1
|
Yang J, Zhu H, Liang W, Zhao X, Yin M, Feng X, Wang B. Fungicidal activity of curcumol against Phytophthora capsici via inhibiting phosphatidylcholine biosynthesis and its systemic translocation in plants. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2025; 207:106214. [PMID: 39672648 DOI: 10.1016/j.pestbp.2024.106214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 11/11/2024] [Accepted: 11/13/2024] [Indexed: 12/15/2024]
Abstract
Phytophthora capsici is an infamously soil-borne pathogen that poses a serious threat to agricultural production. Curcumol is a natural plant-derived sesquiterpene lactone, whose antimicrobial effect against plant pathogens remains unclear. In this study, curcumol exhibited pronounced antifungal activity against a diverse range of plant pathogens, particularly against plant pathogenic oomycetes, which including P. capsici, Phytophthora infestans, Phytophthora parasitica, and Phytophthora sojae. The median effective concentration values of curcumol against P. capsici for spore germination and mycelial growth were 4.75 and 2.11 μg mL-1, respectively. After treatment with curcumol, mycelia of P. capsici exhibited morphological and ultrastructual defects, which included swelling, hyperbranching, dissolution of plasma membrane, and loss of organelles. In addition, curcumol effectively inhibited the synthesis of phosphatidylcholine (PC), a primary component of cell membrane, by downregulating the expression levels of genes participated in PC synthesis such as Phospholipid N-methyltransferase and Cholinephosphotransferase. This inhibition decreased the accumulation of PC and phospholipids within the cell, thereby increasing the cell membrane permeability and damaging its integrity. In the in vivo antifungal tests, curcumol reduced the disease incidence of P. capsici on tomato leaves as well as pepper seedlings. The systemicity tests further validated the strong phloem and xylem mobility of curcumol in both upward and downward directions. Taken together, these results indicated that curcumol could effectively combat diseases caused by P. capsici and had the potential for development into a novel fungicide for P. capsici management.
Collapse
Affiliation(s)
- Jingjing Yang
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Jiangsu Province Engineering Research Center of Eco-cultivation and High-value Utilization of Chinese Medicinal Materials, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China; Jining Polytechnic, Jining 272037, China
| | - Hai Zhu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Wenhao Liang
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Jiangsu Province Engineering Research Center of Eco-cultivation and High-value Utilization of Chinese Medicinal Materials, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China
| | - Xingzeng Zhao
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Jiangsu Province Engineering Research Center of Eco-cultivation and High-value Utilization of Chinese Medicinal Materials, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China
| | - Min Yin
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Jiangsu Province Engineering Research Center of Eco-cultivation and High-value Utilization of Chinese Medicinal Materials, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China
| | - Xu Feng
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Jiangsu Province Engineering Research Center of Eco-cultivation and High-value Utilization of Chinese Medicinal Materials, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China
| | - Bi Wang
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Jiangsu Province Engineering Research Center of Eco-cultivation and High-value Utilization of Chinese Medicinal Materials, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China.
| |
Collapse
|
2
|
Zou Y, Zhang Y, Li M, Cao K, Song C, Zhang Z, Cai K, Geng D, Chen S, Wu Y, Zhang N, Sun G, Wang J, Zhang Y, Sun Y. Regulation of lipid metabolism by E3 ubiquitin ligases in lipid-associated metabolic diseases. Int J Biol Macromol 2024; 265:130961. [PMID: 38508558 DOI: 10.1016/j.ijbiomac.2024.130961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 03/10/2024] [Accepted: 03/15/2024] [Indexed: 03/22/2024]
Abstract
Previous studies have progressively elucidated the involvement of E3 ubiquitin (Ub) ligases in regulating lipid metabolism. Ubiquitination, facilitated by E3 Ub ligases, modifies critical enzymes in lipid metabolism, enabling them to respond to specific signals. In this review, we aim to present a comprehensive analysis of the role of E3 Ub ligases in lipid metabolism, which includes lipid synthesis and lipolysis, and their influence on cellular lipid homeostasis through the modulation of lipid uptake and efflux. Furthermore, it explores how the ubiquitination process governs the degradation or activation of pivotal enzymes, thereby regulating lipid metabolism at the transcriptional level. Perturbations in lipid metabolism have been implicated in various diseases, including hepatic lipid metabolism disorders, atherosclerosis, diabetes, and cancer. Therefore, this review focuses on the association between E3 Ub ligases and lipid metabolism in lipid-related diseases, highlighting enzymes critically involved in lipid synthesis and catabolism, transcriptional regulators, lipid uptake translocators, and transporters. Overall, this review aims to identify gaps in current knowledge, highlight areas requiring further research, offer potential targeted therapeutic approaches, and provide a comprehensive outlook on clinical conditions associated with lipid metabolic diseases.
