1
|
Srivastava V, Kumar R, Wani MY, Robinson K, Ahmad A. Role of artificial intelligence in early diagnosis and treatment of infectious diseases. Infect Dis (Lond) 2025; 57:1-26. [PMID: 39540872 DOI: 10.1080/23744235.2024.2425712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 09/19/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024] Open
Abstract
Infectious diseases remain a global health challenge, necessitating innovative approaches for their early diagnosis and effective treatment. Artificial Intelligence (AI) has emerged as a transformative force in healthcare, offering promising solutions to address this challenge. This review article provides a comprehensive overview of the pivotal role AI can play in the early diagnosis and treatment of infectious diseases. It explores how AI-driven diagnostic tools, including machine learning algorithms, deep learning, and image recognition systems, enhance the accuracy and efficiency of disease detection and surveillance. Furthermore, it delves into the potential of AI to predict disease outbreaks, optimise treatment strategies, and personalise interventions based on individual patient data and how AI can be used to gear up the drug discovery and development (D3) process.The ethical considerations, challenges, and limitations associated with the integration of AI in infectious disease management are also examined. By harnessing the capabilities of AI, healthcare systems can significantly improve their preparedness, responsiveness, and outcomes in the battle against infectious diseases.
Collapse
Affiliation(s)
- Vartika Srivastava
- Department of Clinical Microbiology and Infectious Diseases, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Ravinder Kumar
- Department of Pathology, College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Mohmmad Younus Wani
- Department of Chemistry, College of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Keven Robinson
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Aijaz Ahmad
- Department of Clinical Microbiology and Infectious Diseases, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
2
|
Chan HH, Wang YC, Jou R. A simplified pyrazinamidase test for Mycobacterium tuberculosis pyrazinamide antimicrobial susceptibility testing. J Clin Microbiol 2024; 62:e0122724. [PMID: 39555932 PMCID: PMC11633146 DOI: 10.1128/jcm.01227-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 09/23/2024] [Indexed: 11/19/2024] Open
Abstract
Pyrazinamide (PZA) is an important first-line drug for tuberculosis (TB) treatment by eradicating the persisting Mycobacterium tuberculosis complex (MTBC). Due to cost and technical challenges, end TB strategies are hampered by the lack of a simple and reliable culture-based PZA antimicrobial susceptibility testing (AST) for routine use. We initially developed a simplified chromogenic pyrazinamidase (PZase) test in the TB reference laboratory using a training set MTBC isolates with various drug-resistant profiles, and validated its performance using consecutive BACTEC MGIT 960 (MGIT)-culture-positive culture in 10 clinical laboratories. The pncA gene Sanger sequencing results were used as the reference, and compared to the MGIT-PZA AST. Differential diagnosis of Mycobacterium bovis was conducted using patented in-house real-time PCR. Of the 106 training isolates, the PZase test and MGIT-PZA AST showed 100.0% and 99.1% concordance as compared to Sanger sequencing, respectively. We found 32.1% (34/106) isolates harbored pncA mutations, including one isolate with silent mutation S65S. For validation, 1,793 clinical isolates were tested including 150 duplicate isolates from specimens of the same cases and 16 isolates with uncharacterized drug resistance (UDR)-associated mutations. Excluding duplicated and UDR isolates, we identified 2.6% (43/1,627) PZA-resistant isolates, including 1.3% (21/1,627) M. bovis isolates. The kappa values were 0.851-1.000. In addition, the accuracy of the PZase test conducted by 10 laboratories was 98.5%-100.0%. Our simplified PZase test demonstrated high concordance with Sanger sequencing and MGIT-PZA AST. Integrating the PZase test into routine first-line AST is effortless and represents an improvement in laboratory services for ending TB. IMPORTANCE We developed and validated a simple pyrazinamidase (PZase) test for pyrazinamide (PZA) antimicrobial susceptibility testing (AST). Our results demonstrated that the PZase test had high agreement with the pncA gene sequencing and MGIT-PZA AST. Integrating PZase test into routine AST is effortless and represents an improvement in laboratory services for ending TB.
Collapse
Affiliation(s)
- Hsin-Hua Chan
- Tuberculosis Research Center, Centers for Disease Control, Ministry of Health and Welfare, Taipei, Taiwan
- Reference Laboratory of Mycobacteriology, Centers for Disease Control, Ministry of Health and Welfare, Taipei, Taiwan
| | - Yu-Chen Wang
- Tuberculosis Research Center, Centers for Disease Control, Ministry of Health and Welfare, Taipei, Taiwan
- Reference Laboratory of Mycobacteriology, Centers for Disease Control, Ministry of Health and Welfare, Taipei, Taiwan
| | - Ruwen Jou
- Tuberculosis Research Center, Centers for Disease Control, Ministry of Health and Welfare, Taipei, Taiwan
- Reference Laboratory of Mycobacteriology, Centers for Disease Control, Ministry of Health and Welfare, Taipei, Taiwan
| |
Collapse
|
3
|
Babirye SR, Nsubuga M, Mboowa G, Batte C, Galiwango R, Kateete DP. Machine learning-based prediction of antibiotic resistance in Mycobacterium tuberculosis clinical isolates from Uganda. BMC Infect Dis 2024; 24:1391. [PMID: 39639222 PMCID: PMC11622658 DOI: 10.1186/s12879-024-10282-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 11/27/2024] [Indexed: 12/07/2024] Open
Abstract
BACKGROUND Efforts toward tuberculosis management and control are challenged by the emergence of Mycobacterium tuberculosis (MTB) resistance to existing anti-TB drugs. This study aimed to explore the potential of machine learning algorithms in predicting drug resistance of four anti-TB drugs (rifampicin, isoniazid, streptomycin, and ethambutol) in MTB using whole-genome sequence and clinical data from Uganda. We also assessed the model's generalizability on another dataset from South Africa. RESULTS We trained ten machine learning algorithms on a dataset comprising of 182 MTB isolates with clinical data variables (age, sex, HIV status) and SNP mutations across the entire genome as predictor variables and phenotypic drug-susceptibility data for the four drugs as the outcome variable. Model performance varied across the four anti-TB drugs after a five-fold cross validation. The best model was selected considering the highest Mathews Correlation Coefficient (MCC) and Area Under the Receiver Operating Characteristic Curve (AUC) score as key metrics. The Logistic regression excelled in predicting rifampicin resistance (MCC: 0.83 (95% confidence intervals (CI) 0.73-0.86) and AUC: 0.96 (95% CI 0.95-0.98) and streptomycin (MCC: 0.44 (95% CI 0.27-0.58) and AUC: 0.80 (95% CI 0.74-0.82), Extreme Gradient Boosting (XGBoost) for ethambutol (MCC: 0.65 (95% CI 0.54-0.74) and AUC: 0.90 (95% CI 0.83-0.96) and Gradient Boosting (GBC) for isoniazid (MCC: 0.69 (95% CI 0.61-0.78) and AUC: 0.91 (95% CI 0.88-0.96). The best performing model per drug was only trained on the SNP dataset after excluding the clinical data variables because intergrating them with SNP mutations showed a marginal improvement in the model's performance. Despite the high MCC (0.18 to 0.72) and AUC (0.66 to 0.95) scores for all the best models with the Uganda test dataset, LR model for rifampicin and streptomycin didn't generalize with the South Africa dataset compared to the GBC and XGBoost models. Compared to TB profiler, LR for RIF was very sensitive and the GBC for INH and XGBoost for EMB were very specific on the Uganda dataset. TB profiler outperformed all the best models on the South Africa dataset. We identified key mutations associated with drug resistance for these antibiotics. HIV status was also identified among the top significant features in predicting drug resistance. CONCLUSION Leveraging machine learning applications in predicting antimicrobial resistance represents a promising avenue in addressing the global health challenge posed by antimicrobial resistance. This work demonstrates that integration of diverse data types such as genomic and clinical data could improve resistance predictions while using machine learning algorithms, support robust surveillance systems and also inform targeted interventions to curb the rising threat of antimicrobial resistance.
