carry BMC genetic information organized in operons that often include several paralog genes coding for components of the compartment shell. BMC shell constituents can be classified depending on their oligomerization state as hexamers (BMC-H), pentamers (BMC-P) or trimers (BMC-T). Formation of hetero-oligomers combining different protein homologs is theoretically feasible, something that could ultimately modify BMC shell rigidity or permeability, for instance. Despite that, it remains largely unknown whether hetero-oligomerization is a widespread phenomenon. Here, we demonstrated that the tripartite GFP (tGFP) reporter technology is an appropriate tool that might be exploited for such purposes. Thus, after optimizing parameters such as the size of linkers connecting investigated proteins to GFP10 or GFP11 peptides, the type and strength of promoters, or the impact of placing coding cassettes in the same or different plasmids, homo-oligomerization processes could be successfully monitored for any of the three BMC shell classes. Moreover, the screen perfectly reproduced published data on hetero-association between couples of CcmK homologues from Syn. sp. PCC6803, which were obtained following a different approach. This study paves the way for mid/high throughput screens to characterize the extent of hetero-oligomerization occurrence in BMC-possessing bacteria, and most especially in organisms endowed with several BMC types and carrying numerous shell paralogs. On the other hand, our study also unveiled technology limitations deriving from the low solubility of one of the components of this modified split-GFP approach, the GFP1-9.
Collapse
Affiliation(s)
- Lucie Barthe
- Toulouse Biotechnology Institute, CNRS, INRAE, INSA, Université de Toulouse, Toulouse, France
| | - Vanessa Soldan
- Plateforme de Microscopie Electronique Intégrative METi, CNRS, Centre de Biologie Intégrative, Toulouse, France
| | - Luis F. Garcia-Alles
- Toulouse Biotechnology Institute, CNRS, INRAE, INSA, Université de Toulouse, Toulouse, France
| |
Collapse
|
13
|
Waltmann C, Kennedy NW, Mills CE, Roth EW, Ikonomova SP, Tullman-Ercek D, Olvera de la Cruz M. Kinetic Growth of Multicomponent Microcompartment Shells. ACS NANO 2023; 17:15751-15762. [PMID: 37552700 DOI: 10.1021/acsnano.3c03353] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/10/2023]
Abstract
An important goal of systems and synthetic biology is to produce high value chemical species in large quantities. Microcompartments, which are protein nanoshells encapsulating catalytic enzyme cargo, could potentially function as tunable nanobioreactors inside and outside cells to generate these high value species. Modifying the morphology of microcompartments through genetic engineering of shell proteins is one viable strategy to tune cofactor and metabolite access to encapsulated enzymes. However, this is a difficult task without understanding how changing interactions between the many different types of shell proteins and enzymes affect microcompartment assembly and shape. Here, we use multiscale molecular dynamics and experimental data to describe assembly pathways available to microcompartments composed of multiple types of shell proteins with varied interactions. As the average interaction between the enzyme cargo and the multiple types of shell proteins is weakened, the shell assembly pathway transitions from (i) nucleating on the enzyme cargo to (ii) nucleating in the bulk and then binding the cargo as it grows to (iii) an empty shell. Atomistic simulations and experiments using the 1,2-propanediol utilization microcompartment system demonstrate that shell protein interactions are highly varied and consistent with our multicomponent, coarse-grained model. Furthermore, our results suggest that intrinsic bending angles control the size of these microcompartments. Overall, our simulations and experiments provide guidance to control microcomparmtent size and assembly by modulating the interactions between shell proteins.
Collapse
Affiliation(s)
- Curt Waltmann
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Nolan W Kennedy
- Interdisciplinary Biological Sciences Program, Northwestern University, Evanston, Illinois 60208, United States
| | - Carolyn E Mills
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Eric W Roth
- Northwestern University Atomic and Nanoscale Characterization Experimentation Center, Northwestern University, Evanston, Illinois 60208, United States
| | - Svetlana P Ikonomova
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Danielle Tullman-Ercek
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Monica Olvera de la Cruz
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
14
|
Hu L, Wang Y, Wang L, Xiao S, Zheng Y, Yin G, Du G, Chen J, Kang Z. Construction of Osmotic Pressure Responsive Vacuole-like Bacterial Organelles with Capsular Polysaccharides as Building Blocks. ACS Synth Biol 2023; 12:750-760. [PMID: 36872621 DOI: 10.1021/acssynbio.2c00546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
Abstract
Many artificial organelles or subcellular compartments have been developed to tune gene expression, regulate metabolic pathways, or endow new cell functions. Most of these organelles or compartments were built using proteins or nucleic acids as building blocks. In this study, we demonstrated that capsular polysaccharide (CPS) retained inside bacteria cytosol assembled into mechanically stable CPS compartments. The CPS compartments were able to accommodate and release protein molecules but not lipids or nucleic acids. Intriguingly, we found that the CPS compartment size responds to osmotic stress and this compartment improves cell survival under high osmotic pressures, which was similar to the vacuole functionalities. By fine-tuning the synthesis and degradation of CPS with osmotic stress-responsive promoters, we achieved dynamic regulation of the size of CPS compartments and the host cells in response to external osmotic stress. Our results shed new light on developing prokaryotic artificial organelles with carbohydrate macromolecules.