Collapse
Affiliation(s)
- Yuanming Zou
- Department of Cardiology, the First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China
| | - Ying Zhang
- Department of Cardiology, the First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China; Institute of Health Sciences, China Medical University, 77 Puhe Road, Shenbei New District, Shenyang, 110001, Liaoning Province, People's Republic of China.
| | - Mohan Li
- Department of Cardiology, the First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China
| | - Kexin Cao
- Department of Cardiology, the First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China
| | - Chunyu Song
- Department of Cardiology, the First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China
| | - Zhaobo Zhang
- Department of Cardiology, the First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China
| | - Kexin Cai
- Department of Cardiology, the First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China
| | - Danxi Geng
- Department of Cardiology, the First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China
| | - Shuxian Chen
- Department of Cardiology, the First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China
| | - Yanjiao Wu
- Department of Cardiology, the First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China
| | - Naijin Zhang
- Department of Cardiology, the First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China; Institute of Health Sciences, China Medical University, 77 Puhe Road, Shenbei New District, Shenyang, 110001, Liaoning Province, People's Republic of China; Key Laboratory of Reproductive and Genetic Medicine (China Medical University), National Health Commission, 77 Puhe Road, Shenbei New District, Shenyang, 110001, Liaoning Province, People's Republic of China
| | - Guozhe Sun
- Department of Cardiology, the First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China.
| | - Jing Wang
- Department of Hematology, the First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China.
| | - Yixiao Zhang
- Department of Urology Surgery, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, Shenyang, 110004, Liaoning Province, People's Republic of China.
| | - Yingxian Sun
- Department of Cardiology, the First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China; Institute of Health Sciences, China Medical University, 77 Puhe Road, Shenbei New District, Shenyang, 110001, Liaoning Province, People's Republic of China; Key Laboratory of Environmental Stress and Chronic Disease Control and Prevention, Ministry of Education, China Medical University, 77 Puhe Road, Shenbei New District, Shenyang, 110001, Liaoning Province, People's Republic of China.
| |
Collapse
|
3
|
McGregor L, Acajjaoui S, Desfosses A, Saïdi M, Bacia-Verloop M, Schwarz JJ, Juyoux P, von Velsen J, Bowler MW, McCarthy AA, Kandiah E, Gutsche I, Soler-Lopez M. The assembly of the Mitochondrial Complex I Assembly complex uncovers a redox pathway coordination. Nat Commun 2023; 14:8248. [PMID: 38086790 PMCID: PMC10716376 DOI: 10.1038/s41467-023-43865-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 11/21/2023] [Indexed: 12/18/2023] Open
Abstract
The Mitochondrial Complex I Assembly (MCIA) complex is essential for the biogenesis of respiratory Complex I (CI), the first enzyme in the respiratory chain, which has been linked to Alzheimer's disease (AD) pathogenesis. However, how MCIA facilitates CI assembly, and how it is linked with AD pathogenesis, is poorly understood. Here we report the structural basis of the complex formation between the MCIA subunits ECSIT and ACAD9. ECSIT binding induces a major conformational change in the FAD-binding loop of ACAD9, releasing the FAD cofactor and converting ACAD9 from a fatty acid β-oxidation (FAO) enzyme to a CI assembly factor. We provide evidence that ECSIT phosphorylation downregulates its association with ACAD9 and is reduced in neuronal cells upon exposure to amyloid-β (Aβ) oligomers. These findings advance our understanding of the MCIA complex assembly and suggest a possible role for ECSIT in the reprogramming of bioenergetic pathways linked to Aβ toxicity, a hallmark of AD.
