1
|
Wang L, Zhou PP, Xie D, Yue Q, Sun HZ, Yang SD, Wang GW. Dynamic Kinetic Activation of Aziridines Enables Radical-Polar Crossover (4 + 3) Cycloaddition with 1,3-Dienes. J Am Chem Soc 2025; 147:2675-2688. [PMID: 39791566 DOI: 10.1021/jacs.4c15003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
The cycloaddition of aziridines with unsaturated compounds is a valuable method for synthesizing nitrogen heterocycles. However, this process is predominantly substrate-controlled, posing significant challenges in regulating the regioselectivity of the C-N bond cleavage. In this study, we report a nickel-catalyzed dynamic kinetic activation strategy that enables catalyst-controlled activation of aziridines. Various types of aziridines, including 2-phenyl, 2-carbonyl, 2-alkyl, and disubstituted aziridines, consistently cleave their more sterically hindered C-N bonds to generate 1,3-radical anion intermediates. These intermediates participate in a highly regioselective 1,4-Heck/allylic substitution cascade with aromatic branched 1,3-dienes, resulting in a radical-polar crossover (4 + 3) cycloaddition that produces seven-membered azepine products. This approach not only complements traditional dipolar cycloaddition, in which aziridines typically act as zwitterionic 1,3-dipoles, but also introduces an unusual cycloaddition mode for 1,3-dienes. Experimental investigations and density functional theory (DFT) calculations provide insight into the reaction mechanism.
Collapse
Affiliation(s)
- Lei Wang
- State Key Laboratory of Applied Organic Chemistry & College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Pan-Pan Zhou
- State Key Laboratory of Applied Organic Chemistry & College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Dong Xie
- State Key Laboratory of Applied Organic Chemistry & College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Qian Yue
- State Key Laboratory of Applied Organic Chemistry & College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Hao-Zheng Sun
- State Key Laboratory of Applied Organic Chemistry & College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Shang-Dong Yang
- State Key Laboratory of Applied Organic Chemistry & College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Gang-Wei Wang
- State Key Laboratory of Applied Organic Chemistry & College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
2
|
Thorat RA, Parganiha D, Jain S, Choudhary V, Shakir B, Rohilla K, Jha RK, Kumar S. Temperature-Dependent Diastereodivergent [4 + 3] Annulation: Synthesis of Ferrocene-Fused Azepines via Rh(III) Catalysis. Org Lett 2025; 27:552-558. [PMID: 39639509 DOI: 10.1021/acs.orglett.4c03954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
Herein, we disclose the first temperature-dependent diastereodivergent [4 + 3] annulation of ferrocene-p-tosylamides via C-H activation with allenes by a Rh catalyst. At room temperature, Rh-catalyzed [4 + 3] annulation selectively offered a kinetically controlled diastereomer [>20:1 diastereomeric ratio (dr)], whereas at 60 °C, a thermodynamically controlled diastereomer was obtained exclusively with >20:1 dr.
Collapse
Affiliation(s)
- Raviraj Ananda Thorat
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal By-Pass Road, Bhopal, Madhya Pradesh 462066, India
| | - Devendra Parganiha
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal By-Pass Road, Bhopal, Madhya Pradesh 462066, India
| | - Saket Jain
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal By-Pass Road, Bhopal, Madhya Pradesh 462066, India
| | - Vishal Choudhary
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal By-Pass Road, Bhopal, Madhya Pradesh 462066, India
| | - Batul Shakir
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal By-Pass Road, Bhopal, Madhya Pradesh 462066, India
| | - Komal Rohilla
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal By-Pass Road, Bhopal, Madhya Pradesh 462066, India
| | - Raushan Kumar Jha
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal By-Pass Road, Bhopal, Madhya Pradesh 462066, India
| | - Sangit Kumar
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal By-Pass Road, Bhopal, Madhya Pradesh 462066, India
| |
Collapse
|
3
|
Stein C, Tyler JL, Wiener J, Boser F, Daniliuc CG, Glorius F. Anomeric Amide-Enabled Alkene-Arene and Alkene-Alkene Aminative Coupling. Angew Chem Int Ed Engl 2024:e202418141. [PMID: 39607360 DOI: 10.1002/anie.202418141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/28/2024] [Accepted: 11/14/2024] [Indexed: 11/29/2024]
Abstract
Despite the prominence of C-N bond forming cross-coupling reactions as a strategy to assemble molecular fragments, aminative coupling approaches, in which two fragments are assembled directly at the heteroatom, represents a rarely exploited retrosynthetic strategy. Herein, we report the design, synthesis, and implementation of an anomeric amide reagent capable of promoting highly regioselective aminative alkene-arene and alkene-alkene coupling reactions. This transformation follows a sequence of catalyst-free chloroamination, N-deprotection, and formal nitrene functionalization, all in one-pot. Due to the simplicity of both the protocol and the building blocks required, high-throughput experimentation (HTE) was employed, in combination with a full-scale scope, to rapidly and efficiently explore a wide range of chemical space and determine the limits of reactivity. In addition, alternative reactivity modes from the functionalized intermediates delivered by this protocol demonstrate the divergent nature of this aminative coupling strategy.