Collapse
Affiliation(s)
- Litao Hu
- The Science Center for Future Foods, Jiangnan University, Wuxi 214122, China.,The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Yang Wang
- The Science Center for Future Foods, Jiangnan University, Wuxi 214122, China.,The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Lingling Wang
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Sen Xiao
- The Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| | - Yilin Zheng
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Guobin Yin
- The Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| | - Guocheng Du
- The Science Center for Future Foods, Jiangnan University, Wuxi 214122, China.,The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Jian Chen
- The Science Center for Future Foods, Jiangnan University, Wuxi 214122, China.,The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Zhen Kang
- The Science Center for Future Foods, Jiangnan University, Wuxi 214122, China.,The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
15
|
Trettel DS, Winkler WC. In Vitro Analysis of Bacterial Microcompartments and Shell Protein Superstructures by Confocal Microscopy. Microbiol Spectr 2023; 11:e0335722. [PMID: 36786617 PMCID: PMC10100840 DOI: 10.1128/spectrum.03357-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 01/18/2023] [Indexed: 02/15/2023] Open
Abstract
The shell proteins that comprise bacterial microcompartments (BMCs) can self-assemble into an array of superstructures such as nanotubes, flat sheets, and icosahedra. The physical characterization of BMCs and these superstructures typically relies on electron microscopy, which decouples samples from their solution context. We hypothesize that an investigation of fluorescently tagged BMCs and shell protein superstructures in vitro using high-resolution confocal microscopy will lead to new insights into the solution behavior of these entities. We find that confocal imaging is able to capture nanotubes and sheets previously reported by transmission electron microscopy (TEM). Using a combination of fluorescent tags, we present qualitative evidence that these structures intermix with one another in a hetero- and homotypic fashion. Complete BMCs are also able to accomplish intermixing as evidenced by colocalization data. Finally, a simple colocalization experiment suggests that fluorescently modified encapsulation peptides (EPs) may prefer certain shell protein binding partners. Together, these data demonstrate that high-resolution confocal microscopy is a powerful tool for investigating microcompartment-related structures in vitro, particularly for colocalization analyses. These results also support the notion that BMCs may intermix protein components, presumably from the outer shell. IMPORTANCE Microcompartments are large, organelle-like structures that help bacteria catabolize targeted metabolites while also protecting the cytosol against highly reactive metabolic intermediates. Their protein shell self-assembles into a polyhedral structure of approximately 100 to 200 nm in diameter. Inside the shell are thousands of copies of cargo enzymes, which are responsible for a specific metabolic pathway. While different approaches have revealed high-resolution structures of individual microcompartment proteins, it is less clear how these factors self-assemble to form the full native structure. In this study, we show that laser scanning confocal microscopy can be used to study microcompartment proteins. We find that this approach allows researchers to investigate the interactions and potential exchange of shell protein subunits in solution. From this, we conclude that confocal microscopy offers advantages for studying the in vitro structures of other microcompartments as well as carboxysomes and other bacterial organelles.
Collapse
Affiliation(s)
- Daniel S. Trettel
- Department of Chemistry and Biochemistry, The University of Maryland, College Park, College Park, Maryland, USA
| | - Wade C. Winkler
- Department of Chemistry and Biochemistry, The University of Maryland, College Park, College Park, Maryland, USA
- Department of Cell Biology and Molecular Genetics, The University of Maryland, College Park, College Park, Maryland, USA
| |
Collapse
|
16
|
Huffine CA, Zhao R, Tang YJ, Cameron JC. Role of carboxysomes in cyanobacterial CO 2 assimilation: CO 2 concentrating mechanisms and metabolon implications. Environ Microbiol 2023; 25:219-228. [PMID: 36367380 DOI: 10.1111/1462-2920.16283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 11/09/2022] [Indexed: 11/13/2022]
Abstract
Many carbon-fixing organisms have evolved CO2 concentrating mechanisms (CCMs) to enhance the delivery of CO2 to RuBisCO, while minimizing reactions with the competitive inhibitor, molecular O2 . These distinct types of CCMs have been extensively studied using genetics, biochemistry, cell imaging, mass spectrometry, and metabolic flux analysis. Highlighted in this paper, the cyanobacterial CCM features a bacterial microcompartment (BMC) called 'carboxysome' in which RuBisCO is co-encapsulated with the enzyme carbonic anhydrase (CA) within a semi-permeable protein shell. The cyanobacterial CCM is capable of increasing CO2 around RuBisCO, leading to one of the most efficient processes known for fixing ambient CO2 . The carboxysome life cycle is dynamic and creates a unique subcellular environment that promotes activity of the Calvin-Benson (CB) cycle. The carboxysome may function within a larger cellular metabolon, physical association of functionally coupled proteins, to enhance metabolite channelling and carbon flux. In light of CCMs, synthetic biology approaches have been used to improve enzyme complex for CO2 fixations. Research on CCM-associated metabolons has also inspired biologists to engineer multi-step pathways by providing anchoring points for enzyme cascades to channel intermediate metabolites towards valuable products.
Collapse
Affiliation(s)
- Clair A Huffine
- Department of Biochemistry, University of Colorado, Boulder, Colorado, USA
- Renewable and Sustainable Energy Institute, University of Colorado, Boulder, Colorado, USA
- Interdisciplinary Quantitative Biology Program (IQ Biology), BioFrontiers Institute, University of Colorado, Boulder, Colorado, USA
| | - Runyu Zhao
- Department of Energy, Environmental and Chemical Engineering, Washington University in Saint Louis, Saint Louis, Missouri, USA
| | - Yinjie J Tang
- Department of Energy, Environmental and Chemical Engineering, Washington University in Saint Louis, Saint Louis, Missouri, USA
| | - Jeffrey C Cameron
- Department of Biochemistry, University of Colorado, Boulder, Colorado, USA
- Renewable and Sustainable Energy Institute, University of Colorado, Boulder, Colorado, USA
- National Renewable Energy Laboratory, Golden, Colorado, USA
| |
Collapse
|