1
|
Wang Y, Zhang J, Wang F, Wu L. Titanium-Catalyzed Reaction of Silacyclobutanes with Alkenes: Mimicking the Reactivity and Reversing the Selectivity Towards Late Transition Metals. Angew Chem Int Ed Engl 2024:e202420092. [PMID: 39638775 DOI: 10.1002/anie.202420092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 12/04/2024] [Accepted: 12/05/2024] [Indexed: 12/07/2024]
Abstract
Transition metal-catalyzed ring opening and expansion reactions of silacyclobutanes (SCBs) constitute an atom- and step-economical strategy to construct value-added silicon-containing chemicals. Despite extensive studies, the reaction of SCBs with simple alkenes has only one precedent. Moreover, most reported reactions of SCBs use late transition metals (Pd, Ni, Rh) as catalysts. By contrast, there are no reports of using early transition metals. Herein, we report the first example, to our knowledge, of early-transition-metal-catalyzed reactions of SCBs using earth's second abundant titanium as a catalyst. Notably, orthogonal selectivity was observed. Selective activation of the relatively inert C(sp3)-Si bond was achieved in the case of benzosilacyclobutenes, a selectivity that has rarely been achieved using other metals. Even for silacyclobutanes with C(sp3)-Si bonds only, our titanium system also shows complementary selectivity towards late transition metals to give distinct products. Thus, structurally varied SCBs and alkenes were reacted in our system to afford structurally diverse silicon-containing products that are otherwise difficult to obtain using other transition metals.
Collapse
Affiliation(s)
- Yaqiong Wang
- State Key Laboratory of Low Carbon Catalysis and Carbon Dioxide Utilization, State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Jiong Zhang
- State Key Laboratory of Low Carbon Catalysis and Carbon Dioxide Utilization, State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Fang Wang
- State Key Laboratory of Low Carbon Catalysis and Carbon Dioxide Utilization, State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, P. R. China
| | - Lipeng Wu
- State Key Laboratory of Low Carbon Catalysis and Carbon Dioxide Utilization, State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, P. R. China
- College of Material Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, P. R. China
| |
Collapse
|
2
|
Yang LY, Qin Y, Zhao Z, Zhao D. Nickel-Catalyzed Reductive Protocol to Access Silacyclobutanes with Unprecedented Functional Group Tolerance. Angew Chem Int Ed Engl 2024; 63:e202407773. [PMID: 39172049 DOI: 10.1002/anie.202407773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/29/2024] [Accepted: 08/21/2024] [Indexed: 08/23/2024]
Abstract
While significant progress has been made in the area of transition metal-catalyzed ring-opening and formal cycloaddition reactions of 1,1-disubstituted silacyclobutanes (SCBs), synthesizing these SCBs-particularly those bearing additional functional groups-continues to present synthetic challenges. In this context, we present a novel Ni-catalyzed reductive coupling reaction that combines 1-chloro-substituted silacyclobutanes with aryl or vinyl halides and pseudohalides, thereby obviating the need for organometallic reagents. This method facilitates the generation of 1,1-disubstituted silacyclobutanes with a remarkable tolerance for various functional groups. This approach serves as a complementary and more step-economical alternative to the commonly used yet moisture- and air-sensitive nucleophilic substitution reactions involving Grignard or lithium reagents. Our initial mechanistic studies indicate that this reaction is initiated by oxidative cleavage of the Si-Cl bond in 1-chlorosilacyclobutanes, which represents a distinct mechanism from the previously documented reductive coupling processes involving carbon electrophiles and chlorosilanes.
Collapse
Affiliation(s)
- Ling-Yun Yang
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 300071, Tianjin, China
| | - Ying Qin
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 300071, Tianjin, China
| | - Zhihan Zhao
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 300071, Tianjin, China
| | - Dongbing Zhao
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 300071, Tianjin, China
| |
Collapse
|
3
|
Yan Y, Wei Q, Su Z, Hang NN, Hayashi T, Ming J. Carbon-silicon-switch effect in enantioselective construction of silicon-stereogenic center from silacyclohexadienones. Nat Commun 2024; 15:9915. [PMID: 39548103 PMCID: PMC11568255 DOI: 10.1038/s41467-024-54241-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 11/06/2024] [Indexed: 11/17/2024] Open
Abstract
Carbon-silicon-switch strategy, replacing one specific carbon atom in organic molecules with a silicon, has garnered significant interest for developing new functional molecules. However, the influence of a reaction regarding its selectivity and reactivity by carbon-silicon-switch strategy has far less been investigated. Here we discover an unusual carbon-silicon-switch effect in the enantioselective construction of silicon-stereogenic center. It is found that there has been a significant change in the desymmetrization reaction of silacyclohexadienones using asymmetric conjugate addition or oxidative Heck reaction with aryl/alkyl nucleophiles when compared with their carbon analogues cyclohexadienones. Specifically, the carbon-silicon-switch leads to a reversal in enantioselectivity with arylzinc as the nucleophile by the same chiral catalyst, and results in totally different reactivity with arylboronic acid as the nucleophile. Control experiments and density functional theory (DFT) calculations have shown that the unusual carbon-silicon-switch effect comes from the unique stereoelectronic feature of silicon.
Collapse
Affiliation(s)
- Yu Yan
- Engineering Research Center of Sichuan-Tibet Traditional Medicinal Plant, College of Chemistry and Chemical Engineering, Chengdu University, Chengdu, China
- Inner Mongolia Key Laboratory of Low Carbon Catalysis, College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, China
| | - Qi Wei
- College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, China
| | - Zhishan Su
- College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, China.
| | - Nan-Nan Hang
- Inner Mongolia Key Laboratory of Low Carbon Catalysis, College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, China
| | - Tamio Hayashi
- Department of Chemistry, National Taiwan Normal University, Taipei, Taiwan.
| | - Jialin Ming
- Engineering Research Center of Sichuan-Tibet Traditional Medicinal Plant, College of Chemistry and Chemical Engineering, Chengdu University, Chengdu, China.