Collapse
Affiliation(s)
- Colin Stein
- Organisch-Chemisches Institut, Universität Münster, Corrensstraße 36, 48149, Münster
| | - Jasper L Tyler
- Organisch-Chemisches Institut, Universität Münster, Corrensstraße 36, 48149, Münster
| | - Julius Wiener
- Organisch-Chemisches Institut, Universität Münster, Corrensstraße 36, 48149, Münster
| | - Florian Boser
- Organisch-Chemisches Institut, Universität Münster, Corrensstraße 36, 48149, Münster
| | - Constantin G Daniliuc
- Organisch-Chemisches Institut, Universität Münster, Corrensstraße 36, 48149, Münster
| | - Frank Glorius
- Organisch-Chemisches Institut, Universität Münster, Corrensstraße 36, 48149, Münster
| |
Collapse
|
4
|
Tan H, Thai P, Sengupta U, Deavenport IR, Kucifer CM, Powers DC. Metal-Free Aziridination of Unactivated Olefins via Transient N-Pyridinium Iminoiodinanes. JACS AU 2024; 4:4187-4193. [PMID: 39610755 PMCID: PMC11600189 DOI: 10.1021/jacsau.4c00556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 10/01/2024] [Accepted: 10/03/2024] [Indexed: 11/30/2024]
Abstract
We describe a metal-free aziridination of unactivated olefins to generate N-pyridinium aziridines. Subsequent cross-coupling affords N-aryl aziridines, and reductive depyridylation affords N-H aziridines. Kinetics experiments, based on a variable time normalization analysis (VTNA), indicate that aziridination proceeds via a highly electrophilic N-pyridinium iminoiodinane intermediate. These studies expand build-and-couple aziridine synthesis to unactivated olefins and introduce charge-enhanced electrophilicity into the chemistry of iminoiodinanes.
Collapse
Affiliation(s)
- Hao Tan
- Department of Chemistry, Texas
A&M University, College
Station, Texas 77843, United States
| | - Phong Thai
- Department of Chemistry, Texas
A&M University, College
Station, Texas 77843, United States
| | - Uddalak Sengupta
- Department of Chemistry, Texas
A&M University, College
Station, Texas 77843, United States
| | - Isaac R. Deavenport
- Department of Chemistry, Texas
A&M University, College
Station, Texas 77843, United States
| | - Cali M. Kucifer
- Department of Chemistry, Texas
A&M University, College
Station, Texas 77843, United States
| | - David C. Powers
- Department of Chemistry, Texas
A&M University, College
Station, Texas 77843, United States
| |
Collapse
|
5
|
Biswas P, Maity A, Figgins MT, Powers DC. Aziridine Group Transfer via Transient N-Aziridinyl Radicals. J Am Chem Soc 2024; 146:30796-30801. [PMID: 39497240 PMCID: PMC11565639 DOI: 10.1021/jacs.4c14169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 10/28/2024] [Accepted: 10/30/2024] [Indexed: 11/14/2024]
Abstract
Aziridines are the smallest nitrogen-containing heterocycles. Strain-enhanced electrophilicity renders aziridines useful synthetic intermediates and gives rise to biological activity. Classical aziridine syntheses─based on either [2 + 1] cycloadditions or intramolecular substitution chemistry─assemble aziridines from acyclic precursors. Here, we introduce N-aziridinyl radicals as a reactive intermediate that enables the transfer of intact aziridine fragments in organic synthesis. Transient N-aziridinyl radicals are generated by the reductive activation of N-pyridinium aziridines and are directly characterized by spin-trapped EPR spectroscopy. In the presence of O2, N-aziridinyl radicals are added to styrenyl olefins to afford 1,2-hydroxyaziridination products. These results establish aziridinyl radicals as new reactive intermediates in synthetic chemistry and demonstrate aziridine group transfer as a viable synthetic disconnection.