Collapse
Affiliation(s)
- Sandra Ruth Babirye
- Department of Immunology and Molecular Biology, School of Biomedical Sciences, College of Health Sciences, Makerere University, P.O. Box 7072, Kampala, Uganda
- The African Center of Excellence in Bioinformatics and Data-Intensive Science (ACE), Kampala, Uganda
| | - Mike Nsubuga
- The African Center of Excellence in Bioinformatics and Data-Intensive Science (ACE), Kampala, Uganda
- Faculty of Health Sciences, University of Bristol, Bristol, BS40 5DU, UK
- Jean Golding Institute, University of Bristol, Bristol, BS8 1UH, UK
- The Infectious Diseases Institute, Makerere University, Kampala, Uganda
| | - Gerald Mboowa
- Department of Immunology and Molecular Biology, School of Biomedical Sciences, College of Health Sciences, Makerere University, P.O. Box 7072, Kampala, Uganda
- The African Center of Excellence in Bioinformatics and Data-Intensive Science (ACE), Kampala, Uganda
| | - Charles Batte
- Lung Institute, School of Medicine, College of Health Sciences, Makerere University, Kampala, Uganda
| | - Ronald Galiwango
- Department of Immunology and Molecular Biology, School of Biomedical Sciences, College of Health Sciences, Makerere University, P.O. Box 7072, Kampala, Uganda
- The African Center of Excellence in Bioinformatics and Data-Intensive Science (ACE), Kampala, Uganda
- The Infectious Diseases Institute, Makerere University, Kampala, Uganda
| | - David Patrick Kateete
- Department of Immunology and Molecular Biology, School of Biomedical Sciences, College of Health Sciences, Makerere University, P.O. Box 7072, Kampala, Uganda.
| |
Collapse
|
4
|
Islam N, Hasib KM, Mridha MF, Alfarhood S, Safran M, Bhuyan MK. Fusing global context with multiscale context for enhanced breast cancer classification. Sci Rep 2024; 14:27358. [PMID: 39521803 PMCID: PMC11550815 DOI: 10.1038/s41598-024-78363-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 10/30/2024] [Indexed: 11/16/2024] Open
Abstract
Breast cancer is the second most common type of cancer among women. Prompt detection of breast cancer can impede its advancement to more advanced phases, thereby elevating the probability of favorable treatment consequences. Histopathological images are commonly used for breast cancer classification due to their detailed cellular information. Existing diagnostic approaches rely on Convolutional Neural Networks (CNNs) which are limited to local context resulting in a lower classification accuracy. Therefore, we present a fusion model composed of a Vision Transformer (ViT) and custom Atrous Spatial Pyramid Pooling (ASPP) network with an attention mechanism for effectively classifying breast cancer from histopathological images. ViT enables the model to attain global features, while the ASPP network accommodates multiscale features. Fusing the features derived from the models resulted in a robust breast cancer classifier. With the help of five-stage image preprocessing technique, the proposed model achieved 100% accuracy in classifying breast cancer on the BreakHis dataset at 100X and 400X magnification factors. On 40X and 200X magnifications, the model achieved 99.25% and 98.26% classification accuracy respectively. With a commendable classification efficacy on histopathological images, the model can be considered a dependable option for proficient breast cancer classification.
Collapse
Affiliation(s)
- Niful Islam
- Department of Computer Science and Engineering, United International University, Dhaka, 1212, Bangladesh
| | - Khan Md Hasib
- Department of Computer Science and Engineering, Bangladesh University of Business and Technology, Mirpur, Dhaka, 1216, Bangladesh
| | - M F Mridha
- Department of Computer Science, American International University - Bangladesh, Dhaka, 1229, Bangladesh.
| | - Sultan Alfarhood
- Department of Computer Science, College of Computer and Information Sciences, King Saud University, P.O.Box 51178, Riyadh, 11543, Saudi Arabia
| | - Mejdl Safran
- Department of Computer Science, College of Computer and Information Sciences, King Saud University, P.O.Box 51178, Riyadh, 11543, Saudi Arabia.
| | - M K Bhuyan
- Department of Electronics and Electrical Engineering, Indian Institute of Technology Guwahati, Assam, 781039, India
| |
Collapse
|
5
|
Pruthi SS, Billows N, Thorpe J, Campino S, Phelan JE, Mohareb F, Clark TG. Leveraging large-scale Mycobacterium tuberculosis whole genome sequence data to characterise drug-resistant mutations using machine learning and statistical approaches. Sci Rep 2024; 14:27091. [PMID: 39511309 PMCID: PMC11544221 DOI: 10.1038/s41598-024-77947-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 10/28/2024] [Indexed: 11/15/2024] Open
Abstract
Tuberculosis disease (TB), caused by Mycobacterium tuberculosis (Mtb), is a major global public health problem, resulting in > 1 million deaths each year. Drug resistance (DR), including the multi-drug form (MDR-TB), is challenging control of the disease. Whilst many DR mutations in the Mtb genome are known, analysis of large datasets generated using whole genome sequencing (WGS) platforms can reveal new variants through the assessment of genotype-phenotype associations. Here, we apply tree-based ensemble methods to a dataset comprised of 35,777 Mtb WGS and phenotypic drug-susceptibility test data across first- and second-line drugs. We compare model performance across models trained using mutations in drug-specific regions and genome-wide variants, and find high predictive ability for both first-line (area under ROC curve (AUC); range 88.3-96.5) and second-line (AUC range 84.1-95.4) drugs. To aggregate information from low-frequency variants, we pool mutations by functional impact and observe large improvements in predictive accuracy (e.g., sensitivity: pyrazinamide + 25%; ethionamide + 10%). We further characterise loss-of-function mutations observed in resistant phenotypes, uncovering putative markers of resistance (e.g., ndh 293dupG, Rv3861 78delC). Finally, we profile the distribution of known DR-associated single nucleotide polymorphisms across discretised minimum inhibitory concentration (MIC) data generated from phenotypic testing (n = 12,066), and identify mutations associated with highly resistant phenotypes (e.g., inhA - 779G > T and 62T > C). Overall, our work demonstrates that applying machine learning to large-scale WGS data is useful for providing insights into predicting Mtb binary drug resistance and MIC phenotypes, thereby potentially assisting diagnosis and treatment decision-making for infection control.
Collapse
Affiliation(s)
- Siddharth Sanjay Pruthi
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, Keppel Street, London, WC1E 7HT, UK
- School of Water, Energy and Environment, Cranfield University, Bedford, UK
| | - Nina Billows
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, Keppel Street, London, WC1E 7HT, UK
| | - Joseph Thorpe
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, Keppel Street, London, WC1E 7HT, UK
| | - Susana Campino
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, Keppel Street, London, WC1E 7HT, UK
| | - Jody E Phelan
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, Keppel Street, London, WC1E 7HT, UK
| | - Fady Mohareb
- School of Water, Energy and Environment, Cranfield University, Bedford, UK
| | - Taane G Clark
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, Keppel Street, London, WC1E 7HT, UK.
- Faculty of Epidemiology and Population Health, London School of Hygiene & Tropical Medicine, London, WC1E 7HT, UK.
| |
Collapse
|
6
|
Farhat M, Cox H, Ghanem M, Denkinger CM, Rodrigues C, Abd El Aziz MS, Enkh-Amgalan H, Vambe D, Ugarte-Gil C, Furin J, Pai M. Drug-resistant tuberculosis: a persistent global health concern. Nat Rev Microbiol 2024; 22:617-635. [PMID: 38519618 DOI: 10.1038/s41579-024-01025-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/12/2024] [Indexed: 03/25/2024]
Abstract
Drug-resistant tuberculosis (TB) is estimated to cause 13% of all antimicrobial resistance-attributable deaths worldwide and is driven by both ongoing resistance acquisition and person-to-person transmission. Poor outcomes are exacerbated by late diagnosis and inadequate access to effective treatment. Advances in rapid molecular testing have recently improved the diagnosis of TB and drug resistance. Next-generation sequencing of Mycobacterium tuberculosis has increased our understanding of genetic resistance mechanisms and can now detect mutations associated with resistance phenotypes. All-oral, shorter drug regimens that can achieve high cure rates of drug-resistant TB within 6-9 months are now available and recommended but have yet to be scaled to global clinical use. Promising regimens for the prevention of drug-resistant TB among high-risk contacts are supported by early clinical trial data but final results are pending. A person-centred approach is crucial in managing drug-resistant TB to reduce the risk of poor treatment outcomes, side effects, stigma and mental health burden associated with the diagnosis. In this Review, we describe current surveillance of drug-resistant TB and the causes, risk factors and determinants of drug resistance as well as the stigma and mental health considerations associated with it. We discuss recent advances in diagnostics and drug-susceptibility testing and outline the progress in developing better treatment and preventive therapies.
Collapse
Affiliation(s)
- Maha Farhat
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Helen Cox
- Institute of Infectious Disease and Molecular Medicine, Wellcome Centre for Infectious Disease Research and Division of Medical Microbiology, University of Cape Town, Cape Town, South Africa
| | - Marwan Ghanem
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Claudia M Denkinger
- Division of Infectious Disease and Tropical Medicine, Heidelberg University Hospital, Heidelberg, Germany
- German Center for Infection Research (DZIF), partner site Heidelberg University Hospital, Heidelberg, Germany
| | | | - Mirna S Abd El Aziz
- Division of Infectious Disease and Tropical Medicine, Heidelberg University Hospital, Heidelberg, Germany
| | | | - Debrah Vambe
- National TB Control Programme, Manzini, Eswatini
| | - Cesar Ugarte-Gil
- School of Public and Population Health, University of Texas Medical Branch, Galveston, TX, USA
| | - Jennifer Furin
- Department of Global Health and Social Medicine, Harvard Medical School, Boston, MA, USA
| | - Madhukar Pai
- McGill International TB Centre, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
7
|
Do VH, Nguyen VS, Nguyen SH, Le DQ, Nguyen TT, Nguyen CH, Ho TH, Vo NS, Nguyen T, Nguyen HA, Cao MD. PanKA: Leveraging population pangenome to predict antibiotic resistance. iScience 2024; 27:110623. [PMID: 39228791 PMCID: PMC11369404 DOI: 10.1016/j.isci.2024.110623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 04/14/2024] [Accepted: 07/29/2024] [Indexed: 09/05/2024] Open
Abstract
Machine learning has the potential to be a powerful tool in the fight against antimicrobial resistance (AMR), a critical global health issue. Machine learning can identify resistance mechanisms from DNA sequence data without prior knowledge. The first step in building a machine learning model is a feature extraction from sequencing data. Traditional methods like single nucleotide polymorphism (SNP) calling and k-mer counting yield numerous, often redundant features, complicating prediction and analysis. In this paper, we propose PanKA, a method using the pangenome to extract a concise set of relevant features for predicting AMR. PanKA not only enables fast model training and prediction but also improves accuracy. Applied to the Escherichia coli and Klebsiella pneumoniae bacterial species, our model is more accurate than conventional and state-of-the-art methods in predicting AMR.