- Inner Mongolia Key Laboratory of Low Carbon Catalysis, College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, China.
| |
Collapse
|
4
|
Fu B, Wang L, Chen K, Yuan X, Yin J, Wang S, Shi D, Zhu B, Guan W, Zhang Q, Xiong T. Enantioselective Copper-Catalyzed Sequential Hydrosilylation of Arylmethylenecyclopropanes. Angew Chem Int Ed Engl 2024; 63:e202407391. [PMID: 39023320 DOI: 10.1002/anie.202407391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/13/2024] [Accepted: 07/17/2024] [Indexed: 07/20/2024]
Abstract
Despite impressive advances in the construction of enantioenriched silacarbocycles featuring silicon-stereogenic centers via a selection of well-defined sila-synthons, the development of a more convenient and economic method with readily available starting materials is significantly less explored and remains a considerable challenge. Herein, we report the first example of copper-catalyzed sequential hydrosilylation of readily accessible methylenecyclopropanes (MCPs) and primary silanes, affording an efficient and convenient route to a wide range of chiral silacyclopentanes bearing consecutive silicon- and carbon-stereogenic centers with excellent enantio- and diastereoselectivities (generally ≥98 % ee, >25 : 1 dr). Mechanistic studies reveal that these reactions combine copper-catalyzed intermolecular ring-opening hydrosilylation of aryl MCPs and intramolecular asymmetric hydrosilylation of the resultant Z/E mixture of homoallylic silanes.
Collapse
Affiliation(s)
- Bin Fu
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry, Northeast Normal University, Changchun, 130024, China
- School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun, 130024, China
| | - Lianghua Wang
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry, Northeast Normal University, Changchun, 130024, China
| | - Kexin Chen
- Institute of Functional Material Chemistry, Department of Chemistry, Northeast Normal University, Changchun, 130024, China
| | - Xiuping Yuan
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry, Northeast Normal University, Changchun, 130024, China
| | - Jianjun Yin
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry, Northeast Normal University, Changchun, 130024, China
| | - Simin Wang
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry, Northeast Normal University, Changchun, 130024, China
| | - Dazhen Shi
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry, Northeast Normal University, Changchun, 130024, China
| | - Bo Zhu
- Institute of Functional Material Chemistry, Department of Chemistry, Northeast Normal University, Changchun, 130024, China
| | - Wei Guan
- Institute of Functional Material Chemistry, Department of Chemistry, Northeast Normal University, Changchun, 130024, China
| | - Qian Zhang
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry, Northeast Normal University, Changchun, 130024, China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Tao Xiong
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry, Northeast Normal University, Changchun, 130024, China
| |
Collapse
|
5
|
Tang X, Tang Y, Peng J, Du H, Huang L, Gao J, Liu S, Wang D, Wang W, Gao L, Lan Y, Song Z. Ligand-Controlled Regiodivergent Ring Expansion of Benzosilacyclobutenes with Alkynes en Route to Axially Chiral Silacyclohexenyl Arenes. J Am Chem Soc 2024; 146:26639-26648. [PMID: 39305495 DOI: 10.1021/jacs.4c00252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2024]
Abstract
A ligand-controlled regiodivergent and enantioselective ring expansion of benzosilacyclobutenes with internal naphthyl alkynes has been achieved by adjusting the ligand cavity size. The ligand (S)-8H-binaphthyl phosphoramidite, featuring small methyl groups on its arms, provides a spacious cavity that favors sterically demanding Si-Csp3 ring expansion, predominantly yielding axially chiral (S)-1-silacyclohexenyl arenes. In contrast, the ligand (R)-spiro phosphoramidite, with bulky t-Bu groups on its arms, offers a compact cavity that facilitates less sterically demanding Si-Csp2 ring expansion, leading primarily to axially chiral (S)-2-silacyclohexenyl arenes. Density functional theory calculations delineate distinct mechanistic pathways for each ring expansion route and elucidate their regio- and enantioselectivity.
Collapse
Affiliation(s)
- Xiaoxiao Tang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Yulang Tang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Ju Peng
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing 400030, China
| | - Huimin Du
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Liying Huang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Jiahui Gao
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Shiyang Liu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Dongxu Wang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Wanshu Wang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou 311121, China
| | - Lu Gao
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Yu Lan
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing 400030, China
| | - Zhenlei Song
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| |
Collapse
|
6
|
Shi Y, Qin Y, Li ZQ, Xu Y, Chen S, Zhang J, Li YA, Wu Y, Meng F, Zhong YW, Zhao D. Divergent Synthesis of Enantioenriched Silicon-Stereogenic Benzyl-, Vinyl- and Borylsilanes via Asymmetric Aryl to Alkyl 1,5-Palladium Migration. Angew Chem Int Ed Engl 2024; 63:e202405520. [PMID: 38896428 DOI: 10.1002/anie.202405520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 06/13/2024] [Accepted: 06/16/2024] [Indexed: 06/21/2024]
Abstract
Functionalization of Si-bound methyl group provides an efficient access to diverse organosilanes. However, the asymmetric construction of silicon-stereogenic architectures by functionalization of Si-bound methyl group has not yet been described despite recent significant progress in producing chiral silicon. Herein, we disclosed the enantioselective silylmethyl functionalization involving the aryl to alkyl 1,5-palladium migration to access diverse naphthalenes possessing an enantioenriched stereogenic silicon center, which are inaccessible before. It is worthy to note that the realization of asymmetric induction at the step of metal migration itself remains challenging. Our study constitutes the first enantioselective aryl to alkyl 1,5-palladium migration reaction. The key to the success is the discovery and fine-tuning of the different substituents of α,α,α,α-tetraaryl-1,3-dioxolane-4,5-dimethanol (TADDOL)-based phosphoramidites, which ensure the enantioselectivity and desired reactivity.