Collapse
Affiliation(s)
- Promita Biswas
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Asim Maity
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Matthew T. Figgins
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - David C. Powers
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| |
Collapse
|
6
|
Roychowdhury P, Samanta S, Brown LM, Waheed S, Powers DC. Bidirectional Electron Transfer Strategies for Anti-Markovnikov Olefin Aminofunctionalization via Arylamine Radicals. ACS Catal 2024; 14:13156-13162. [PMID: 39263548 PMCID: PMC11385361 DOI: 10.1021/acscatal.4c04110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/06/2024] [Accepted: 08/08/2024] [Indexed: 09/13/2024]
Abstract
Arylamines are common structural motifs in pharmaceuticals, natural products, and materials precursors. While olefin aminofunctionalization chemistry can provide entry to arylamines, classical polar reactions typically afford Markovnikov products. Nitrogen-centered radical intermediates provide the opportunity to access anti-Markovnikov selectivity; however, anti-Markovnikov arylamination is unknown in large part due to the lack of arylamine radical precursors. Here, we introduce bidirectional electron transfer processes to generate arylamine radical intermediates from N-pyridinium arylamines: Single-electron oxidation provides arylamine radicals that engage in anti-Markovnikov olefin aminopyridylation; single-electron reduction unveils arylamine radicals that engage in anti-Markovnikov olefin aminofunctionalization. The development of bidirectional redox processes complements classical design principles for radical precursors, which typically function via a single redox manifold. Demonstration of both oxidative and reductive mechanisms to generate arylamine radicals from a common N-aminopyridinium precursor provides complementary methods to rapidly construct and diversify arylamine scaffolds from readily available radical precursors.
Collapse
Affiliation(s)
- Pritam Roychowdhury
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Samya Samanta
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Lauren M Brown
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Saim Waheed
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - David C Powers
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| |
Collapse
|
7
|
Samanta S, Biswas P, O'Bannon BC, Powers DC. β-Phenethylamine Synthesis: N-Pyridinium Aziridines as Latent Dual Electrophiles. Angew Chem Int Ed Engl 2024; 63:e202406335. [PMID: 38699820 PMCID: PMC11262962 DOI: 10.1002/anie.202406335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/01/2024] [Accepted: 05/02/2024] [Indexed: 05/05/2024]
Abstract
β-Phenethylamines are widely represented in biologically and pharmacologically active organic small molecules. Here, we introduce N-pyridinium aziridines as latent dual electrophiles for the synthesis of β-phenethylamines. Bromide-promoted ring opening generates β-halopyridinium amines. Selective Ni-catalyzed C-C cross-coupling between organozinc nucleophiles and the benzylic C-Br electrophile affords a diverse family of β-functionalized phenethylaminopyridinium salts, and coupling is stereoconvergent in the presence of chiral ligands. Subsequent Ni-catalyzed reductive N-N bond activation within the β-functionalized phenethylaminopyridinium salts furnishes the products of formal olefin carboamination. Other reductive N-N cleavage reactions are demonstrated to provide access to free primary amines, alkylated amines, heterocycles, and products derived from N-centered radical chemistry. The developed reaction sequence can be implemented in the context of complex molecules and natural product derivatives. Together, the described results provide a general and modular synthesis of β-phenethylamines and significantly expand the utility of N-pyridinium aziridines as linchpins in chemical synthesis.