Collapse
Affiliation(s)
- Van Hoan Do
- Center for Applied Mathematics and Informatics, Le Quy Don Technical University, Hanoi, Vietnam
| | - Van Sang Nguyen
- Center for Biomedical Informatics, Vingroup Big Data Institute, Hanoi, Vietnam
| | | | - Duc Quang Le
- Faculty of IT, Hanoi University of Civil Engineering, Hanoi, Vietnam
| | - Tam Thi Nguyen
- Oxford University Clinical Research Unit, Hanoi, Vietnam
| | - Canh Hao Nguyen
- Bioinformatics Center, Institute for Chemical Research, Kyoto University, Kyoto, Japan
| | - Tho Huu Ho
- Department of Medical Microbiology, The 103 Military Hospital, Vietnam Military Medical University, Hanoi, Vietnam
- Department of Genomics & Cytogenetics, Institute of Biomedicine & Pharmacy, Vietnam Military Medical University, Hanoi, Vietnam
| | - Nam S. Vo
- Center for Biomedical Informatics, Vingroup Big Data Institute, Hanoi, Vietnam
| | | | | | | |
Collapse
|
8
|
Panjla A, Joshi S, Singh G, Bamford SE, Mechler A, Verma S. Applying Machine Learning for Antibiotic Development and Prediction of Microbial Resistance. Chem Asian J 2024; 19:e202400102. [PMID: 38948939 DOI: 10.1002/asia.202400102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 06/30/2024] [Accepted: 07/01/2024] [Indexed: 07/02/2024]
Abstract
Antimicrobial resistance (AMR) poses a serious threat to human health worldwide. It is now more challenging than ever to introduce a potent antibiotic to the market considering rapid emergence of antimicrobial resistance, surpassing the rate of antibiotic drug discovery. Hence, new approaches need to be developed to accelerate the rate of drug discovery process and meet the demands for new antibiotics, while reducing the cost of their development. Machine learning holds immense promise of becoming a useful tool, especially since in the last two decades, exponential growth has occurred in computational power and biological big data analytics. Recent advancements in machine learning algorithms for drug discovery have provided significant clues for potential antibiotic classes. Apart from discovery of new scaffolds, the machine learning protocols will significantly impact prediction of AMR patterns and drug metabolism. In this review, we outline power of machine learning in antibiotic drug discovery, metabolic fate, and AMR prediction to support researchers engaged and interested in this field.
Collapse
Affiliation(s)
- Apurva Panjla
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, 208016, UP, India
| | - Saurabh Joshi
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, 208016, UP, India
| | - Geetanjali Singh
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, 208016, UP, India
| | - Sarah E Bamford
- Department of Chemistry and Physics, La Trobe University, Bundoora, Victoria, 3086, Australia
| | - Adam Mechler
- Department of Chemistry and Physics, La Trobe University, Bundoora, Victoria, 3086, Australia
| | - Sandeep Verma
- Mehta Family Center for Engineering in Medicine, Center for Nanoscience, Gangwal School of Medical Sciences and Technology, Indian Institute of Technology Kanpur, Kanpur, 208016, UP, India
| |
Collapse
|
9
|
Sanchini A, Lanni A, Giannoni F, Mustazzolu A. Exploring diagnostic methods for drug-resistant tuberculosis: A comprehensive overview. Tuberculosis (Edinb) 2024; 148:102522. [PMID: 38850839 DOI: 10.1016/j.tube.2024.102522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/14/2024] [Accepted: 05/30/2024] [Indexed: 06/10/2024]
Abstract
Despite available global efforts and funding, Tuberculosis (TB) continues to affect a considerable number of patients worldwide. Policy makers and stakeholders set clear goals to reduce TB incidence and mortality, but the emergence of multidrug-resistant TB (MDR-TB) and extensively drug-resistant TB (XDR-TB) complicate the reach of these goals. Drug-resistance TB needs to be diagnosed rapidly and accurately to effectively treat patients, prevent the transmission of MDR-TB, minimise mortality, reduce treatment costs and avoid unnecessary hospitalisations. In this narrative review, we provide a comprehensive overview of laboratory methods for detecting drug resistance in MTB, focusing on phenotypic, molecular and other drug susceptibility testing (DST) techniques. We found a large variety of methods used, with the BACTEC MGIT 960 being the most common phenotypic DST and the Xpert MTB/RIF being the most common molecular DST. We emphasise the importance of integrating phenotypic and molecular DST to address issues like resistance to new drugs, heteroresistance, mixed infections and low-level resistance mutations. Notably, most of the analysed studies adhered to the outdated definition of XDR-TB and did not consider the pre-XDR definition, thus posing challenges in aligning diagnostic methods with the current landscape of TB resistance.
Collapse
Affiliation(s)
| | - Alessio Lanni
- Department of Infectious Diseases, Istituto Superiore di Sanità, 00161, Rome, Italy.
| | - Federico Giannoni
- Department of Infectious Diseases, Istituto Superiore di Sanità, 00161, Rome, Italy.
| | | |
Collapse
|
10
|
Sun J, Lai W, Zhao J, Xue J, Zhu T, Xiao M, Man T, Wan Y, Pei H, Li L. Rapid Identification of Drug Mechanisms with Deep Learning-Based Multichannel Surface-Enhanced Raman Spectroscopy. ACS Sens 2024; 9:4227-4235. [PMID: 39138903 DOI: 10.1021/acssensors.4c01205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
Rapid identification of drug mechanisms is vital to the development and effective use of chemotherapeutics. Herein, we develop a multichannel surface-enhanced Raman scattering (SERS) sensor array and apply deep learning approaches to realize the rapid identification of the mechanisms of various chemotherapeutic drugs. By implementing a series of self-assembled monolayers (SAMs) with varied molecular characteristics to promote heterogeneous physicochemical interactions at the interfaces, the sensor can generate diversified SERS signatures for directly high-dimensionality fingerprinting drug-induced molecular changes in cells. We further train the convolutional neural network model on the multidimensional SAM-modulated SERS data set and achieve a discriminatory accuracy toward 99%. We expect that such a platform will contribute to expanding the toolbox for drug screening and characterization and facilitate the drug development process.
Collapse
Affiliation(s)
- Jiajia Sun
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, East China Normal University, 500 Dongchuan Road, Shanghai 200241, P. R. China
| | - Wei Lai
- Hubei Key Laboratory of Energy Storage and Power Battery, School of Mathematics, Physics and Optoelectronic Engineering, Hubei University of Automotive Technology, Shiyan 442002, P. R. China
| | - Jiayan Zhao
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, East China Normal University, 500 Dongchuan Road, Shanghai 200241, P. R. China
| | - Jinhong Xue
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, East China Normal University, 500 Dongchuan Road, Shanghai 200241, P. R. China
| | - Tong Zhu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, East China Normal University, 500 Dongchuan Road, Shanghai 200241, P. R. China
| | - Mingshu Xiao
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, East China Normal University, 500 Dongchuan Road, Shanghai 200241, P. R. China
| | - Tiantian Man
- School of Mechanical Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China
| | - Ying Wan
- School of Mechanical Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China
| | - Hao Pei
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, East China Normal University, 500 Dongchuan Road, Shanghai 200241, P. R. China
| | - Li Li
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, East China Normal University, 500 Dongchuan Road, Shanghai 200241, P. R. China
| |
Collapse
|
11
|
de la Lastra JMP, Wardell SJT, Pal T, de la Fuente-Nunez C, Pletzer D. From Data to Decisions: Leveraging Artificial Intelligence and Machine Learning in Combating Antimicrobial Resistance - a Comprehensive Review. J Med Syst 2024; 48:71. [PMID: 39088151 PMCID: PMC11294375 DOI: 10.1007/s10916-024-02089-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 07/12/2024] [Indexed: 08/02/2024]
Abstract
The emergence of drug-resistant bacteria poses a significant challenge to modern medicine. In response, Artificial Intelligence (AI) and Machine Learning (ML) algorithms have emerged as powerful tools for combating antimicrobial resistance (AMR). This review aims to explore the role of AI/ML in AMR management, with a focus on identifying pathogens, understanding resistance patterns, predicting treatment outcomes, and discovering new antibiotic agents. Recent advancements in AI/ML have enabled the efficient analysis of large datasets, facilitating the reliable prediction of AMR trends and treatment responses with minimal human intervention. ML algorithms can analyze genomic data to identify genetic markers associated with antibiotic resistance, enabling the development of targeted treatment strategies. Additionally, AI/ML techniques show promise in optimizing drug administration and developing alternatives to traditional antibiotics. By analyzing patient data and clinical outcomes, these technologies can assist healthcare providers in diagnosing infections, evaluating their severity, and selecting appropriate antimicrobial therapies. While integration of AI/ML in clinical settings is still in its infancy, advancements in data quality and algorithm development suggest that widespread clinical adoption is forthcoming. In conclusion, AI/ML holds significant promise for improving AMR management and treatment outcome.