Collapse
Affiliation(s)
- Yufeng Shi
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Ying Qin
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Zhong-Qiu Li
- Beijing National Laboratory for Molecular Science, CAS Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Yize Xu
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Shuhan Chen
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Jinyu Zhang
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Yu-An Li
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Yaxin Wu
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Fei Meng
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Yu-Wu Zhong
- Beijing National Laboratory for Molecular Science, CAS Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Dongbing Zhao
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| |
Collapse
|
7
|
Ye ZT, Wu ZW, Zhang XX, Zhou J, Yu JS. Organocatalytic enantioselective construction of Si-stereocenters: recent advances and perspectives. Chem Soc Rev 2024; 53:8546-8562. [PMID: 39091219 DOI: 10.1039/d4cs00417e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Silicon-stereogenic chiral organosilanes have found increasing applications in synthetic chemistry, medicinal chemistry, and materials science. In this context, various asymmetric catalytic methods have been established for the diverse synthesis of silicon-stereogenic silanes. In particular, asymmetric organocatalysis is emerging as an important and complementary synthetic tool for the enantioselective construction of silicon-stereocenters, along with the rapid development of chiral-metal catalyzed protocols. Its advent provides a powerful platform to achieve functionalized silicon-stereogenic organosilanes with structural diversity, and should lead to great development in chiral organosilicon chemistry. In this Tutorial Review, we highlight these latest achievements from two aspects: desymmetrizations of prochiral tetraorganosilanes and dynamic kinetic asymmetric transformations of racemic organosilanes by employing five organocatalytic activation modes. The advantages, limitations and synthetic value of each protocol, as well as the synthetic opportunities still open for further exploration, are also discussed.
Collapse
Affiliation(s)
- Zhong-Tian Ye
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, State Key Laboratory of Petroleum Molecular & Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, P. R. China.
| | - Zhong-Wei Wu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, State Key Laboratory of Petroleum Molecular & Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, P. R. China.
| | - Xue-Xin Zhang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, State Key Laboratory of Petroleum Molecular & Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, P. R. China.
| | - Jian Zhou
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, State Key Laboratory of Petroleum Molecular & Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, P. R. China.
| | - Jin-Sheng Yu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, State Key Laboratory of Petroleum Molecular & Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, P. R. China.
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, Hainan Normal University, Haikou 571158, P. R. China
| |
Collapse
|
8
|
Li J, Xu S, Liang J, Zheng J, Li P, Wang J, Li B. Ruthenium-Catalyzed Sequential Hydrosilylation/Dehydrogenation and C-H Silylation: Synthesis of Six-Membered Indole Silacycles and Pyrrole Silyl Ether Cycles. Org Lett 2024; 26:6142-6147. [PMID: 38995672 DOI: 10.1021/acs.orglett.4c01949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2024]
Abstract
Selective dehydrogenative C-H silylation is one of the most powerful tools to synthesize silacycles. Herein, we developed Ru-catalyzed sequential hydrosilylation/C-H silylation of allyl-indoles and dehydrogenative O-H/C-H silylation of pyrrole phenols. Both six-membered indole silacycles and pyrrole silyl ether cycles were successfully synthesized with good functional group tolerance. Furthermore, the RuHCl(CO)(PPh3)3 catalyst exhibited high reaction compatibility in hydrosilylation of alkene, dehydrogenative O-H silylation, and C-H silylation.
Collapse
Affiliation(s)
- Jiefang Li
- School of Environmental and Chemical Engineering, Wuyi University, Jiangmen, Guangdong 529020, People's Republic of China
| | - Shanshan Xu
- School of Environmental and Chemical Engineering, Wuyi University, Jiangmen, Guangdong 529020, People's Republic of China
| | - Jieyu Liang
- School of Environmental and Chemical Engineering, Wuyi University, Jiangmen, Guangdong 529020, People's Republic of China
| | - Juanjuan Zheng
- School of Environmental and Chemical Engineering, Wuyi University, Jiangmen, Guangdong 529020, People's Republic of China
| | - Ping Li
- School of Environmental and Chemical Engineering, Wuyi University, Jiangmen, Guangdong 529020, People's Republic of China
| | - Jun Wang
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong Special Administrative Region of People's Republic of China
| | - Bin Li
- School of Environmental and Chemical Engineering, Wuyi University, Jiangmen, Guangdong 529020, People's Republic of China
- Jiangmen Key Laboratory of Synthetic Chemistry and Cleaner Production, Wuyi University, Jiangmen, Guangdong 529020, People's Republic of China
- Guangdong Laboratory of Chemistry and Fine Chemical Industry Jieyang Center, Jieyang, Guangdong 515200, People's Republic of China
| |
Collapse
|
9
|
Han JT, Tsuji N, Zhou H, Leutzsch M, List B. Organocatalytic asymmetric synthesis of Si-stereogenic silacycles. Nat Commun 2024; 15:5846. [PMID: 38992000 PMCID: PMC11239892 DOI: 10.1038/s41467-024-49988-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Accepted: 06/27/2024] [Indexed: 07/13/2024] Open
Abstract
A strong and confined Brønsted acid catalyzed enantioselective cyclization of bis(methallyl)silanes provides enantioenriched Si-stereogenic silacycles. High enantioselectivities of up to 96.5:3.5 er were obtained for a range of bis(methallyl)silanes. NMR and ESI-MS studies reveal that the formation of a covalent adduct irreversibly inhibits turnover. Remarkably, we found that acetic acid as an additive promotes the collapse of this adduct, enabling full turnover. Experimental investigation and density functional theory (DFT) calculations were conducted to elucidate the origin of this phenomenon and the observed enantioselectivity.
Collapse
Affiliation(s)
- Jung Tae Han
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470, Mülheim an der Ruhr, Germany
- Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Nobuya Tsuji
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo, 001-0021, Japan
| | - Hui Zhou
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470, Mülheim an der Ruhr, Germany
| | - Markus Leutzsch
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470, Mülheim an der Ruhr, Germany
| | - Benjamin List
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470, Mülheim an der Ruhr, Germany.
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo, 001-0021, Japan.
| |
Collapse
|
10
|
Gou FH, Ren F, Wu Y, Wang P. Catalytic Kinetic Resolution of Monohydrosilanes via Rhodium-Catalyzed Enantioselective Intramolecular Hydrosilylation. Angew Chem Int Ed Engl 2024; 63:e202404732. [PMID: 38605561 DOI: 10.1002/anie.202404732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/11/2024] [Accepted: 04/11/2024] [Indexed: 04/13/2024]
Abstract
The catalytic access of silicon-stereogenic organosilanes remains a big challenge, and largely depends on the desymmetrization of the symmetric precursors with two identical substitutes attached to silicon atom. Here we report the construction of silicon-stereogenic organosilanes via catalytic kinetic resolution of racemic monohydrosilanes with good to excellent selectivity factors. Both Si-stereogenic dihydrobenzosiloles and Si-stereogenic monohydrosilanes could be efficiently accessed in one single operation via Rh-catalyzed enantioselective intramolecular hydrosilylation, employing (R,R)-Et-DuPhos as the optimal ligand. This catalytic protocol features mild conditions, a low catalyst loading (0.1 mol % [Rh(cod)Cl]2), high stereoinduction (S factor up to 152), and excellent scalability. Moreover, further derivatizations led to the efficient synthesis of uncommon middle-size (7- and 8-membered) Si-stereogenic silacycles. Preliminary mechanistic study indicates this reaction might undergo a modified Chalk-Harrod mechanism.
