1
|
Gong H, Hua Y, Wang Y, Zhang X, Wang H, Zhao Z, Zhang Y. Fabrication of a novel macrophage-targeted biomimetic delivery composite hydrogel with multiple-sensitive properties for tri-modal combination therapy of rheumatoid arthritis. Int J Pharm 2024; 665:124708. [PMID: 39284423 DOI: 10.1016/j.ijpharm.2024.124708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 08/26/2024] [Accepted: 09/10/2024] [Indexed: 10/11/2024]
Abstract
In this study, a porous polydopamine (PDA) nanoparticle-decorated β-glucan microcapsules (GMs) nanoplatform (PDA/GMs) were developed with macrophage-targeted biomimetic features and a carriers-within-carriers structure. Indocyanine green (ICG) and catalase (CAT) were subsequently co-encapsulated within the PDA/GMs to create a multifunctional nanotherapeutic agent, termed CIPGs. Furthermore, CIPGs and sinomenine (SIN) were co-loaded within a thermo-sensitive hydrogel to design an injectable delivery system, termed CIPG/SH, with potential for multi-modal therapy of rheumatoid arthritis (RA). Photothermal studies indicated that the CIPGs hold excellent photothermal conversion ability and thermal stability, as they combined the photothermal performance of both PDA and ICG. Meanwhile, the CIPGs displayed favorable oxygen self-supplying and photodynamic performance. The CIPGs showed near-infrared (NIR)-induced phototoxicity, effectively inhibiting macrophage proliferation and displaying remarkable antibacterial activity. In vitro drug release from the prepared CIPG/SH showed a controlled release pattern. Animal experiments conducted on an RA mice model confirmed that the formulated CIPG/SH exhibited significant therapeutic effects. By integrating the biological advantages, photothermal/photodynamic performance of the CIPGs, and controlled drug release performance of the thermo-sensitive hydrogels in a single delivery system, the prepared injectable CIPG/SH represents a novel versatile delivery system with great potential for multi-modal combination targeting therapy in RA.
Collapse
Affiliation(s)
- Haoyang Gong
- School of Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
| | - Yabing Hua
- School of Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
| | - Yicheng Wang
- School of Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
| | - Xinyi Zhang
- School of Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
| | - Hui Wang
- Department of Pharmacy, Xuzhou Hospital of TCM, Xuzhou 221000, China.
| | - Ziming Zhao
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
| | - Yanzhuo Zhang
- School of Pharmacy, Xuzhou Medical University, Xuzhou 221004, China.
| |
Collapse
|
2
|
Dave H, Vithalani H, Singh H, Yadav I, Jain A, Pal A, Patidar N, Navale A, Dhanka M. Amphiphilic Gelator-Based Shear-Thinning Hydrogel for Minimally Invasive Delivery via Endoscopy Catheter to Remove Gastrointestinal Polyps. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2405508. [PMID: 39506390 DOI: 10.1002/smll.202405508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 10/04/2024] [Indexed: 11/08/2024]
Abstract
Injectable polymeric hydrogels delivered via endoscopic catheter have emerged as promising submucosal agents, offering durable, long-lasting cushions to enhance the efficacy of endoscopic submucosal dissection (ESD) for the removal of small, flat polyps from the gastrointestinal tract (GIT). However, polymer-based injections do not meet the easy-injectability criteria via catheter because their high viscosity tends to clog the catheter needle. To the best of knowledge, for the first time, report the fabrication of an amphiphile-based small molecule hydrogel of diglycerol monostearate (DGMS) that self-assembles to form hydrogel (DGMSH) for delivery via an endoscopic catheter. Physicochemical characterization of the hydrogel reveals its fibrous morphology, shear-thinning behaviour, and easy injectability, along with its scalability and long shelf-life (6 months). Ex vivo studies on the goat's stomach and intestine demonstrate the ease of injectability through the catheters and the development of visible submucosal cushion depots with the desired height. Moreover, the hydrogel can encapsulate both hydrophobic and hydrophilic drugs/dyes. In vivo studies in small animals have found that the hydrogel depot is durable, biocompatible, non-immunogenic, and has a hemostatic effect. Endoscopic studies in the porcine model demonstrate a safe injection and endoscopic excision of GI polyps acting as a suitable agent for ESD.