Collapse
Affiliation(s)
- José M Pérez de la Lastra
- Biotechnology of Macromolecules, Instituto de Productos Naturales y Agrobiología, IPNA (CSIC), Avda. Astrofísico Francisco Sánchez, 3, 38206, San Cristóbal de la Laguna, (Santa Cruz de Tenerife), Spain.
| | - Samuel J T Wardell
- Department of Microbiology and Immunology, School of Biomedical Sciences, University of Otago, 9054, Dunedin, New Zealand
| | - Tarun Pal
- School of Bioengineering and Food Technology, Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan, 173229, Himachal Pradesh, India
| | - Cesar de la Fuente-Nunez
- Machine Biology Group, Departments of Psychiatry and Microbiology, Institute for Biomedical Informatics, Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Departments of Bioengineering and Chemical and Biomolecular Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, USA
- Department of Chemistry, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, USA
- Penn Institute for Computational Science, University of Pennsylvania, Philadelphia, PA, USA
| | - Daniel Pletzer
- Department of Microbiology and Immunology, School of Biomedical Sciences, University of Otago, 9054, Dunedin, New Zealand.
| |
Collapse
|
12
|
Wan F, Torres MDT, Peng J, de la Fuente-Nunez C. Deep-learning-enabled antibiotic discovery through molecular de-extinction. Nat Biomed Eng 2024; 8:854-871. [PMID: 38862735 PMCID: PMC11310081 DOI: 10.1038/s41551-024-01201-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 03/25/2024] [Indexed: 06/13/2024]
Abstract
Molecular de-extinction aims at resurrecting molecules to solve antibiotic resistance and other present-day biological and biomedical problems. Here we show that deep learning can be used to mine the proteomes of all available extinct organisms for the discovery of antibiotic peptides. We trained ensembles of deep-learning models consisting of a peptide-sequence encoder coupled with neural networks for the prediction of antimicrobial activity and used it to mine 10,311,899 peptides. The models predicted 37,176 sequences with broad-spectrum antimicrobial activity, 11,035 of which were not found in extant organisms. We synthesized 69 peptides and experimentally confirmed their activity against bacterial pathogens. Most peptides killed bacteria by depolarizing their cytoplasmic membrane, contrary to known antimicrobial peptides, which tend to target the outer membrane. Notably, lead compounds (including mammuthusin-2 from the woolly mammoth, elephasin-2 from the straight-tusked elephant, hydrodamin-1 from the ancient sea cow, mylodonin-2 from the giant sloth and megalocerin-1 from the extinct giant elk) showed anti-infective activity in mice with skin abscess or thigh infections. Molecular de-extinction aided by deep learning may accelerate the discovery of therapeutic molecules.
Collapse
Affiliation(s)
- Fangping Wan
- Machine Biology Group, Departments of Psychiatry and Microbiology, Institute for Biomedical Informatics, Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Departments of Bioengineering and Chemical and Biomolecular Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, USA
- Department of Chemistry, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, USA
- Penn Institute for Computational Science, University of Pennsylvania, Philadelphia, PA, USA
| | - Marcelo D T Torres
- Machine Biology Group, Departments of Psychiatry and Microbiology, Institute for Biomedical Informatics, Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Departments of Bioengineering and Chemical and Biomolecular Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, USA
- Department of Chemistry, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, USA
- Penn Institute for Computational Science, University of Pennsylvania, Philadelphia, PA, USA
| | - Jacqueline Peng
- Graduate Group in Genomics and Computational Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Cesar de la Fuente-Nunez
- Machine Biology Group, Departments of Psychiatry and Microbiology, Institute for Biomedical Informatics, Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Departments of Bioengineering and Chemical and Biomolecular Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, USA.
- Department of Chemistry, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, USA.
- Penn Institute for Computational Science, University of Pennsylvania, Philadelphia, PA, USA.
- Graduate Group in Genomics and Computational Biology, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
13
|
Dunning RE, Fischhoff B, Davis AL. When Do Humans Heed AI Agents' Advice? When Should They? HUMAN FACTORS 2024; 66:1914-1927. [PMID: 37553098 PMCID: PMC11089830 DOI: 10.1177/00187208231190459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 06/20/2023] [Indexed: 08/10/2023]
Abstract
OBJECTIVE We manipulate the presence, skill, and display of artificial intelligence (AI) recommendations in a strategy game to measure their effect on users' performance. BACKGROUND Many applications of AI require humans and AI agents to make decisions collaboratively. Success depends on how appropriately humans rely on the AI agent. We demonstrate an evaluation method for a platform that uses neural network agents of varying skill levels for the simple strategic game of Connect Four. METHODS We report results from a 2 × 3 between-subjects factorial experiment that varies the format of AI recommendations (categorical or probabilistic) and the AI agent's amount of training (low, medium, or high). On each round of 10 games, participants proposed a move, saw the AI agent's recommendations, and then moved. RESULTS Participants' performance improved with a highly skilled agent, but quickly plateaued, as they relied uncritically on the agent. Participants relied too little on lower skilled agents. The display format had no effect on users' skill or choices. CONCLUSIONS The value of these AI agents depended on their skill level and users' ability to extract lessons from their advice. APPLICATION Organizations employing AI decision support systems must consider behavioral aspects of the human-agent team. We demonstrate an approach to evaluating competing designs and assessing their performance.
Collapse
|
14
|
Branda F, Scarpa F. Implications of Artificial Intelligence in Addressing Antimicrobial Resistance: Innovations, Global Challenges, and Healthcare's Future. Antibiotics (Basel) 2024; 13:502. [PMID: 38927169 PMCID: PMC11200959 DOI: 10.3390/antibiotics13060502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/25/2024] [Accepted: 05/27/2024] [Indexed: 06/28/2024] Open
Abstract
Antibiotic resistance poses a significant threat to global public health due to complex interactions between bacterial genetic factors and external influences such as antibiotic misuse. Artificial intelligence (AI) offers innovative strategies to address this crisis. For example, AI can analyze genomic data to detect resistance markers early on, enabling early interventions. In addition, AI-powered decision support systems can optimize antibiotic use by recommending the most effective treatments based on patient data and local resistance patterns. AI can accelerate drug discovery by predicting the efficacy of new compounds and identifying potential antibacterial agents. Although progress has been made, challenges persist, including data quality, model interpretability, and real-world implementation. A multidisciplinary approach that integrates AI with other emerging technologies, such as synthetic biology and nanomedicine, could pave the way for effective prevention and mitigation of antimicrobial resistance, preserving the efficacy of antibiotics for future generations.
Collapse
Affiliation(s)
- Francesco Branda
- Unit of Medical Statistics and Molecular Epidemiology, Università Campus Bio-Medico di Roma, 00128 Rome, Italy
| | - Fabio Scarpa
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy
| |
Collapse
|
15
|
Tagami Y, Horita N, Kaneko M, Muraoka S, Fukuda N, Izawa A, Kaneko A, Somekawa K, Kamimaki C, Matsumoto H, Tanaka K, Murohashi K, Aoki A, Fujii H, Watanabe K, Hara Y, Kobayashi N, Kaneko T. Whole-Genome Sequencing Predicting Phenotypic Antitubercular Drug Resistance: Meta-analysis. J Infect Dis 2024; 229:1481-1492. [PMID: 37946558 DOI: 10.1093/infdis/jiad480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 10/06/2023] [Accepted: 10/27/2023] [Indexed: 11/12/2023] Open
Abstract
BACKGROUND For simultaneous prediction of phenotypic drug susceptibility test (pDST) for multiple antituberculosis drugs, the whole genome sequencing (WGS) data can be analyzed using either a catalog-based approach, wherein 1 causative mutation suggests resistance, (eg, World Health Organization catalog) or noncatalog-based approach using complicated algorithm (eg, TB-profiler, machine learning). The aim was to estimate the predictive ability of WGS-based tests with pDST as the reference, and to compare the 2 approaches. METHODS Following a systematic literature search, the diagnostic test accuracies for 14 drugs were pooled using a random-effect bivariate model. RESULTS Of 779 articles, 44 with 16 821 specimens for meta-analysis and 13 not for meta-analysis were included. The areas under summary receiver operating characteristic curve suggested test accuracy was excellent (0.97-1.00) for 2 drugs (isoniazid 0.975, rifampicin 0.975), very good (0.93-0.97) for 8 drugs (pyrazinamide 0.946, streptomycin 0.952, amikacin 0.968, kanamycin 0.963, capreomycin 0.965, para-aminosalicylic acid 0.959, levofloxacin 0.960, ofloxacin 0.958), and good (0.75-0.93) for 4 drugs (ethambutol 0.926, moxifloxacin 0.896, ethionamide 0.878, prothionamide 0.908). The noncatalog-based and catalog-based approaches had similar ability for all drugs. CONCLUSIONS WGS accurately identifies isoniazid and rifampicin resistance. For most drugs, positive WGS results reliably predict pDST positive. The 2 approaches had similar ability. CLINICAL TRIALS REGISTRATION UMIN-ID UMIN000049276.