Collapse
Affiliation(s)
- Fei-Hu Gou
- College of Chemistry and Material Science, Shanghai Normal University, Shanghai, 200234, P. R. China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, CAS 345 Lingling Road, Shanghai, 200032, P. R. China
| | - Fei Ren
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, CAS 345 Lingling Road, Shanghai, 200032, P. R. China
| | - Yichen Wu
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, CAS 345 Lingling Road, Shanghai, 200032, P. R. China
| | - Peng Wang
- College of Chemistry and Material Science, Shanghai Normal University, Shanghai, 200234, P. R. China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, CAS 345 Lingling Road, Shanghai, 200032, P. R. China
- School of Chemistry and Material Sciences, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, P. R. China
- College of Material Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry, and Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, P. R. China
| |
Collapse
|
11
|
Liu M, Yan N, Tian H, Li B, Zhao D. Ring Expansion toward Disila-carbocycles via Highly Selective C-Si/C-Si Bond Cross-Exchange. Angew Chem Int Ed Engl 2024; 63:e202319187. [PMID: 38388782 DOI: 10.1002/anie.202319187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 02/21/2024] [Accepted: 02/22/2024] [Indexed: 02/24/2024]
Abstract
Herein, we successfully inhibited the preferential homodimerization and C-Si/Si-H bond cross-exchange of benzosilacyclobutenes and monohydro-silacyclobutanes and achieved the first highly selective C-Si/C-Si bond cross-exchange reaction by deliberately tuning the Ni-catalytic system, which constitutes a powerful and atom-economical ring expansion method for preparing medium-sized cyclic compounds bearing two silicon atoms at the ring junction, which are otherwise inaccessible. The DFT calculation explicitly elucidated the pivotal role of Si-H bond at silacyclobutanes and the high ring strain of two substrates in realizing the two C-Si bonds cleavage and reformation in the catalytic cycle.
Collapse
Affiliation(s)
- Min Liu
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Nuo Yan
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Haowen Tian
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Bo Li
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Dongbing Zhao
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| |
Collapse
|
12
|
Huang FP, Qin WJ, Pan XY, Yang K, Wang K, Teng QH. Visible-Light-Induced Chemodivergent Synthesis of Tetracyclic Quinazolinones and 3-Iminoisoindoliones via the Substrate Control Strategy. J Org Chem 2024; 89:4395-4405. [PMID: 38501298 DOI: 10.1021/acs.joc.3c02501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
A visible-light-induced chemodivergent synthesis of tetracyclic quinazolinones and 3-iminoisoindoliones has been developed. This chemodivergent reaction afforded two kinds of different products by substrate control. A detailed investigation of the reaction mechanism revealed that this consecutive photoinduced electron transfer (ConPET) cascade cyclization involved a radical process, and the aryl radical was the crucial intermediate. This method employed 4-DPAIPN as a photocatalyst and i-Pr2NEt as a sacrificial electron donor leading to metal-free conditions.
Collapse
Affiliation(s)
- Fang-Ping Huang
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, China
| | - Wen-Jian Qin
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, China
| | - Xin-Yao Pan
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, China
| | - Kun Yang
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, China
| | - Kai Wang
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, China
| | - Qing-Hu Teng
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, China
| |
Collapse
|
13
|
Huang WS, Xu H, Yang H, Xu LW. Catalytic Synthesis of Silanols by Hydroxylation of Hydrosilanes: From Chemoselectivity to Enantioselectivity. Chemistry 2024; 30:e202302458. [PMID: 37861104 DOI: 10.1002/chem.202302458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 10/19/2023] [Accepted: 10/20/2023] [Indexed: 10/21/2023]
Abstract
As a crucial class of functional molecules in organosilicon chemistry, silanols are found valuable applications in the fields of modern science and will be a potentially powerful framework for biologically active compounds or functional materials. It has witnessed an increasing demand for non-natural organosilanols, as well as the progress in the synthesis of these structural features. From the classic preparative methods to the catalytic selective oxidation of hydrosilanes, electrochemical hydrolysis of hydrosilanes, and then the construction of the most challenging silicon-stereogenic silanols. This review summarized the progress in the catalyzed synthesis of silanols via hydroxylation of hydrosilanes in the last decade, with a particular emphasis on the latest elegant developments in the desymmetrization strategy for the enantioselective synthesis of silicon-stereogenic silanols from dihydrosilanes.
Collapse
Affiliation(s)
- Wei-Sheng Huang
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, P. R. China
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, and Key Laboratory of Organosilicon Material Technology of Zhejiang Province College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, 311121, P. R. China
| | - Hao Xu
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, and Key Laboratory of Organosilicon Material Technology of Zhejiang Province College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, 311121, P. R. China
| | - Hua Yang
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, P. R. China
| | - Li-Wen Xu
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, and Key Laboratory of Organosilicon Material Technology of Zhejiang Province College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, 311121, P. R. China
| |
Collapse
|
14
|
Ju CW, Wang XC, Li B, Ma Q, Shi Y, Zhang J, Xu Y, Peng Q, Zhao D. Evolution of organic phosphor through precision regulation of nonradiative decay. Proc Natl Acad Sci U S A 2023; 120:e2310883120. [PMID: 37934818 PMCID: PMC10655561 DOI: 10.1073/pnas.2310883120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 09/28/2023] [Indexed: 11/09/2023] Open
Abstract
Development of single-component organic phosphor attracts increasing interest due to its wide applications in optoelectronic technologies. Theoretically, activating efficient intersystem crossing (ISC) via 1(π, π*) to 3(π, π*) transitions, rather than 1(n, π*) → 3(π, π*) transitions, is an alternative access to purely organic phosphors but remains challenging. Herein, we designed and successfully synthesized the sila-8-membered ring fused biaryl benzoskeleton by transition metal catalysis, which served as a new organic phosphor with efficient 1(π, π*) to 3(π, π*) ISC. We first found that such a compound exhibits a record-long phosphorescence lifetime of 6.5 s at low temperature for single-component organic systems. Then, we developed two strategies to tune their decay channels to evolve such nonemissive molecules into bright phosphors with elongated lifetimes at room temperature: 1) Physic-based design, where quantitative analyses of electron-phonon coupling led us to reveal and hinder the major nonradiative channels, thus lighted up room temperature phosphorescence (RTP) with a lifetime of 480 ms at 298 K; 2) chemical geometry-driven molecular engineering, where a geometry-based descriptor ΔΘT1-S0/ΘS0 was developed for rational screening RTP candidates and further improved the RTP lifetime to 794 ms. This study clearly shows the power of interdiscipline among synthetic methodology, physics-based rational design, and computational modeling, which represents a paradigm for the development of an organic emitter.