Collapse
Affiliation(s)
- Harshil Dave
- Department of Biological Sciences and Engineering, Indian Institute of Technology Gandhinagar, Gandhinagar, Gujarat, 382355, India
| | - Hitasha Vithalani
- Department of Biological Sciences and Engineering, Indian Institute of Technology Gandhinagar, Gandhinagar, Gujarat, 382355, India
| | - Hemant Singh
- Department of Biological Sciences and Engineering, Indian Institute of Technology Gandhinagar, Gandhinagar, Gujarat, 382355, India
| | - Indu Yadav
- Department of Biological Sciences and Engineering, Indian Institute of Technology Gandhinagar, Gandhinagar, Gujarat, 382355, India
| | - Abhinav Jain
- Gastro1 Hospital, Ahmedabad, Gujarat, 380060, India
| | - Ankit Pal
- Muljibhai Patel Urological Hospital, Nadiad, Gujarat, 38700, India
| | - Nishant Patidar
- Parul Institute of Pharmacy, Parul University, Vadodara, Gujarat, 391760, India
| | - Archana Navale
- Parul Institute of Pharmacy, Parul University, Vadodara, Gujarat, 391760, India
| | - Mukesh Dhanka
- Department of Biological Sciences and Engineering, Indian Institute of Technology Gandhinagar, Gandhinagar, Gujarat, 382355, India
| |
Collapse
|
3
|
Xu R, He X, Xu J, Yu G, Wu Y. Immunometabolism: signaling pathways, homeostasis, and therapeutic targets. MedComm (Beijing) 2024; 5:e789. [PMID: 39492834 PMCID: PMC11531657 DOI: 10.1002/mco2.789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 09/20/2024] [Accepted: 09/25/2024] [Indexed: 11/05/2024] Open
Abstract
Immunometabolism plays a central role in sustaining immune system functionality and preserving physiological homeostasis within the organism. During the differentiation and activation, immune cells undergo metabolic reprogramming mediated by complex signaling pathways. Immune cells maintain homeostasis and are influenced by metabolic microenvironmental cues. A series of immunometabolic enzymes modulate immune cell function by metabolizing nutrients and accumulating metabolic products. These enzymes reverse immune cells' differentiation, disrupt intracellular signaling pathways, and regulate immune responses, thereby influencing disease progression. The huge population of immune metabolic enzymes, the ubiquity, and the complexity of metabolic regulation have kept the immune metabolic mechanisms related to many diseases from being discovered, and what has been revealed so far is only the tip of the iceberg. This review comprehensively summarized the immune metabolic enzymes' role in multiple immune cells such as T cells, macrophages, natural killer cells, and dendritic cells. By classifying and dissecting the immunometabolism mechanisms and the implications in diseases, summarizing and analyzing advancements in research and clinical applications of the inhibitors targeting these enzymes, this review is intended to provide a new perspective concerning immune metabolic enzymes for understanding the immune system, and offer novel insight into future therapeutic interventions.
Collapse
Affiliation(s)
- Rongrong Xu
- National Key Laboratory of Immunity and Inflammation & Institute of ImmunologyCollege of Basic Medical SciencesNaval Medical UniversityShanghaiChina
- School of Life SciencesFudan UniversityShanghaiChina
| | - Xiaobo He
- National Key Laboratory of Immunity and Inflammation & Institute of ImmunologyCollege of Basic Medical SciencesNaval Medical UniversityShanghaiChina
| | - Jia Xu
- National Key Laboratory of Immunity and Inflammation & Institute of ImmunologyCollege of Basic Medical SciencesNaval Medical UniversityShanghaiChina
| | - Ganjun Yu
- National Key Laboratory of Immunity and Inflammation & Institute of ImmunologyCollege of Basic Medical SciencesNaval Medical UniversityShanghaiChina
| | - Yanfeng Wu
- National Key Laboratory of Immunity and Inflammation & Institute of ImmunologyCollege of Basic Medical SciencesNaval Medical UniversityShanghaiChina
| |
Collapse
|
4
|
Chen L, Yin Q, Zhang H, Zhang J, Yang G, Weng L, Liu T, Xu C, Xue P, Zhao J, Zhang H, Yao Y, Chen X, Sun S. Protecting Against Postsurgery Oral Cancer Recurrence with an Implantable Hydrogel Vaccine for In Situ Photoimmunotherapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024:e2309053. [PMID: 39467056 DOI: 10.1002/advs.202309053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 08/20/2024] [Indexed: 10/30/2024]
Abstract
Oral squamous cell carcinoma (OSCC) often recurs aggressively and metastasizes despite surgery and adjuvant therapy, driven by postoperative residual cancer cells near the primary tumor site. An implantable in situ vaccine hydrogel was designed to target residual OSCC cells post-tumor removal. This hydrogel serves as a reservoir for the sustained localized release of δ-aminolevulinic acid (δ-ALA), enhancing protoporphyrin IX-mediated photodynamic therapy (PDT), and a polydopamine-hyaluronic acid composite for photothermal therapy (PTT). Additionally, immune adjuvants, including anti-CD47 antibodies (aCD47) and CaCO3 nanoparticles, are directly released into the resected tumor bed. This approach induces apoptosis of residual OSCC cells through sequential near-infrared irradiation, promoting calcium interference therapy (CIT). The hydrogel further stimulates immunogenic cell death (ICD), facilitating the polarization of tumor-associated macrophages from the M2 to the M1 phenotype. This facilitates phagocytosis, dendritic cell activation, robust antigen presentation, and cytotoxic T lymphocyte-mediated cytotoxicity. In murine OSCC models, the in situ vaccine effectively prevents local recurrence, inhibits orthotopic OSCC growth and pulmonary metastases, and provides long-term protective immunity against tumor rechalle nge. These findings support postoperative in situ vaccination with a biocompatible hydrogel implant as a promising strategy to minimize residual tumor burden and reduce recurrence risk after OSCC resection.