Collapse
Affiliation(s)
- Yoichi Tagami
- Department of Pulmonology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Nobuyuki Horita
- Chemotherapy Center, Yokohama City University Hospital, Yokohama, Japan
| | - Megumi Kaneko
- Department of Pulmonology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Suguru Muraoka
- Department of Pulmonology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Nobuhiko Fukuda
- Department of Pulmonology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Ami Izawa
- Department of Pulmonology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Ayami Kaneko
- Department of Pulmonology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Kohei Somekawa
- Department of Pulmonology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Chisato Kamimaki
- Department of Pulmonology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Hiromi Matsumoto
- Department of Pulmonology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Katsushi Tanaka
- Department of Pulmonology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Kota Murohashi
- Department of Pulmonology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Ayako Aoki
- Department of Pulmonology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Hiroaki Fujii
- Department of Pulmonology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Keisuke Watanabe
- Department of Pulmonology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Yu Hara
- Department of Pulmonology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Nobuaki Kobayashi
- Department of Pulmonology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Takeshi Kaneko
- Department of Pulmonology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| |
Collapse
|
16
|
Rusic D, Kumric M, Seselja Perisin A, Leskur D, Bukic J, Modun D, Vilovic M, Vrdoljak J, Martinovic D, Grahovac M, Bozic J. Tackling the Antimicrobial Resistance "Pandemic" with Machine Learning Tools: A Summary of Available Evidence. Microorganisms 2024; 12:842. [PMID: 38792673 PMCID: PMC11123121 DOI: 10.3390/microorganisms12050842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 04/16/2024] [Accepted: 04/19/2024] [Indexed: 05/26/2024] Open
Abstract
Antimicrobial resistance is recognised as one of the top threats healthcare is bound to face in the future. There have been various attempts to preserve the efficacy of existing antimicrobials, develop new and efficient antimicrobials, manage infections with multi-drug resistant strains, and improve patient outcomes, resulting in a growing mass of routinely available data, including electronic health records and microbiological information that can be employed to develop individualised antimicrobial stewardship. Machine learning methods have been developed to predict antimicrobial resistance from whole-genome sequencing data, forecast medication susceptibility, recognise epidemic patterns for surveillance purposes, or propose new antibacterial treatments and accelerate scientific discovery. Unfortunately, there is an evident gap between the number of machine learning applications in science and the effective implementation of these systems. This narrative review highlights some of the outstanding opportunities that machine learning offers when applied in research related to antimicrobial resistance. In the future, machine learning tools may prove to be superbugs' kryptonite. This review aims to provide an overview of available publications to aid researchers that are looking to expand their work with new approaches and to acquaint them with the current application of machine learning techniques in this field.
Collapse
Affiliation(s)
- Doris Rusic
- Department of Pharmacy, University of Split School of Medicine, Soltanska 2A, 21000 Split, Croatia; (D.R.); (A.S.P.); (D.L.); (J.B.); (D.M.)
| | - Marko Kumric
- Department of Pathophysiology, University of Split School of Medicine, Soltanska 2A, 21000 Split, Croatia; (M.K.); (M.V.); (J.V.); (D.M.)
- Laboratory for Cardiometabolic Research, University of Split School of Medicine, Soltanska 2A, 21000 Split, Croatia
| | - Ana Seselja Perisin
- Department of Pharmacy, University of Split School of Medicine, Soltanska 2A, 21000 Split, Croatia; (D.R.); (A.S.P.); (D.L.); (J.B.); (D.M.)
| | - Dario Leskur
- Department of Pharmacy, University of Split School of Medicine, Soltanska 2A, 21000 Split, Croatia; (D.R.); (A.S.P.); (D.L.); (J.B.); (D.M.)
| | - Josipa Bukic
- Department of Pharmacy, University of Split School of Medicine, Soltanska 2A, 21000 Split, Croatia; (D.R.); (A.S.P.); (D.L.); (J.B.); (D.M.)
| | - Darko Modun
- Department of Pharmacy, University of Split School of Medicine, Soltanska 2A, 21000 Split, Croatia; (D.R.); (A.S.P.); (D.L.); (J.B.); (D.M.)
| | - Marino Vilovic
- Department of Pathophysiology, University of Split School of Medicine, Soltanska 2A, 21000 Split, Croatia; (M.K.); (M.V.); (J.V.); (D.M.)
- Laboratory for Cardiometabolic Research, University of Split School of Medicine, Soltanska 2A, 21000 Split, Croatia
| | - Josip Vrdoljak
- Department of Pathophysiology, University of Split School of Medicine, Soltanska 2A, 21000 Split, Croatia; (M.K.); (M.V.); (J.V.); (D.M.)
- Laboratory for Cardiometabolic Research, University of Split School of Medicine, Soltanska 2A, 21000 Split, Croatia
| | - Dinko Martinovic
- Department of Pathophysiology, University of Split School of Medicine, Soltanska 2A, 21000 Split, Croatia; (M.K.); (M.V.); (J.V.); (D.M.)
- Department of Maxillofacial Surgery, University Hospital of Split, Spinciceva 1, 21000 Split, Croatia
| | - Marko Grahovac
- Department of Pharmacology, University of Split School of Medicine, Soltanska 2A, 21000 Split, Croatia;
| | - Josko Bozic
- Department of Pathophysiology, University of Split School of Medicine, Soltanska 2A, 21000 Split, Croatia; (M.K.); (M.V.); (J.V.); (D.M.)
- Laboratory for Cardiometabolic Research, University of Split School of Medicine, Soltanska 2A, 21000 Split, Croatia
| |
Collapse
|
17
|
Dixit A, Freschi L, Vargas R, Gröschel MI, Nakhoul M, Tahseen S, Alam SMM, Kamal SMM, Skrahina A, Basilio RP, Lim DR, Ismail N, Farhat MR. Estimation of country-specific tuberculosis resistance antibiograms using pathogen genomics and machine learning. BMJ Glob Health 2024; 9:e013532. [PMID: 38548342 PMCID: PMC10982777 DOI: 10.1136/bmjgh-2023-013532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 02/26/2024] [Indexed: 04/02/2024] Open
Abstract
BACKGROUND Global tuberculosis (TB) drug resistance (DR) surveillance focuses on rifampicin. We examined the potential of public and surveillance Mycobacterium tuberculosis (Mtb) whole-genome sequencing (WGS) data, to generate expanded country-level resistance prevalence estimates (antibiograms) using in silico resistance prediction. METHODS We curated and quality-controlled Mtb WGS data. We used a validated random forest model to predict phenotypic resistance to 12 drugs and bias-corrected for model performance, outbreak sampling and rifampicin resistance oversampling. Validation leveraged a national DR survey conducted in South Africa. RESULTS Mtb isolates from 29 countries (n=19 149) met sequence quality criteria. Global marginal genotypic resistance among mono-resistant TB estimates overlapped with the South African DR survey, except for isoniazid, ethionamide and second-line injectables, which were underestimated (n=3134). Among multidrug resistant (MDR) TB (n=268), estimates overlapped for the fluoroquinolones but overestimated other drugs. Globally pooled mono-resistance to isoniazid was 10.9% (95% CI: 10.2-11.7%, n=14 012). Mono-levofloxacin resistance rates were highest in South Asia (Pakistan 3.4% (0.1-11%), n=111 and India 2.8% (0.08-9.4%), n=114). Given the recent interest in drugs enhancing ethionamide activity and their expected activity against isolates with resistance discordance between isoniazid and ethionamide, we measured this rate and found it to be high at 74.4% (IQR: 64.5-79.7%) of isoniazid-resistant isolates predicted to be ethionamide susceptible. The global susceptibility rate to pyrazinamide and levofloxacin among MDR was 15.1% (95% CI: 10.2-19.9%, n=3964). CONCLUSIONS This is the first attempt at global Mtb antibiogram estimation. DR prevalence in Mtb can be reliably estimated using public WGS and phenotypic resistance prediction for key antibiotics, but public WGS data demonstrates oversampling of isolates with higher resistance levels than MDR. Nevertheless, our results raise concerns about the empiric use of short-course fluoroquinolone regimens for drug-susceptible TB in South Asia and indicate underutilisation of ethionamide in MDR treatment.