Collapse
Affiliation(s)
- Cheng-Wei Ju
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin300071, People’s Republic of China
| | - Xi-Chao Wang
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin300071, People’s Republic of China
| | - Bo Li
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin300071, People’s Republic of China
| | - Qiushi Ma
- Department of Chemistry, Marquette University, Milwaukee, WI53233
| | - Yuhao Shi
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing100049, People’s Republic of China
| | - Jinyu Zhang
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin300071, People’s Republic of China
| | - Yuzhi Xu
- Department of Chemistry, New York University, New York, NY10003
| | - Qian Peng
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing100049, People’s Republic of China
| | - Dongbing Zhao
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin300071, People’s Republic of China
| |
Collapse
|
15
|
Müller MP, Hinz A. Strain-Driven, Non-Catalysed Ring Expansion of Silicon Heterocycles. Chemistry 2023; 29:e202302311. [PMID: 37489573 DOI: 10.1002/chem.202302311] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 07/24/2023] [Accepted: 07/25/2023] [Indexed: 07/26/2023]
Abstract
Silacycles are ubiquitous building blocks. Small silacycles can typically be expanded catalytically. A silirane, silirene and phosphasilirene as well as a siletane and a silolene were prepared starting from the base-free bromosilylene [(dtbp Cbz)SiBr] (dtbp Cbz=1,8-bis(3,5-ditertbutylphenyl)-3,6-ditertbutylcarbazolyl). As these heterocycles were derived from a dicoordinated silylene, they are susceptible to reactions with an external base. The three-membered silacycles readily undergo non-catalysed ring expansion reactions with isonitriles yielding the related four-membered silacycles. Surprisingly, the ring-expanded derivatives of the silirane undergo up to two further isomerisation reactions, first by enamine formation and then by another ring expansion. DFT computations were utilised to gauge the scope of this reactivity pattern. Three-membered silacycles should essentially universally undergo a ring expansion with isonitriles, while for four-membered silacycles, only very few instances are predicted to accommodate more challenging kinetic requirements of this ring expansion. Larger silacycles lack the ring strain energy required for this ring expansion reaction and are not expected to be expanded.
Collapse
Affiliation(s)
- Maximilian P Müller
- Karlsruhe Institute of Technology, Institute for Inorganic Chemistry, Engesserstr. 15, 76131, Karlsruhe, Germany
| | - Alexander Hinz
- Karlsruhe Institute of Technology, Institute for Inorganic Chemistry, Engesserstr. 15, 76131, Karlsruhe, Germany
| |
Collapse
|
16
|
Zhang G, Wang K, Zhang D, Zhang C, Tan W, Chen Z, Chen F. Decarboxylative Allylation of Silanecarboxylic Acids Enabled by Organophotocatalysis. Org Lett 2023; 25:7406-7411. [PMID: 37782755 DOI: 10.1021/acs.orglett.3c02907] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
Herein we present a visible-light-facilitated transition-metal-free allylic silylation reaction under mild conditions. This protocol is enabled by an inexpensive organophotocatalyst and provides efficient and concise synthetic routes to substituted allylsilanes, particularly from readily available allyl sulfones and stable silanecarboxylic acids as silyl radical precursors. Further investigations reveal that this strategy is also generally compatible with vinyl sulfones to access vinylsilanes. The silver catalytic system opens up an alternative entry to realize the decarboxylative allylation of silanecarboxylic acids.
Collapse
Affiliation(s)
- Guodong Zhang
- School of Chemistry and Chemical Engineering, Yangzhou University, Siwangting Road 180, Yangzhou 225002, China
| | - Kaiping Wang
- School of Chemistry and Chemical Engineering, Yangzhou University, Siwangting Road 180, Yangzhou 225002, China
| | - Duo Zhang
- Medicine Center, Guangxi University of Science and Technology, Liushi Road 257, Liuzhou, Guangxi 545006, China
| | - Chengyu Zhang
- School of Chemistry and Chemical Engineering, Yangzhou University, Siwangting Road 180, Yangzhou 225002, China
| | - Wei Tan
- School of Chemistry and Chemical Engineering, Yangzhou University, Siwangting Road 180, Yangzhou 225002, China
| | - Zhanzhan Chen
- Medical College, Yangzhou University, Jiangyang Road 136, Yangzhou 225009, China
| | - Feng Chen
- School of Chemistry and Chemical Engineering, Yangzhou University, Siwangting Road 180, Yangzhou 225002, China
| |
Collapse
|
17
|
Zhu WK, Zhu HJ, Fang XJ, Ye F, Cao J, Xu Z, Xu LW. Rhodium-Catalyzed Hydrolytic Cleavage of the Silicon-Carbon Bond of Silacyclobutanes to Access Silanols. Org Lett 2023; 25:7186-7191. [PMID: 37754348 DOI: 10.1021/acs.orglett.3c02611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2023]
Abstract
Herein, we report the first rhodium-catalyzed hydrolytic cleavage of the silicon-carbon bond in silacyclobutanes using water as the reactant. A series of silacyclobutanes could be employed in this reaction in the presence of the Rh/BINAP complex, resulting in the corresponding silanols in good yields. Additionally, a chiral 1,1,4,4-tetraaryl-2,3-O-isopropylidene-l-threitol-derived phosphoramidite ligand could be used in this reaction to yield Si-stereogenic silanol with promising enantioselectivity.