Collapse
Affiliation(s)
- Samya Samanta
- Department of Chemistry, Texas A&M University, College Station, Texas, 77843, United States
| | - Promita Biswas
- Department of Chemistry, Texas A&M University, College Station, Texas, 77843, United States
| | - Braeden C O'Bannon
- Department of Chemistry, Texas A&M University, College Station, Texas, 77843, United States
| | - David C Powers
- Department of Chemistry, Texas A&M University, College Station, Texas, 77843, United States
| |
Collapse
|
8
|
Pan M, Shen Y, Li Y, Shen C, Li W. B 2(OH) 4-Mediated Reductive Ring-Opening of N-Tosyl Aziridines by Nitroarenes: A Green and Regioselective Access to Vicinal Diamines. J Org Chem 2024; 89:8656-8667. [PMID: 38831644 DOI: 10.1021/acs.joc.4c00591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
The nucleophilic ring-opening of aziridine derivatives provides an important synthetic tool for the preparation of various β-functionalized amines. Amines as nucleophiles are employed to prepare synthetically useful 1,2-diamines in the presence of various catalysts or activators. Herein, the B2(OH)4-mediated reductive ring-opening transformation of N-tosyl aziridines by nitroarenes was developed. This aqueous protocol employed nitroarenes as cheap and readily available amino sources and proceeds under external catalyst-free conditions. Control experiments and DFT calculations pointed to the in situ reduction of nitroarenes to aryl amines via N-aryl boramidic acid (E) and an SN1-type ring-opening of N-tosylaziridines by the resultant aryl amines with high regioselectivity.
Collapse
Affiliation(s)
- Mengni Pan
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, P. R. China
| | - Yue Shen
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, P. R. China
| | - Yang Li
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, P. R. China
| | - Chaoren Shen
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, P. R. China
| | - Wanfang Li
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, P. R. China
| |
Collapse
|
9
|
Roychowdhury P, Waheed S, Sengupta U, Herrera RG, Powers DC. Synthesis of Secondary Amines via Self-Limiting Alkylation. Org Lett 2024; 26:4926-4931. [PMID: 38832812 PMCID: PMC11187628 DOI: 10.1021/acs.orglett.4c01430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/27/2024] [Accepted: 05/29/2024] [Indexed: 06/06/2024]
Abstract
N-centered nucleophilicity increases upon alkylation, and thus selective partial alkylation of ammonia and primary amines can be challenging: Poor selectivity and overalkylation are often observed. Here we introduce N-aminopyridinium salts as ammonia surrogates for the synthesis of secondary amines via self-limiting alkylation chemistry. Readily available N-aryl-N-aminopyridinium salts engage in N-alkylation and in situ depyridylation to afford secondary aryl-alkyl amines without any overalkylation products. The method overcomes classical challenges in selective amine alkylation by accomplishing alkylation via transient, highly nucleophilic pyridinium ylide intermediates and can be applied in the context of complex molecular scaffolds. These findings establish N-aminopyridinium salts as ammonia synthons in synthetic chemistry and a strategy to control the extent of amine alkylation.
Collapse
Affiliation(s)
- Pritam Roychowdhury
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Saim Waheed
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Uddalak Sengupta
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Roberto G. Herrera
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - David C. Powers
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| |
Collapse
|
10
|
Huang Y, Zhu SY, He G, Chen G, Wang H. Synthesis of N-H Aziridines from Unactivated Olefins Using Hydroxylamine- O-Sulfonic Acids as Aminating Agent. J Org Chem 2024; 89:6263-6273. [PMID: 38652889 DOI: 10.1021/acs.joc.4c00253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
Herein, we presented a practical methodology for the intermolecular aziridination of alkenes, using HOSA as the aminating agent, alongside pyridine or piperidine as the base, within HFIP solvent system. Notably, this approach showcases excellent reactivity, especially with nonactivated alkenes, and facilitates the transformation of various alkenes substrates, including mono-, di-, tri, and tetra-substituted alkenes, into aziridines with moderate to excellent yield. This method presents a promising avenue for synthesizing aziridines from a wide range of alkenes, featuring the benefits of straightforward operation, mild reaction conditions, extensive substrate compatibility, and scalability.
Collapse
Affiliation(s)
- Yi Huang
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Shi-Yang Zhu
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Gang He
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Gong Chen
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Hao Wang
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
11
|
Liu J, Du J, Zhang LB, Li M, Guo W. Electrochemical Benzylic C-H Amination via N-Aminopyridinium. J Org Chem 2024; 89:6465-6473. [PMID: 38644574 DOI: 10.1021/acs.joc.4c00502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
An electrochemical protocol for benzylic C(sp3)-H aminopyridylation via direct C-H/N-H cross-coupling of alkylarenes with N-aminopyridinium triflate has been developed. This method features excellent site-selectivity, broad substrate scope, redox reagent-free and facile scalability. The generated benzylaminopyridiniums can be readily converted to benzylamines via electroreductive N-N bond cleavage.