Collapse
Affiliation(s)
- Avika Dixit
- Division of Infectious Diseases, Department of Pediatrics, Boston Children's Hospital, Boston, Massachusetts, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, Massachusetts, USA
| | - Luca Freschi
- Department of Biomedical Informatics, Harvard Medical School, Boston, Massachusetts, USA
| | - Roger Vargas
- Department of Biomedical Informatics, Harvard Medical School, Boston, Massachusetts, USA
- Center for Computational Biomedicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Matthias I Gröschel
- Department of Biomedical Informatics, Harvard Medical School, Boston, Massachusetts, USA
| | - Maria Nakhoul
- Informatics and Analytics Department, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Sabira Tahseen
- National Tuberculosis Control Programme, Islamabad, Pakistan
| | - S M Masud Alam
- Ministry of Health and Family Welfare, Kolkata, West Bengal, India
| | - S M Mostofa Kamal
- National Institute of Diseases of the Chest and Hospital, Dhaka, Bangladesh
| | - Alena Skrahina
- Republican Scientific and Practical Center for Pulmonology and Tuberculosis, Minsk, Belarus
| | - Ramon P Basilio
- Research Institute for Tropical Medicine, Muntinlupa City, Philippines
| | - Dodge R Lim
- Research Institute for Tropical Medicine, Muntinlupa City, Philippines
| | - Nazir Ismail
- Clinical Microbiology and Infectious Diseases, University of the Witwatersrand Johannesburg Faculty of Health Sciences, Johannesburg, South Africa
| | - Maha R Farhat
- Department of Biomedical Informatics, Harvard Medical School, Boston, Massachusetts, USA
- Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| |
Collapse
|
18
|
Hu K, Meyer F, Deng ZL, Asgari E, Kuo TH, Münch PC, McHardy AC. Assessing computational predictions of antimicrobial resistance phenotypes from microbial genomes. Brief Bioinform 2024; 25:bbae206. [PMID: 38706320 PMCID: PMC11070729 DOI: 10.1093/bib/bbae206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 04/08/2024] [Accepted: 04/11/2024] [Indexed: 05/07/2024] Open
Abstract
The advent of rapid whole-genome sequencing has created new opportunities for computational prediction of antimicrobial resistance (AMR) phenotypes from genomic data. Both rule-based and machine learning (ML) approaches have been explored for this task, but systematic benchmarking is still needed. Here, we evaluated four state-of-the-art ML methods (Kover, PhenotypeSeeker, Seq2Geno2Pheno and Aytan-Aktug), an ML baseline and the rule-based ResFinder by training and testing each of them across 78 species-antibiotic datasets, using a rigorous benchmarking workflow that integrates three evaluation approaches, each paired with three distinct sample splitting methods. Our analysis revealed considerable variation in the performance across techniques and datasets. Whereas ML methods generally excelled for closely related strains, ResFinder excelled for handling divergent genomes. Overall, Kover most frequently ranked top among the ML approaches, followed by PhenotypeSeeker and Seq2Geno2Pheno. AMR phenotypes for antibiotic classes such as macrolides and sulfonamides were predicted with the highest accuracies. The quality of predictions varied substantially across species-antibiotic combinations, particularly for beta-lactams; across species, resistance phenotyping of the beta-lactams compound, aztreonam, amoxicillin/clavulanic acid, cefoxitin, ceftazidime and piperacillin/tazobactam, alongside tetracyclines demonstrated more variable performance than the other benchmarked antibiotics. By organism, Campylobacter jejuni and Enterococcus faecium phenotypes were more robustly predicted than those of Escherichia coli, Staphylococcus aureus, Salmonella enterica, Neisseria gonorrhoeae, Klebsiella pneumoniae, Pseudomonas aeruginosa, Acinetobacter baumannii, Streptococcus pneumoniae and Mycobacterium tuberculosis. In addition, our study provides software recommendations for each species-antibiotic combination. It furthermore highlights the need for optimization for robust clinical applications, particularly for strains that diverge substantially from those used for training.
Collapse
Affiliation(s)
- Kaixin Hu
- Computational Biology of Infection Research, Helmholtz Center for Infection Research, Braunschweig, Germany
- Braunschweig Integrated Centre of Systems Biology (BRICS), Technische Universität Braunschweig, Braunschweig, Germany
| | - Fernando Meyer
- Computational Biology of Infection Research, Helmholtz Center for Infection Research, Braunschweig, Germany
- Braunschweig Integrated Centre of Systems Biology (BRICS), Technische Universität Braunschweig, Braunschweig, Germany
| | - Zhi-Luo Deng
- Computational Biology of Infection Research, Helmholtz Center for Infection Research, Braunschweig, Germany
- Braunschweig Integrated Centre of Systems Biology (BRICS), Technische Universität Braunschweig, Braunschweig, Germany
| | - Ehsaneddin Asgari
- Computational Biology of Infection Research, Helmholtz Center for Infection Research, Braunschweig, Germany
- Molecular Cell Biomechanics Laboratory, Department of Bioengineering and Mechanical Engineering, University of California, Berkeley, USA
| | - Tzu-Hao Kuo
- Computational Biology of Infection Research, Helmholtz Center for Infection Research, Braunschweig, Germany
- Braunschweig Integrated Centre of Systems Biology (BRICS), Technische Universität Braunschweig, Braunschweig, Germany
| | - Philipp C Münch
- Computational Biology of Infection Research, Helmholtz Center for Infection Research, Braunschweig, Germany
- Braunschweig Integrated Centre of Systems Biology (BRICS), Technische Universität Braunschweig, Braunschweig, Germany
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
- German Center for Infection Research (DZIF), partner site Hannover Braunschweig, Braunschweig, Germany
- Department of Biostatistics, Harvard School of Public Health, Boston, MA, USA
| | - Alice C McHardy
- Computational Biology of Infection Research, Helmholtz Center for Infection Research, Braunschweig, Germany
- Braunschweig Integrated Centre of Systems Biology (BRICS), Technische Universität Braunschweig, Braunschweig, Germany
| |
Collapse
|
19
|
Ektefaie Y, Shen A, Bykova D, Marin M, Zitnik M, Farhat M. Evaluating generalizability of artificial intelligence models for molecular datasets. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.25.581982. [PMID: 38464295 PMCID: PMC10925170 DOI: 10.1101/2024.02.25.581982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Deep learning has made rapid advances in modeling molecular sequencing data. Despite achieving high performance on benchmarks, it remains unclear to what extent deep learning models learn general principles and generalize to previously unseen sequences. Benchmarks traditionally interrogate model generalizability by generating metadata based (MB) or sequence-similarity based (SB) train and test splits of input data before assessing model performance. Here, we show that this approach mischaracterizes model generalizability by failing to consider the full spectrum of cross-split overlap, i.e., similarity between train and test splits. We introduce Spectra, a spectral framework for comprehensive model evaluation. For a given model and input data, Spectra plots model performance as a function of decreasing cross-split overlap and reports the area under this curve as a measure of generalizability. We apply Spectra to 18 sequencing datasets with associated phenotypes ranging from antibiotic resistance in tuberculosis to protein-ligand binding to evaluate the generalizability of 19 state-of-the-art deep learning models, including large language models, graph neural networks, diffusion models, and convolutional neural networks. We show that SB and MB splits provide an incomplete assessment of model generalizability. With Spectra, we find as cross-split overlap decreases, deep learning models consistently exhibit a reduction in performance in a task- and model-dependent manner. Although no model consistently achieved the highest performance across all tasks, we show that deep learning models can generalize to previously unseen sequences on specific tasks. Spectra paves the way toward a better understanding of how foundation models generalize in biology.
Collapse
Affiliation(s)
- Yasha Ektefaie
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Andrew Shen
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
- Department of Computer Science, Northwestern University, Evanston, IL, USA
| | - Daria Bykova
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Maximillian Marin
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Marinka Zitnik
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
- Kempner Institute for the Study of Natural and Artificial Intelligence, Harvard University, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Harvard Data Science Initiative, Cambridge, MA, USA
| | - Maha Farhat
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
- Division of Pulmonary and Critical Care, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| |
Collapse
|
20
|
Baddal B, Taner F, Uzun Ozsahin D. Harnessing of Artificial Intelligence for the Diagnosis and Prevention of Hospital-Acquired Infections: A Systematic Review. Diagnostics (Basel) 2024; 14:484. [PMID: 38472956 DOI: 10.3390/diagnostics14050484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 01/23/2024] [Accepted: 02/19/2024] [Indexed: 03/14/2024] Open
Abstract
Healthcare-associated infections (HAIs) are the most common adverse events in healthcare and constitute a major global public health concern. Surveillance represents the foundation for the effective prevention and control of HAIs, yet conventional surveillance is costly and labor intensive. Artificial intelligence (AI) and machine learning (ML) have the potential to support the development of HAI surveillance algorithms for the understanding of HAI risk factors, the improvement of patient risk stratification as well as the prediction and timely detection and prevention of infections. AI-supported systems have so far been explored for clinical laboratory testing and imaging diagnosis, antimicrobial resistance profiling, antibiotic discovery and prediction-based clinical decision support tools in terms of HAIs. This review aims to provide a comprehensive summary of the current literature on AI applications in the field of HAIs and discuss the future potentials of this emerging technology in infection practice. Following the PRISMA guidelines, this study examined the articles in databases including PubMed and Scopus until November 2023, which were screened based on the inclusion and exclusion criteria, resulting in 162 included articles. By elucidating the advancements in the field, we aim to highlight the potential applications of AI in the field, report related issues and shortcomings and discuss the future directions.