Collapse
Affiliation(s)
- Wei-Ke Zhu
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education and Key Laboratory of Organosilicon Material Technology of Zhejiang Province, College of Material Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, P. R. China
| | - Hua-Jie Zhu
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education and Key Laboratory of Organosilicon Material Technology of Zhejiang Province, College of Material Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, P. R. China
| | - Xiao-Jun Fang
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education and Key Laboratory of Organosilicon Material Technology of Zhejiang Province, College of Material Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, P. R. China
| | - Fei Ye
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education and Key Laboratory of Organosilicon Material Technology of Zhejiang Province, College of Material Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, P. R. China
| | - Jian Cao
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education and Key Laboratory of Organosilicon Material Technology of Zhejiang Province, College of Material Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, P. R. China
| | - Zheng Xu
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education and Key Laboratory of Organosilicon Material Technology of Zhejiang Province, College of Material Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, P. R. China
| | - Li-Wen Xu
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education and Key Laboratory of Organosilicon Material Technology of Zhejiang Province, College of Material Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, P. R. China
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Suzhou Research Institute and Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, P. R. China
| |
Collapse
|
18
|
Zhao S, Ding L, Sun Y, Wang M, Zhao D. Synergistic Palladium/Lewis Acid-Catalyzed Regio- and Stereo-divergent Bissilylation of Alkynoates: Scope, Mechanism, and Origin of Selectivity. Angew Chem Int Ed Engl 2023; 62:e202309169. [PMID: 37477636 DOI: 10.1002/anie.202309169] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/20/2023] [Accepted: 07/20/2023] [Indexed: 07/22/2023]
Abstract
Transition metal-catalyzed bissilylation reactions of alkynes with disilane reagents have become one of the most straightforward and efficient protocols to rapidly produce structurally diverse alkenyl silicon derivatives. In these reactions, the utilization of unsymmetrical disilane reagents provided the possibilities for reactivity enhancement as well as the synthetic merits in contrast to symmetrical disilane reagents. However, a major yet challenging objective is achieving precise control over the selectivity including the regioselectivity and the cis/trans-selectivity. Herein we realized the first divergent bissilylation of alkynoates with our developed air-stable disilane reagent 8-(2-substituted-1,1,2,2-tetramethyldisilanyl)quinoline (TMDQ) by means of synergistic Pd/Lewis acid catalytic system. The catalytic system precisely dictates the selectivity, resulting in the divergent synthesis of 1,2-bissilyl alkenes. The power of these 1,2-bissilyl alkenes serving as the key synthetic intermediates has been clearly demonstrated by rapid construction of diverse motifs and densely functionalized biologically active compounds. In addition, the origins of the switchable selectivities were well elucidated by experimental and computational studies on the reaction mechanism and were mainly attributed to different ligand steric effects, the use of the specific disilane reagent TMDQ and the different coordination modes of different Lewis acid with alkynoates.
Collapse
Affiliation(s)
- Shuang Zhao
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Linlin Ding
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Yingman Sun
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Minyan Wang
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Dongbing Zhao
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| |
Collapse
|
19
|
Sivaramakrishna A, Pete S, Mandar Mhaskar C, Ramann H, Venkata Ramanaiah D, Arbaaz M, Niyaz M, Janardan S, Suman P. Role of hypercoordinated silicon(IV) complexes in activation of carbon–silicon bonds: An overview on utility in synthetic chemistry. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2023.215140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
20
|
Chen Y, Wang F, Rao W, Shen S, Sheng D, Wang SY. Copper-Catalyzed Synthesis of S-S Bond-Containing Silanols from SCBs and Trisulfide-1,1-dioxides. J Org Chem 2023. [PMID: 37235545 DOI: 10.1021/acs.joc.2c02968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
In this work, an efficient method for the copper-catalyzed ring-opening hydrolysis of silacyclobutanes to silanols was developed. This strategy has the advantages of friendly reaction conditions, simple operation, and good functional group compatibility. No additional additives are required in the reaction, and the S-S bond can also be introduced into the organosilanol compounds in one step. Furthermore, the success at the gram scale demonstrates the great potential of the developed protocol for practical industrial applications.
Collapse
Affiliation(s)
- Ying Chen
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Fei Wang
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Weidong Rao
- Key Laboratory of Biomass-based Green Fuels and Chemicals, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Shusu Shen
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 99, Xuefu Road, Huqiu district, Suzhou 215009, P.R. China
| | - Daopeng Sheng
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu 215123, China
| | - Shun-Yi Wang
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| |
Collapse
|
21
|
Liu MM, Xu Y, He C. Catalytic Asymmetric Dehydrogenative Si-H/N-H Coupling: Synthesis of Silicon-Stereogenic Silazanes. J Am Chem Soc 2023; 145:11727-11734. [PMID: 37204933 DOI: 10.1021/jacs.3c02263] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Despite growing progress in the construction of silazanes, the catalytic asymmetric synthesis of silicon-stereogenic silazanes is significantly less explored and remains a considerable challenge. Herein, we report a highly enantioselective synthesis of silicon-stereogenic silazanes via catalytic dehydrogenative coupling of dihydrosilanes with anilines. The reaction readily produces a wide range of chiral silazanes and bis-silazanes in excellent yields and stereoselectivities (up to 99% ee). Further utility of this process is demonstrated by the construction of polycarbosilazanes featuring configurational main chain silicon-stereogenic chirality. In addition, the straightforward transformation of the enantioenriched silazanes delivers various chiral silane compounds in a stereospecific fashion, illustrating their potential utilities as synthons for the synthesis of novel silicon-containing functional molecules.
Collapse
Affiliation(s)
- Meng-Meng Liu
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Yankun Xu
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Chuan He
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou 311121, China
| |
Collapse
|
22
|
Teng QH, Lu FL, Wang K, Zhou LY, Li DP. Chemodivergent Photocatalyzed Heterocyclization of Hydrazones and Isothiocyanates for the Selectivity Synthesis of 2-Amino-1,3,4-thiadiazoles and 1,2,4-Triazole-3-thiones. J Org Chem 2023. [PMID: 37141629 DOI: 10.1021/acs.joc.3c00320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
A photocatalytic chemodivergent reaction for the selectivity formation of C-S and C-N bonds in a controlled manner was proposed. The reaction medium, either neutral or acidic, is critical to dictate the formation of 2-amino-1,3,4-thiadiazoles and 1,2,4-triazole-3-thiones from isothiocyanates and hydrazones. This is a practical protocol to achieve the chemoselectivity under mild and metal-free conditions.