Collapse
Affiliation(s)
- Jingwei Liu
- College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, Qingdao 266042, China
| | - Jinyao Du
- College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, Qingdao 266042, China
| | - Lin-Bao Zhang
- College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, Qingdao 266042, China
| | - Ming Li
- College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, Qingdao 266042, China
| | - Weisi Guo
- College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, Qingdao 266042, China
| |
Collapse
|
12
|
Banuprakash Goud S, Lal Dhakar R, Samanta S. Copper(I)-Photocatalyzed Diastereoselective Aziridination of N-Sulfonyl Imines with Vinyl Azides: Application to Benzo[f][1,2,3]oxathiazepines Dioxides and Fused Isoxazolines. Chem Asian J 2024; 19:e202300904. [PMID: 38018300 DOI: 10.1002/asia.202300904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/27/2023] [Accepted: 11/27/2023] [Indexed: 11/30/2023]
Abstract
An in situ generated photoactive copper(I)-complex-catalyzed aziridination reaction of cyclic N-sulfonyl imines with α-aryl-substituted vinyl azides irradiated by blue-LEDs light is reported for the first time. This novel SET process represents a mild, sustainable, and pragmatic method for accessing synthetically resourceful sulfamidate-fused aziridines in acceptable chemical yields with excellent diastereoselectivities. Delightedly, pharmacologically attractive benzo[f][1,2,3]oxathiazepine dioxides and fused isoxazoline frameworks were achieved through our newly developed metal-free based ring-expansion techniques, highlighting the synthetic value of accessed aziridines. Finally, the possible mechanism for [2+1] aza-cyclization was presented based on the conduction of a series of control experiments.
Collapse
Affiliation(s)
- S Banuprakash Goud
- Department of Chemistry, Indian Institute of Technology Indore, Simrol, 453552, Madhya Pradesh, India
| | - Raju Lal Dhakar
- Department of Chemistry, Indian Institute of Technology Indore, Simrol, 453552, Madhya Pradesh, India
| | - Sampak Samanta
- Department of Chemistry, Indian Institute of Technology Indore, Simrol, 453552, Madhya Pradesh, India
| |
Collapse
|
13
|
Chhikara A, Kaur N, Wolke EB, Boes EA, Nguyen AM, Ariyarathna JP, Baskaran P, Villa CE, Pham AH, Kremenets VJ, Kutcher SR, Truong JT, Li W. Olefin Difunctionalization for the Synthesis of Tetrahydroisoquinoline, Morpholine, Piperazine, and Azepane. Org Lett 2024; 26:84-88. [PMID: 38171009 DOI: 10.1021/acs.orglett.3c03690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
This report outlines a versatile strategy for synthesizing a diverse array of N-heterocycles. By the utilization of common olefins, this simple protocol facilitates their coupling with various bifunctional reagents. Furthermore, it can be integrated with C-H amination techniques to directly produce N-heterocycles in a multicomponent cascade coupling process. The unique bond disconnection logic employed in this process underscores its efficiency in achieving rapid simplification through cascade couplings.
Collapse
Affiliation(s)
- Akanksha Chhikara
- Department of Chemistry and Biochemistry, School of Green Chemistry and Engineering, The University of Toledo, 2801 West Bancroft Street, Toledo, Ohio 43606, United States
| | - Navdeep Kaur
- Department of Chemistry and Biochemistry, School of Green Chemistry and Engineering, The University of Toledo, 2801 West Bancroft Street, Toledo, Ohio 43606, United States
| | - Ernest B Wolke
- Department of Chemistry and Biochemistry, School of Green Chemistry and Engineering, The University of Toledo, 2801 West Bancroft Street, Toledo, Ohio 43606, United States
| | - Emily A Boes
- Department of Chemistry and Biochemistry, School of Green Chemistry and Engineering, The University of Toledo, 2801 West Bancroft Street, Toledo, Ohio 43606, United States
| | - Alex M Nguyen
- Department of Chemistry and Biochemistry, School of Green Chemistry and Engineering, The University of Toledo, 2801 West Bancroft Street, Toledo, Ohio 43606, United States
| | - Jeewani P Ariyarathna
- Department of Chemistry and Biochemistry, School of Green Chemistry and Engineering, The University of Toledo, 2801 West Bancroft Street, Toledo, Ohio 43606, United States
| | - Prabagar Baskaran
- Department of Chemistry and Biochemistry, School of Green Chemistry and Engineering, The University of Toledo, 2801 West Bancroft Street, Toledo, Ohio 43606, United States
| | - Chloe E Villa
- Department of Chemistry and Biochemistry, School of Green Chemistry and Engineering, The University of Toledo, 2801 West Bancroft Street, Toledo, Ohio 43606, United States
| | - Anthony H Pham
- Department of Chemistry and Biochemistry, School of Green Chemistry and Engineering, The University of Toledo, 2801 West Bancroft Street, Toledo, Ohio 43606, United States
| | - Victoria J Kremenets
- Department of Chemistry and Biochemistry, School of Green Chemistry and Engineering, The University of Toledo, 2801 West Bancroft Street, Toledo, Ohio 43606, United States
| | - Sydney R Kutcher