Collapse
Affiliation(s)
- Buket Baddal
- Department of Medical Microbiology and Clinical Microbiology, Faculty of Medicine, Near East University, North Cyprus, Mersin 10, 99138 Nicosia, Turkey
- DESAM Research Institute, Near East University, North Cyprus, Mersin 10, 99138 Nicosia, Turkey
| | - Ferdiye Taner
- Department of Medical Microbiology and Clinical Microbiology, Faculty of Medicine, Near East University, North Cyprus, Mersin 10, 99138 Nicosia, Turkey
- DESAM Research Institute, Near East University, North Cyprus, Mersin 10, 99138 Nicosia, Turkey
| | - Dilber Uzun Ozsahin
- Department of Medical Diagnostic Imaging, College of Health Science, University of Sharjah, Sharjah 27272, United Arab Emirates
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
- Operational Research Centre in Healthcare, Near East University, North Cyprus, Mersin 10, 99138 Nicosia, Turkey
| |
Collapse
|
21
|
Wang Y, Jiang Z, Liang P, Liu Z, Cai H, Sun Q. TB-DROP: deep learning-based drug resistance prediction of Mycobacterium tuberculosis utilizing whole genome mutations. BMC Genomics 2024; 25:167. [PMID: 38347478 PMCID: PMC10860279 DOI: 10.1186/s12864-024-10066-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 01/30/2024] [Indexed: 02/15/2024] Open
Abstract
The most widely practiced strategy for constructing the deep learning (DL) prediction model for drug resistance of Mycobacterium tuberculosis (MTB) involves the adoption of ready-made and state-of-the-art architectures usually proposed for non-biological problems. However, the ultimate goal is to construct a customized model for predicting the drug resistance of MTB and eventually for the biological phenotypes based on genotypes. Here, we constructed a DL training framework to standardize and modularize each step during the training process using the latest tensorflow 2 API. A systematic and comprehensive evaluation of each module in the three currently representative models, including Convolutional Neural Network, Denoising Autoencoder, and Wide & Deep, which were adopted by CNNGWP, DeepAMR, and WDNN, respectively, was performed in this framework regarding module contributions in order to assemble a novel model with proper dedicated modules. Based on the whole-genome level mutations, a de novo learning method was developed to overcome the intrinsic limitations of previous models that rely on known drug resistance-associated loci. A customized DL model with the multilayer perceptron architecture was constructed and achieved a competitive performance (the mean sensitivity and specificity were 0.90 and 0.87, respectively) compared to previous ones. The new model developed was applied in an end-to-end user-friendly graphical tool named TB-DROP (TuBerculosis Drug Resistance Optimal Prediction: https://github.com/nottwy/TB-DROP ), in which users only provide sequencing data and TB-DROP will complete analysis within several minutes for one sample. Our study contributes to both a new strategy of model construction and clinical application of deep learning-based drug-resistance prediction methods.
Collapse
Affiliation(s)
- Yu Wang
- Center of Growth, Metabolism and Aging, Key Laboratory of Bio-Resources and Eco-Environment of the Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610064, China
| | - Zhonghua Jiang
- Key Laboratory of Bio-Resources and Eco-Environment of the Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610064, China
| | - Pengkuan Liang
- Key Laboratory of Bio-Resources and Eco-Environment of the Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610064, China
- Zhejiang Yangshengtang Institute of Natural Medication Co., Ltd, Hangzhou, China
| | - Zhuochong Liu
- Key Laboratory of Bio-Resources and Eco-Environment of the Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610064, China
| | - Haoyang Cai
- Center of Growth, Metabolism and Aging, Key Laboratory of Bio-Resources and Eco-Environment of the Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610064, China.
| | - Qun Sun
- Key Laboratory of Bio-Resources and Eco-Environment of the Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610064, China.
| |
Collapse
|
22
|
Liu B, Gao J, Liu XF, Rao G, Luo J, Han P, Hu W, Zhang Z, Zhao Q, Han L, Jiang Z, Zhou M. Direct prediction of carbapenem resistance in Pseudomonas aeruginosa by whole genome sequencing and metagenomic sequencing. J Clin Microbiol 2023; 61:e0061723. [PMID: 37823665 PMCID: PMC10662344 DOI: 10.1128/jcm.00617-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Accepted: 08/17/2023] [Indexed: 10/13/2023] Open
Abstract
Carbapenem resistance is a major concern in the management of antibiotic-resistant Pseudomonas aeruginosa infections. The direct prediction of carbapenem-resistant phenotype from genotype in P. aeruginosa isolates and clinical samples would promote timely antibiotic therapy. The complex carbapenem resistance mechanism and the high prevalence of variant-driven carbapenem resistance in P. aeruginosa make it challenging to predict the carbapenem-resistant phenotype through the genotype. In this study, using whole genome sequencing (WGS) data of 1,622 P. aeruginosa isolates followed by machine learning, we screened 16 and 31 key gene features associated with imipenem (IPM) and meropenem (MEM) resistance in P. aeruginosa, including oprD(HIGH), and constructed the resistance prediction models. The areas under the curves of the IPM and MEM resistance prediction models were 0.906 and 0.925, respectively. For the direct prediction of carbapenem resistance in P. aeruginosa from clinical samples by the key gene features selected and prediction models constructed, 72 P. aeruginosa-positive sputum samples were collected and sequenced by metagenomic sequencing (MGS) based on next-generation sequencing (NGS) or Oxford Nanopore Technology (ONT). The prediction applicability of MGS based on NGS outperformed that of MGS based on ONT. In 72 P. aeruginosa-positive sputum samples, 65.0% (26/40) of IPM-insensitive and 63.2% (24/38) of MEM-insensitive P. aeruginosa were directly predicted by NGS-based MGS with positive predictive values of 0.897 and 0.889, respectively. By the direct detection of the key gene features associated with carbapenem resistance of P. aeruginosa, the carbapenem resistance of P. aeruginosa could be directly predicted from cultured isolates by WGS or from clinical samples by NGS-based MGS, which could assist the timely treatment and surveillance of carbapenem-resistant P. aeruginosa.
Collapse
Affiliation(s)
- Bing Liu
- Department of Pulmonary and Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Institute of Respiratory Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Emergency Prevention, Diagnosis and Treatment of Respiratory Infectious Diseases, Shanghai, China
| | - Jianpeng Gao
- Genskey Medical Technology Co., Ltd., Beijing, China
| | - Xue Fei Liu
- Department of Pulmonary and Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Institute of Respiratory Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Emergency Prevention, Diagnosis and Treatment of Respiratory Infectious Diseases, Shanghai, China
| | - Guanhua Rao
- Genskey Medical Technology Co., Ltd., Beijing, China
| | - Jiajie Luo
- Genskey Medical Technology Co., Ltd., Beijing, China
| | - Peng Han
- Genskey Medical Technology Co., Ltd., Beijing, China
| | - Weiting Hu
- Department of Pulmonary and Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Institute of Respiratory Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Emergency Prevention, Diagnosis and Treatment of Respiratory Infectious Diseases, Shanghai, China
| | - Ze Zhang
- Department of Pulmonary and Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Institute of Respiratory Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Emergency Prevention, Diagnosis and Treatment of Respiratory Infectious Diseases, Shanghai, China
| | - Qianqian Zhao
- Department of Pulmonary and Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Institute of Respiratory Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Emergency Prevention, Diagnosis and Treatment of Respiratory Infectious Diseases, Shanghai, China
| | - Lizhong Han
- Department of Clinical Microbiology,, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhi Jiang
- Genskey Medical Technology Co., Ltd., Beijing, China
| | - Min Zhou
- Department of Pulmonary and Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Institute of Respiratory Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Emergency Prevention, Diagnosis and Treatment of Respiratory Infectious Diseases, Shanghai, China
| |
Collapse
|
23
|
Perea-Jacobo R, Paredes-Gutiérrez GR, Guerrero-Chevannier MÁ, Flores DL, Muñiz-Salazar R. Machine Learning of the Whole Genome Sequence of Mycobacterium tuberculosis: A Scoping PRISMA-Based Review. Microorganisms 2023; 11:1872. [PMID: 37630431 PMCID: PMC10456961 DOI: 10.3390/microorganisms11081872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/13/2023] [Accepted: 07/14/2023] [Indexed: 08/27/2023] Open
Abstract
Tuberculosis (TB) remains one of the most significant global health problems, posing a significant challenge to public health systems worldwide. However, diagnosing drug-resistant tuberculosis (DR-TB) has become increasingly challenging due to the rising number of multidrug-resistant (MDR-TB) cases, despite the development of new TB diagnostic tools. Even the World Health Organization-recommended methods such as Xpert MTB/XDR or Truenat are unable to detect all the Mycobacterium tuberculosis genome mutations associated with drug resistance. While Whole Genome Sequencing offers a more precise DR profile, the lack of user-friendly bioinformatics analysis applications hinders its widespread use. This review focuses on exploring various artificial intelligence models for predicting DR-TB profiles, analyzing relevant English-language articles using the PRISMA methodology through the Covidence platform. Our findings indicate that an Artificial Neural Network is the most commonly employed method, with non-statistical dimensionality reduction techniques preferred over traditional statistical approaches such as Principal Component Analysis or t-distributed Stochastic Neighbor Embedding.