Collapse
Affiliation(s)
- Qing-Hu Teng
- Guangxi Key Laboratory of Plant Functional Phytochemicals and Sustainable Utilization, Guangxi Institute of Botany, Guangxi Zhuang Autonomous Region and Chinese Academy of Sciences, Guilin 541006, P. R. China
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, People's Republic of China
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, China
| | - Feng-Lai Lu
- Guangxi Key Laboratory of Plant Functional Phytochemicals and Sustainable Utilization, Guangxi Institute of Botany, Guangxi Zhuang Autonomous Region and Chinese Academy of Sciences, Guilin 541006, P. R. China
| | - Kai Wang
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, China
| | - Li-Ya Zhou
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, People's Republic of China
| | - Dian-Peng Li
- Guangxi Key Laboratory of Plant Functional Phytochemicals and Sustainable Utilization, Guangxi Institute of Botany, Guangxi Zhuang Autonomous Region and Chinese Academy of Sciences, Guilin 541006, P. R. China
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, People's Republic of China
| |
Collapse
|
23
|
Liao X, Zhou H, Chen X, Xu J. Isothiourea-Catalyzed Acylative Desymmetrization of Silicon-Centered Bisphenols. Org Lett 2023; 25:3099-3103. [PMID: 37129310 DOI: 10.1021/acs.orglett.3c00946] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The preparation of optically pure organosilicon compounds bearing a stereogenic center at the silicon atom is an attractive but challenging enterprise. Herein we disclose an isothiourea (ITU)-catalyzed monoacylation reaction of silicon-centered bisphenols with 2,2-diphenylacetic pivalic anhydride, delivering tetrasubstituted organosilanes in moderate to excellent yields (36-91%) with moderate to excellent enantiomeric ratios (68:32-97.5:2.5). This organocatalytic desymmetrization approach can be performed on gram scale, and the products can be converted to other valuable compounds.
Collapse
Affiliation(s)
- Xuanlong Liao
- Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, P. R. China
| | - Hongwei Zhou
- College of Biological, Chemical Science and Engineering, Jiaxing University, 118 Jiahang Road, Jiaxing 314001, P. R. China
| | - Xingkuan Chen
- Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Department of Chemistry, Jinan University, Guangzhou 510632, P. R. China
| | - Jianfeng Xu
- Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, P. R. China
| |
Collapse
|
24
|
Ling FY, Ye F, Fang XJ, Zhou XH, Huang WS, Xu Z, Xu LW. An unusual autocatalysis with an air-stable Pd complex to promote enantioselective synthesis of Si-stereogenic enynes. Chem Sci 2023; 14:1123-1131. [PMID: 36756338 PMCID: PMC9891361 DOI: 10.1039/d2sc06181c] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 12/21/2022] [Indexed: 12/24/2022] Open
Abstract
Given the powerful potential of chiral-at-silicon chemistry, enantioselective synthesis of Si-stereogenic centers has attracted substantial research interest in recent years. However, the catalytic asymmetric synthesis of Si-stereogenic organosilicon compounds remains an appealing venture and is a challenging subject because of the difficulty in achieving high reactivity and stereoselectivity for "silicon-center" transformations. Herein, we disclose a highly enantioselective palladium-catalyzed hydrosilylation of 1,3-diynes with dihydrosilanes, which enables the facile preparation of Si-stereogenic enynes and an enyne-linked chiral polymer (polyenyne) in good yields and excellent ees (up to >99%) by desymmetrization. The unusual stereoselectivity in this reaction is achieved by precisely controlling the steric hindrance and electronic effect of the newly developed chiral ligands, resulting in a wide range of chiral silanes and a Si-containing polymer bearing a Si-stereogenic center which is otherwise difficult to access. The key to the high enantioselectivity relies on catalyst aggregation-induced non-covalent interaction, which exerts a remarkably positive influence on the Si-H bond activation and enhancement of enantioselectivity, in which the palladium/P-ligand complex was proved to be air-stable and moisture-insensitive in this reaction.
Collapse
Affiliation(s)
- Fang-Ying Ling
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University No. 2318, Yuhangtang Road Hangzhou 311121 P. R. China
| | - Fei Ye
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University No. 2318, Yuhangtang Road Hangzhou 311121 P. R. China
| | - Xiao-Jun Fang
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University No. 2318, Yuhangtang Road Hangzhou 311121 P. R. China
| | - Xiao-Hua Zhou
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University No. 2318, Yuhangtang Road Hangzhou 311121 P. R. China
| | - Wei-Sheng Huang
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University No. 2318, Yuhangtang Road Hangzhou 311121 P. R. China
| | - Zheng Xu
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University No. 2318, Yuhangtang Road Hangzhou 311121 P. R. China
| | - Li-Wen Xu
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University No. 2318, Yuhangtang Road Hangzhou 311121 P. R. China .,State Key Laboratory for Oxo Synthesis and Selective Oxidation, Suzhou Research Institute and Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences P. R. China
| |
Collapse
|
25
|
Fan Y, Jing J, Tong R, Tu X, Gao L, Wang W, Song Z. Intramolecular Ring Expansion of 3-Silaazetidine with Alkynes Enabled by Pd-Catalyzed Si-C Bond Activation. Org Lett 2023; 25:455-460. [PMID: 36472378 DOI: 10.1021/acs.orglett.2c03698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
An intramolecular ring expansion of in situ formed 3-silaazetidine with internal alkynes has been developed via Pd-catalyzed Si-C bond activation. The reaction gives rise to 6,5- and 6,6-fused bicyclic 1,3-azasilines, in which the silicon atom locates at the ring junction position.