- Department of Chemistry and Biochemistry, School of Green Chemistry and Engineering, The University of Toledo, 2801 West Bancroft Street, Toledo, Ohio 43606, United States
| | - Jonathon T Truong
- Department of Chemistry and Biochemistry, School of Green Chemistry and Engineering, The University of Toledo, 2801 West Bancroft Street, Toledo, Ohio 43606, United States
| | - Wei Li
- Department of Chemistry and Biochemistry, School of Green Chemistry and Engineering, The University of Toledo, 2801 West Bancroft Street, Toledo, Ohio 43606, United States
| |
Collapse
|
14
|
Wang L, Shi M, Chen X, Su N, Luo W, Zhang X. Generation of Aromatic N-Heterocyclic Radicals for Functionalization of Unactivated Alkenes. Angew Chem Int Ed Engl 2023; 62:e202314312. [PMID: 37946626 DOI: 10.1002/anie.202314312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 10/30/2023] [Accepted: 11/09/2023] [Indexed: 11/12/2023]
Abstract
Nitrogen-centered radicals (NCRs) have been widely recognized as versatile synthetic intermediates for the construction of nitrogen containing molecules of high value. As such, there has been a long-standing interest in the field of organic synthesis to develop novel nitrogen-based radicals and explore their inherent reactivity. In this study, we present the generation of aromatic N-heterocyclic radicals and their application in a novel and diverse functionalization of unactivated alkenes. Bench-stable aromatic N-heterocyclic pyridinium salts were employed as crucial NCR precursors, which enabled the efficient conversion of various unactivated alkenes into medicinally relevant alkylated N-heterocyclic amines. This approach offers an unexplored retrosynthetic disconnection for the synthesis of related molecules that commonly possess therapeutic value. Furthermore, this platform can be extended to the synthesis of densely functionalized heterocyclic amines by utilizing disulfides and diethyl bromomalonate as radical quenchers. Mechanistic investigations indicate an energy transfer (EnT) pathway involving the formation of a transient aromatic N-heterocyclic radical, radical addition to unactivated alkenes, and subsequent generation of the amination product through either hydrogen atom transfer (HAT) or radical addition processes.
Collapse
Affiliation(s)
- Lu Wang
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
| | - Minxu Shi
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
| | - Xiaoping Chen
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
| | - Nicholas Su
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
| | - Weili Luo
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
| | - Xiaheng Zhang
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
| |
Collapse
|
15
|
Cosio MN, Alharbi WS, Sur A, Wang CH, Najafian A, Cundari TR, Powers DC. On the mechanism of intermolecular nitrogen-atom transfer from a lattice-isolated diruthenium nitride intermediate. Faraday Discuss 2023; 244:154-168. [PMID: 37186144 DOI: 10.1039/d2fd00167e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Catalyst confinement within microporous media provides the opportunity to site isolate reactive intermediates, enforce intermolecular functionalization chemistry by co-localizing reactive intermediates and substrates in molecular-scale interstices, and harness non-covalent host-guest interactions to achieve selectivities that are complementary to those accessible in solution. As part of an ongoing program to develop synthetically useful nitrogen-atom transfer (NAT) catalysts, we have demonstrated intermolecular benzylic amination of toluene at a Ru2 nitride intermediate confined within the interstices of a Ru2-based metal-organic framework (MOF), Ru3(btc)2X3 (btc = 1,3,5-benzenetricarboxylate, i.e., Ru-HKUST-1 for X = Cl). Nitride confinement within the extended MOF lattice enabled intermolecular C-H functionalization of benzylic C-H bonds in preference to nitride dimerization, which was encountered with soluble molecular analogues. Detailed study of the kinetic isotope effects (KIEs, i.e., kH/kD) of C-H amination, assayed both as intramolecular effects using partially labeled toluene and as intermolecular effects using a mixture of per-labeled and unlabeled toluene, provided evidence for restricted substrate mobility on the time scale of interstitial NAT. Analysis of these KIEs as a function of material mesoporosity provided approximate experimental values for functionalization in the absence of mass transport barriers. Here, we disclose a combined experimental and computational investigation of the mechanism of NAT from a Ru2 nitride to the C-H bond of toluene. Computed kinetic isotope effects for a H-atom abstraction (HAA)/radical rebound (RR) mechanism are in good agreement with experimental data obtained for C-H amination at the rapid diffusion limit. These results provide the first detailed analysis of the mechanism of intermolecular NAT to a C-H bond, bolster the use of KIEs as a probe of confinement effects on NAT within MOF lattices, and provide mechanistic insights unavailable by experiment because rate-determining mass transport obscured the underlying chemical kinetics.