Collapse
Affiliation(s)
- Lan Chen
- Department of Oral and Maxillofacial-Head Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, Shanghai, 200011, China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai, 200011, China
| | - Qiqi Yin
- School of Chemical Engineering and Technology, Shaanxi Key Laboratory of Energy Chemical Process Intensification, Institute of Polymer Science in Chemical Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Handan Zhang
- School of Chemical Engineering and Technology, Shaanxi Key Laboratory of Energy Chemical Process Intensification, Institute of Polymer Science in Chemical Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Jie Zhang
- Department of Oral and Maxillofacial-Head Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, Shanghai, 200011, China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai, 200011, China
| | - Guizhu Yang
- Department of Oral and Maxillofacial-Head Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, Shanghai, 200011, China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai, 200011, China
| | - Lin Weng
- School of Chemical Engineering and Technology, Shaanxi Key Laboratory of Energy Chemical Process Intensification, Institute of Polymer Science in Chemical Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Tao Liu
- School of Chemical Engineering and Technology, Shaanxi Key Laboratory of Energy Chemical Process Intensification, Institute of Polymer Science in Chemical Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Chenghui Xu
- Department of Oral and Maxillofacial-Head Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, Shanghai, 200011, China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai, 200011, China
| | - Pengxin Xue
- Department of Oral and Maxillofacial-Head Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, Shanghai, 200011, China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai, 200011, China
| | - Jinchao Zhao
- Department of Oral and Maxillofacial-Head Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, Shanghai, 200011, China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai, 200011, China
| | - Han Zhang
- Department of Oral and Maxillofacial-Head Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, Shanghai, 200011, China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai, 200011, China
| | - Yanli Yao
- Department of Oral and Maxillofacial-Head Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, Shanghai, 200011, China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai, 200011, China
| | - Xin Chen
- School of Chemical Engineering and Technology, Shaanxi Key Laboratory of Energy Chemical Process Intensification, Institute of Polymer Science in Chemical Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Shuyang Sun
- Department of Oral and Maxillofacial-Head Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, Shanghai, 200011, China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai, 200011, China
| |
Collapse
|
5
|
Shi K, Fu W, Farhadi Sabet Z, Ye J, Liang S, Liu T, Liu Q, Guo M, You M, Wu J, Bai R, Liu Y, Hu B, Cui X, Li J, Chen C. Hydrogel-Mediated Jamming of Exosome Communications That Counter Tumor Adaption in the Tumor Immune Microenvironment. ACS NANO 2024. [PMID: 39441690 DOI: 10.1021/acsnano.4c07603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Hypoxia, a common occurrence within solid tumors, can stimulate the dissemination of deceptive tumor exosomes, which function as communicative bridges and orchestrate the recruitment of various supportive cell types for enhanced tumor adaptability in a tumor immune microenvironment. Current nanotechnology provides us intelligent strategies to combat the hypoxic tumor microenvironment. However, once exposed to external stimuli, such as chemotherapy, tumor cells simultaneously release malignant signals to develop tumor migration and immunosuppression, posing challenges to clinical practice. Taking advantage of the membrane-targeting therapeutic strategy, the application of a self-assembled short peptide (PepABS-py), affording hydrogels on tumor cell surfaces, can block exosome dissemination with fiber-like nanostructures and effectively limit the systemic adverse effects of traditional therapeutics. Moreover, PepABS-py can attenuate the hypoxic tumor microenvironment in vivo by carrying an inhibitor of the hypoxic tumor-overexpressed CA IX enzyme, where hypoxia is also a crucial regulator to induce tumor exosomes and mediate intercellular communications within the immune system. Herein, its application on jamming exosome communications can target the T cell-related signaling pathway by regulating microRNAs in exosome cargoes and ultimately enhances CD8+ T cell infiltration and alleviates inflammatory monocytes at metastasis sites. Collectively, with the capability of blocking exosome dissemination, PepABS-py can be applied as a promising tumor membrane-targeting therapeutic tool to counter tumor adaption within an immune microenvironment and further advance traditional chemotherapy.