Collapse
Affiliation(s)
- Yu Fan
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Jun Jing
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Ruiqi Tong
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Xiaoyu Tu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Lu Gao
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Wanshu Wang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Zhenlei Song
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
26
|
Yan X, Yang M, She YB, Yang YF. A theoretical study of the ligand-controlled palladium-catalysed regiodivergent synthesis of dibenzosilepin derivatives. Dalton Trans 2023; 52:737-746. [PMID: 36562425 DOI: 10.1039/d2dt03767j] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Palladium-catalysed ligand-controlled 1,n-palladium migration of silicon-tethering substrates provides a regiodivergent synthesis strategy for constructing silicon-bridged π-conjugated compounds possessing a 6,6-fused or a 5,7-fused scaffold. Density functional theory (DFT) calculations were carried out to elucidate the detailed mechanism of this 1,n-palladium migration involving syn- or anti-carbopalladation. The computational results suggest that alkyne insertion is the regioselectivity-determining step. Upon catalysis without the BINAP ligand, the 1,2-insertion of an alkyne into the Pd-aryl bond leads to the formation of 6,6-fused benzophenanthrosiline, which is more favorable than the 2,1-insertion of alkyne by 4.2 kcal mol-1. The selective formation of 5,7-fused benzofluorenosilepins via the 2,1-alkyne insertion is facilitated by the BINAP ligand. The 1,2-alkyne insertion with the BINAP ligand is disfavoured due to the steric repulsion between the phenyl group of the substrate and the naphthalene group of the BINAP ligand. The 2,1-alkyne insertion with the BINAP ligand orients the ligand away from the phenyl group of the substrate, which can avoid steric repulsion.
Collapse
Affiliation(s)
- Xueyuan Yan
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China.
| | - Miao Yang
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China.
| | - Yuan-Bin She
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China.
| | - Yun-Fang Yang
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China.
| |
Collapse
|
27
|
Huang R, Wang M, Deng H, Xu J, Yan H, Zhao Y, Shi Z. Stereospecific nickel-catalyzed [4+2] heteroannulation of alkynes with aminophosphanes. SCIENCE ADVANCES 2023; 9:eade8638. [PMID: 36638162 PMCID: PMC9839338 DOI: 10.1126/sciadv.ade8638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 12/09/2022] [Indexed: 06/17/2023]
Abstract
Enantioenriched phosphorus compounds play crucial roles in many fields ranging from catalyst to materials science to drug development. Despite advances in the construction of phosphacycles, incorporation of a P-chirogenic center into heterocycles remains challenging. Here, we report an effective method for the preparation of phosphacycles through nickel-catalyzed [4+2] heteroannulation of internal alkynes with aminophosphanes derived from o-haloanilines. Notably, chiral 2-λ5-phosphaquinolines can be prepared from P-stereogenic substrates via NH/PH tautomeric equilibrium without loss of stereochemical integrity. The strategy is found to exhibit a broad scope in terms of both reaction components, enabling modular construction of libraries of 2-λ5-phosphaquinolines with different steric and electronic properties for fine-tuning photophysical properties, where some of these compounds showed distinct fluorescence with high quantum yields. A series of mechanistic studies further shed light on the pathway of the heteroannulation and reasons for stereospecificity.
Collapse
Affiliation(s)
- Ronghui Huang
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Minyan Wang
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Hong Deng
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, Huaibei Normal University, Huaibei, Anhui 235000, China
| | - Jingkai Xu
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Hong Yan
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Yue Zhao
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Zhuangzhi Shi
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| |
Collapse
|
28
|
Chen H, Peng J, Pang Q, Du H, Huang L, Gao L, Lan Y, Yang C, Song Z. Enantioselective Synthesis of Spirosilabicyclohexenes by Asymmetric Dual Ring Expansion of Spirosilabicyclobutane with Alkynes. Angew Chem Int Ed Engl 2022; 61:e202212889. [DOI: 10.1002/anie.202212889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Indexed: 11/19/2022]
Affiliation(s)
- Hua Chen
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology West China School of Pharmacy Sichuan University Chengdu 610041 China
| | - Ju Peng
- School of Chemistry and Chemical Engineering Chongqing Key Laboratory of Theoretical and Computational Chemistry Chongqing University Chongqing 400030 China
| | - Qinjiao Pang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology West China School of Pharmacy Sichuan University Chengdu 610041 China
| | - Huimin Du
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology West China School of Pharmacy Sichuan University Chengdu 610041 China
| | - Liying Huang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology West China School of Pharmacy Sichuan University Chengdu 610041 China
| | - Lu Gao
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology West China School of Pharmacy Sichuan University Chengdu 610041 China
| | - Yu Lan
- School of Chemistry and Chemical Engineering Chongqing Key Laboratory of Theoretical and Computational Chemistry Chongqing University Chongqing 400030 China
- Green Catalysis Center, and College of Chemistry Zhengzhou University Zhengzhou Henan 450001 China
| | - Cheng Yang
- Key Laboratory of Green Chemistry & Technology College of Chemistry Sichuan University Chengdu 610064 China
| | - Zhenlei Song
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology West China School of Pharmacy Sichuan University Chengdu 610041 China
| |
Collapse
|
29
|
Zhou XH, Fang XJ, Ling FY, Xu Z, Hong LQ, Ye F, Xu LW. Catalytic C(sp)–Si cross-coupling silylation of alkynyl bromides with hydrosilanes by palladium catalysis. Org Chem Front 2022. [DOI: 10.1039/d2qo01253g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An unprecedented and convenient Si–C(sp) bond-forming cross-coupling of alkynyl bromides with hydrosilanes has been established for the facile synthesis of alkynylsilanes in good yields and with excellent chemoselectivity.
Collapse
Affiliation(s)
- Xiao-Hua Zhou
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, and Key Laboratory of Organosilicon Material Technology of Zhejiang Province, College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, P. R. China
| | - Xiao-Jun Fang
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, and Key Laboratory of Organosilicon Material Technology of Zhejiang Province, College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, P. R. China
| | - Fang-Ying Ling
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, and Key Laboratory of Organosilicon Material Technology of Zhejiang Province, College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, P. R. China
| | - Zheng Xu
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, and Key Laboratory of Organosilicon Material Technology of Zhejiang Province, College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, P. R. China
| | - Li-Quan Hong
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, and Key Laboratory of Organosilicon Material Technology of Zhejiang Province, College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, P. R. China
- Deqing Third People's Hospital and The Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, 310015, China
| | - Fei Ye
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, and Key Laboratory of Organosilicon Material Technology of Zhejiang Province, College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, P. R. China
| | - Li-Wen Xu
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, and Key Laboratory of Organosilicon Material Technology of Zhejiang Province, College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, P. R. China
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Suzhou Research Institute (SRI), Lanzhou Institute of Chemical Physics (LICP), University of the Chinese Academy of Sciences (UCAS), Lanzhou 730000, P. R. China
| |
Collapse
|