Collapse
Affiliation(s)
- Lindsay McGregor
- Structural Biology Group, European Synchrotron Radiation Facility (ESRF), 38043, Grenoble, France
| | - Samira Acajjaoui
- Structural Biology Group, European Synchrotron Radiation Facility (ESRF), 38043, Grenoble, France
| | - Ambroise Desfosses
- Institut de Biologie Structurale, Université Grenoble Alpes, CEA, CNRS (IBS), 38044, Grenoble, France
| | - Melissa Saïdi
- Structural Biology Group, European Synchrotron Radiation Facility (ESRF), 38043, Grenoble, France
| | - Maria Bacia-Verloop
- Institut de Biologie Structurale, Université Grenoble Alpes, CEA, CNRS (IBS), 38044, Grenoble, France
| | - Jennifer J Schwarz
- European Molecular Biology Laboratory (EMBL), 69117, Heidelberg, Germany
| | - Pauline Juyoux
- European Molecular Biology Laboratory (EMBL), 38043, Grenoble, France
| | - Jill von Velsen
- European Molecular Biology Laboratory (EMBL), 38043, Grenoble, France
| | - Matthew W Bowler
- European Molecular Biology Laboratory (EMBL), 38043, Grenoble, France
| | - Andrew A McCarthy
- European Molecular Biology Laboratory (EMBL), 38043, Grenoble, France
| | - Eaazhisai Kandiah
- Structural Biology Group, European Synchrotron Radiation Facility (ESRF), 38043, Grenoble, France
| | - Irina Gutsche
- Institut de Biologie Structurale, Université Grenoble Alpes, CEA, CNRS (IBS), 38044, Grenoble, France.
- Department of Chemistry, Umeå University, Umeå, Sweden.
| | - Montserrat Soler-Lopez
- Structural Biology Group, European Synchrotron Radiation Facility (ESRF), 38043, Grenoble, France.
| |
Collapse
|
4
|
Labella B, Lanzi G, Cotti Piccinelli S, Caria F, Damioli S, Risi B, Bertella E, Poli L, Padovani A, Filosto M. Juvenile-Onset Recurrent Rhabdomyolysis Due to Compound Heterozygote Variants in the ACADVL Gene. Brain Sci 2023; 13:1178. [PMID: 37626534 PMCID: PMC10452278 DOI: 10.3390/brainsci13081178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/30/2023] [Accepted: 08/06/2023] [Indexed: 08/27/2023] Open
Abstract
Very long-chain acyl-CoA dehydrogenase (VLCAD) deficiency is a rare autosomal recessive long-chain fatty acid oxidation disorder caused by mutations in the ACADVL gene. The myopathic form presents with exercise intolerance, exercise-related rhabdomyolysis, and muscle pain, usually starting during adolescence or adulthood. We report on a 17-year-old boy who has presented with exercise-induced muscle pain and fatigue since childhood. In recent clinical history, episodes of exercise-related severe hyperCKemia and myoglobinuria were reported. Electromyography was normal, and a muscle biopsy showed only "moth-eaten" fibers, and a mild increase in lipid storage in muscle fibers. NGS analysis displayed the already known heterozygote c.1769G>A variant and the unreported heterozygote c.523G>C change in ACADVL both having disease-causing predictions. Plasma acylcarnitine profiles revealed high long-chain acylcarnitine species levels, especially C14:1. Clinical, histopathological, biochemical, and genetic tests supported the diagnosis of VLCAD deficiency. Our report of a novel pathogenic missense variant in ACADVL expands the allelic heterogeneity of the disease. Since dietary treatment is the only therapy available for treating VLCAD deficiency and it is more useful the earlier it is started, prompt diagnosis is essential in order to minimize muscle damage and slow the disease progression.
Collapse
Affiliation(s)
- Beatrice Labella
- Department of Clinical and Experimental Sciences, University of Brescia, 25100 Brescia, Italy; (B.L.); (S.C.P.); (A.P.)
- Unit of Neurology, ASST “Spedali Civili”, 25100 Brescia, Italy;
| | - Gaetana Lanzi
- Medical Genetics Laboratory, Diagnostic Department, ASST-Pedali Civili of Brescia, 25100 Brescia, Italy;
| | - Stefano Cotti Piccinelli
- Department of Clinical and Experimental Sciences, University of Brescia, 25100 Brescia, Italy; (B.L.); (S.C.P.); (A.P.)