Collapse
Affiliation(s)
- Ricardo Perea-Jacobo
- Facultad de Ingeniería Arquitectura y Diseño, Universidad Autónoma de Baja California, Campus Ensenada, Ensenada 22860, Mexico; (R.P.-J.); (G.R.P.-G.); (M.Á.G.-C.)
- Escuela de Ciencias de la Salud, Universidad Autónoma de Baja California, Campus Ensenada, Ensenada 22890, Mexico
| | - Guillermo René Paredes-Gutiérrez
- Facultad de Ingeniería Arquitectura y Diseño, Universidad Autónoma de Baja California, Campus Ensenada, Ensenada 22860, Mexico; (R.P.-J.); (G.R.P.-G.); (M.Á.G.-C.)
| | - Miguel Ángel Guerrero-Chevannier
- Facultad de Ingeniería Arquitectura y Diseño, Universidad Autónoma de Baja California, Campus Ensenada, Ensenada 22860, Mexico; (R.P.-J.); (G.R.P.-G.); (M.Á.G.-C.)
| | - Dora-Luz Flores
- Facultad de Ingeniería Arquitectura y Diseño, Universidad Autónoma de Baja California, Campus Ensenada, Ensenada 22860, Mexico; (R.P.-J.); (G.R.P.-G.); (M.Á.G.-C.)
| | - Raquel Muñiz-Salazar
- Escuela de Ciencias de la Salud, Universidad Autónoma de Baja California, Campus Ensenada, Ensenada 22890, Mexico
| |
Collapse
|
24
|
Naidu A, Nayak SS, Lulu S S, Sundararajan V. Advances in computational frameworks in the fight against TB: The way forward. Front Pharmacol 2023; 14:1152915. [PMID: 37077815 PMCID: PMC10106641 DOI: 10.3389/fphar.2023.1152915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 03/20/2023] [Indexed: 04/05/2023] Open
Abstract
Around 1.6 million people lost their life to Tuberculosis in 2021 according to WHO estimates. Although an intensive treatment plan exists against the causal agent, Mycobacterium Tuberculosis, evolution of multi-drug resistant strains of the pathogen puts a large number of global populations at risk. Vaccine which can induce long-term protection is still in the making with many candidates currently in different phases of clinical trials. The COVID-19 pandemic has further aggravated the adversities by affecting early TB diagnosis and treatment. Yet, WHO remains adamant on its "End TB" strategy and aims to substantially reduce TB incidence and deaths by the year 2035. Such an ambitious goal would require a multi-sectoral approach which would greatly benefit from the latest computational advancements. To highlight the progress of these tools against TB, through this review, we summarize recent studies which have used advanced computational tools and algorithms for-early TB diagnosis, anti-mycobacterium drug discovery and in the designing of the next-generation of TB vaccines. At the end, we give an insight on other computational tools and Machine Learning approaches which have successfully been applied in biomedical research and discuss their prospects and applications against TB.
Collapse
Affiliation(s)
| | | | | | - Vino Sundararajan
- Department of Biotechnology, School of Bio Sciences and Technology, VIT University, Vellore, India
| |
Collapse
|
25
|
Libiseller-Egger J, Wang L, Deelder W, Campino S, Clark TG, Phelan JE. TB-ML-a framework for comparing machine learning approaches to predict drug resistance of Mycobacterium tuberculosis. BIOINFORMATICS ADVANCES 2023; 3:vbad040. [PMID: 37033466 PMCID: PMC10074023 DOI: 10.1093/bioadv/vbad040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 03/03/2023] [Accepted: 03/22/2023] [Indexed: 04/08/2023]
Abstract
Motivation Machine learning (ML) has shown impressive performance in predicting antimicrobial resistance (AMR) from sequence data, including for Mycobacterium tuberculosis, the causative agent of tuberculosis. However, current ML development and publication practices make it difficult for researchers and clinicians to use, test or reproduce published models. Results We packaged a number of published and unpublished ML models for predicting AMR of M.tuberculosis into Docker containers. Similarly, the pipelines required for pre-processing genomic data into the formats required by the models were also packaged into separate containers. By following a minimal container I/O standard, we ensured as much interoperability as possible. We also created a command-line application, TB-ML, which can be used to easily combine pre-processing and prediction containers into complete pipelines ready for predicting resistance from novel, raw data with a single command. As long as there is adherence to this minimal standard for the container interface, containers produced by researchers holding new models can likewise be included in these pipelines, making benchmark comparisons of different models simple and facilitating faster uptake in the clinic. Availability and implementation TB-ML contains a simple Docker API written in Python and is available at https://github.com/jodyphelan/tb-ml. Example Docker containers for resistance prediction and corresponding data pre-processing as well as a tutorial on how to create new containers for TB-ML are available at https://tb-ml.github.io/tb-ml-containers/. Contact jody.phelan@lshtm.ac.uk.
Collapse
Affiliation(s)
- Julian Libiseller-Egger
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London WC1E 7HT, UK
| | - Linfeng Wang
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London WC1E 7HT, UK
| | - Wouter Deelder
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London WC1E 7HT, UK
| | - Susana Campino
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London WC1E 7HT, UK
| | - Taane G Clark
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London WC1E 7HT, UK
- Faculty of Epidemiology and Population Health, London School of Hygiene & Tropical Medicine, London WC1E 7HT, UK
| | - Jody E Phelan
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London WC1E 7HT, UK
| |
Collapse
|
26
|
Artificial Intelligence for Antimicrobial Resistance Prediction: Challenges and Opportunities towards Practical Implementation. Antibiotics (Basel) 2023; 12:antibiotics12030523. [PMID: 36978390 PMCID: PMC10044311 DOI: 10.3390/antibiotics12030523] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/01/2023] [Accepted: 03/03/2023] [Indexed: 03/08/2023] Open
Abstract
Antimicrobial resistance (AMR) is emerging as a potential threat to many lives worldwide. It is very important to understand and apply effective strategies to counter the impact of AMR and its mutation from a medical treatment point of view. The intersection of artificial intelligence (AI), especially deep learning/machine learning, has led to a new direction in antimicrobial identification. Furthermore, presently, the availability of huge amounts of data from multiple sources has made it more effective to use these artificial intelligence techniques to identify interesting insights into AMR genes such as new genes, mutations, drug identification, conditions favorable to spread, and so on. Therefore, this paper presents a review of state-of-the-art challenges and opportunities. These include interesting input features posing challenges in use, state-of-the-art deep-learning/machine-learning models for robustness and high accuracy, challenges, and prospects to apply these techniques for practical purposes. The paper concludes with the encouragement to apply AI to the AMR sector with the intention of practical diagnosis and treatment, since presently most studies are at early stages with minimal application in the practice of diagnosis and treatment of disease.
Collapse
|
27
|
Rhouma M, Soufi L, Cenatus S, Archambault M, Butaye P. Current Insights Regarding the Role of Farm Animals in the Spread of Antimicrobial Resistance from a One Health Perspective. Vet Sci 2022; 9:480. [PMID: 36136696 PMCID: PMC9503504 DOI: 10.3390/vetsci9090480] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 09/02/2022] [Accepted: 09/02/2022] [Indexed: 11/16/2022] Open
Abstract
Antimicrobial resistance (AMR) represents a global threat to both human and animal health and has received increasing attention over the years from different stakeholders. Certain AMR bacteria circulate between humans, animals, and the environment, while AMR genes can be found in all ecosystems. The aim of the present review was to provide an overview of antimicrobial use in food-producing animals and to document the current status of the role of farm animals in the spread of AMR to humans. The available body of scientific evidence supported the notion that restricted use of antimicrobials in farm animals was effective in reducing AMR in livestock and, in some cases, in humans. However, most recent studies have reported that livestock have little contribution to the acquisition of AMR bacteria and/or AMR genes by humans. Overall, strategies applied on farms that target the reduction of all antimicrobials are recommended, as these are apparently associated with notable reduction in AMR (avoiding co-resistance between antimicrobials). The interconnection between human and animal health as well as the environment requires the acceleration of the implementation of the 'One Health' approach to effectively fight AMR while preserving the effectiveness of antimicrobials.
Collapse
Affiliation(s)
- Mohamed Rhouma
- Department of Pathology and Microbiology, Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada
- Groupe de Recherche et d’Enseignement en Salubrité Alimentaire (GRESA), Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada
- Swine and Poultry Infectious Diseases Research Center, Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada
| | - Leila Soufi
- Department of Microbiology, Faculty of Life Sciences and Technology, Berlin University of Applied Sciences, Seestrasse 64, 13347 Berlin, Germany
- Laboratory of Biotechnology and Bio-Geo Resources Valorization (BVBGR)-LR11ES31, Higher Institute for Biotechnology, University of Manouba, Biotechpole Sidi Thabet, Ariana 2020, Tunisia
| | - Schlasiva Cenatus
- Department of Pathology and Microbiology, Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada
- Groupe de Recherche et d’Enseignement en Salubrité Alimentaire (GRESA), Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada
| | - Marie Archambault
- Department of Pathology and Microbiology, Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada
- Swine and Poultry Infectious Diseases Research Center, Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada
| | - Patrick Butaye
- Department of Pathobiology, Pharmacology and Zoological Medicine, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, B9820 Merelbeke, Belgium
| |
Collapse
|