Collapse
Affiliation(s)
- Mario N Cosio
- Department of Chemistry, Texas A&M University, College Station, Texas 77843-3255, USA.
| | - Waad S Alharbi
- Department of Chemistry, Center of Advanced Scientific Computing and Modeling (CASCaM), University of North Texas, 1155 Union Circle, #305070, Denton, Texas 76203-5017, USA.
- Chemistry Department, Science College, University of Jeddah, Jeddah, Kingdom of Saudi Arabia
| | - Aishanee Sur
- Department of Chemistry, Texas A&M University, College Station, Texas 77843-3255, USA.
| | - Chen-Hao Wang
- Department of Chemistry, Texas A&M University, College Station, Texas 77843-3255, USA.
| | - Ahmad Najafian
- Department of Chemistry, Center of Advanced Scientific Computing and Modeling (CASCaM), University of North Texas, 1155 Union Circle, #305070, Denton, Texas 76203-5017, USA.
| | - Thomas R Cundari
- Department of Chemistry, Center of Advanced Scientific Computing and Modeling (CASCaM), University of North Texas, 1155 Union Circle, #305070, Denton, Texas 76203-5017, USA.
| | - David C Powers
- Department of Chemistry, Texas A&M University, College Station, Texas 77843-3255, USA.
| |
Collapse
|
16
|
Roychowdhury P, Samanta S, Tan H, Powers DC. N-Amino Pyridinium Salts in Organic Synthesis. Org Chem Front 2023; 10:2563-2580. [PMID: 37840843 PMCID: PMC10569450 DOI: 10.1039/d3qo00190c] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
C-N bond forming reactions hold immense significance to synthetic organic chemistry. In pursuit of efficient methods for the introduction of nitrogen in organic small molecules, myriad synthetic methods have been developed, and methods based on both nucleophilic and electrophilic aminating reagents have received sustained research effort. In response to continued challenges - the need for substrate prefunctionalization, the requirement for vestigial N-activating groups, and the need to incorporate nitrogen in ever more complex molecular settings - the development of novel aminating reagents remains a central challenge in method development. N-aminopyridinums and their derivatives have recently emerged as a class of bifunctional aminating reagents, which combine N-centered nucleophilicity with latent electrophilic or radical reactivity by virtue of the reducible N-N bond, with broad synthetic potential. Here, we summarize the synthesis and reactivity of N-aminopyridinium salts relevant to organic synthesis. The preparation and application of these reagents in photocatalyzed and metal-catalyzed transformations is discussed, showcasing the reactivity in the context of bifunctional platform and its potential for innovation in the field.
Collapse
Affiliation(s)
- Pritam Roychowdhury
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, USA
| | - Samya Samanta
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, USA
| | - Hao Tan
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, USA
| | - David C Powers
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, USA
| |
Collapse
|
17
|
Xu J, Chen D, Liu C. Recent advances of aminoazanium salts as amination reagents in organic synthesis. Org Biomol Chem 2022; 20:8353-8365. [DOI: 10.1039/d2ob01312f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
This review summarizes the utilization of aminoazaniums as amination reagents in organic synthesis, including the amination of aldehydes, boronic esters, olefins, etc.
Collapse
Affiliation(s)
- Jianeng Xu
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Du Chen
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chao Liu
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| |
Collapse
|