- NeMO—Brescia Clinical Center for Neuromuscular Diseases, 25064 Brescia, Italy; (F.C.); (S.D.); (B.R.); (E.B.)
| | - Filomena Caria
- NeMO—Brescia Clinical Center for Neuromuscular Diseases, 25064 Brescia, Italy; (F.C.); (S.D.); (B.R.); (E.B.)
| | - Simona Damioli
- NeMO—Brescia Clinical Center for Neuromuscular Diseases, 25064 Brescia, Italy; (F.C.); (S.D.); (B.R.); (E.B.)
| | - Barbara Risi
- NeMO—Brescia Clinical Center for Neuromuscular Diseases, 25064 Brescia, Italy; (F.C.); (S.D.); (B.R.); (E.B.)
| | - Enrica Bertella
- NeMO—Brescia Clinical Center for Neuromuscular Diseases, 25064 Brescia, Italy; (F.C.); (S.D.); (B.R.); (E.B.)
| | - Loris Poli
- Unit of Neurology, ASST “Spedali Civili”, 25100 Brescia, Italy;
| | - Alessandro Padovani
- Department of Clinical and Experimental Sciences, University of Brescia, 25100 Brescia, Italy; (B.L.); (S.C.P.); (A.P.)
- Unit of Neurology, ASST “Spedali Civili”, 25100 Brescia, Italy;
| | - Massimiliano Filosto
- Department of Clinical and Experimental Sciences, University of Brescia, 25100 Brescia, Italy; (B.L.); (S.C.P.); (A.P.)
- NeMO—Brescia Clinical Center for Neuromuscular Diseases, 25064 Brescia, Italy; (F.C.); (S.D.); (B.R.); (E.B.)
| |
Collapse
|
5
|
Kong N, Ma H, Pu Z, Wan F, Li D, Huang L, Lian J, Huang X, Ling S, Yu H, Yao Y. De Novo Design and Synthesis of Polypeptide Immunomodulators for Resetting Macrophage Polarization. BIODESIGN RESEARCH 2023; 5:0006. [PMID: 37849457 PMCID: PMC10521685 DOI: 10.34133/bdr.0006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 12/25/2022] [Indexed: 10/19/2023] Open
Abstract
Modulating the extracellular matrix microenvironment is critical for achieving the desired macrophage phenotype in immune investigations or tumor therapy. Combining de novo protein design and biosynthesis techniques, herein, we designed a biomimetic polypeptide self-assembled nano-immunomodulator to trigger the activation of a specific macrophage phenotype. It was intended to be made up of (GGSGGPGGGPASAAANSASRATSNSP)n, the RGD motif from collagen, and the IKVAV motif from laminin. The combination of these domains allows the biomimetic polypeptide to assemble into extracellular matrix-like nanofibrils, creating an extracellular matrix-like milieu for macrophages. Furthermore, changing the concentration further provides a facile route to fine-tune macrophage polarization, which enhances antitumor immune responses by precisely resetting tumor-associated macrophage immune responses into an M1-like phenotype, which is generally considered to be tumor-killing macrophages, primarily antitumor, and immune-promoting. Unlike metal or synthetic polymer-based nanoparticles, this polypeptide-based nanomaterial exhibits excellent biocompatibility, high efficacy, and precise tunability in immunomodulatory effectiveness. These encouraging findings motivate us to continue our research into cancer immunotherapy applications in the future.
Collapse
Affiliation(s)
- Na Kong
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai 201210, China
| | - Hongru Ma
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, China
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Zhongji Pu
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, China
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Fengju Wan
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai 201210, China
| | - Dongfang Li
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, China
| | - Lei Huang
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, China
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Jiazhang Lian
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, China
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Xingxu Huang
- Zhejiang Lab, Hangzhou, Zhejiang 311121, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Shengjie Ling
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai 201210, China
- Shanghai Clinical Research and Trial Center, Shanghai 201210, China
| | - Haoran Yu
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, China
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Yuan Yao
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai 201210, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, China
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China
| |
Collapse
|