Collapse
Affiliation(s)
- Kejian Shi
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, New Cornerstone Science Laboratory, National Center for Nanoscience and Technology of China, Beijing 100190, People's Republic of China
| | - Wenjiao Fu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, New Cornerstone Science Laboratory, National Center for Nanoscience and Technology of China, Beijing 100190, People's Republic of China
- Sino-Danish College, Sino-Danish Center for Education and Research, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Zeinab Farhadi Sabet
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, New Cornerstone Science Laboratory, National Center for Nanoscience and Technology of China, Beijing 100190, People's Republic of China
| | - Jinmin Ye
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, New Cornerstone Science Laboratory, National Center for Nanoscience and Technology of China, Beijing 100190, People's Republic of China
| | - Shijian Liang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, New Cornerstone Science Laboratory, National Center for Nanoscience and Technology of China, Beijing 100190, People's Republic of China
| | - Tao Liu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, New Cornerstone Science Laboratory, National Center for Nanoscience and Technology of China, Beijing 100190, People's Republic of China
| | - Qiaolin Liu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, New Cornerstone Science Laboratory, National Center for Nanoscience and Technology of China, Beijing 100190, People's Republic of China
| | - Mengyu Guo
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, New Cornerstone Science Laboratory, National Center for Nanoscience and Technology of China, Beijing 100190, People's Republic of China
| | - Min You
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, New Cornerstone Science Laboratory, National Center for Nanoscience and Technology of China, Beijing 100190, People's Republic of China
| | - Junguang Wu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, New Cornerstone Science Laboratory, National Center for Nanoscience and Technology of China, Beijing 100190, People's Republic of China
| | - Ru Bai
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, New Cornerstone Science Laboratory, National Center for Nanoscience and Technology of China, Beijing 100190, People's Republic of China
| | - Ying Liu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, New Cornerstone Science Laboratory, National Center for Nanoscience and Technology of China, Beijing 100190, People's Republic of China
| | - Bin Hu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, New Cornerstone Science Laboratory, National Center for Nanoscience and Technology of China, Beijing 100190, People's Republic of China
| | - Xuejing Cui
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, New Cornerstone Science Laboratory, National Center for Nanoscience and Technology of China, Beijing 100190, People's Republic of China
| | - Jiayang Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, New Cornerstone Science Laboratory, National Center for Nanoscience and Technology of China, Beijing 100190, People's Republic of China
| | - Chunying Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, New Cornerstone Science Laboratory, National Center for Nanoscience and Technology of China, Beijing 100190, People's Republic of China
- Sino-Danish College, Sino-Danish Center for Education and Research, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
- Research Unit of Nanoscience and Technology, Chinese Academy of Medical Sciences, Beijing 100021, People's Republic of China
| |
Collapse
|
6
|
Bo Y, Wang H. Biomaterial-Based In Situ Cancer Vaccines. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2210452. [PMID: 36649567 PMCID: PMC10408245 DOI: 10.1002/adma.202210452] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 01/06/2023] [Indexed: 06/17/2023]
Abstract
Cancer immunotherapies have reshaped the paradigm for cancer treatment over the past decade. Among them, therapeutic cancer vaccines that aim to modulate antigen-presenting cells and subsequent T cell priming processes are among the first FDA-approved cancer immunotherapies. However, despite showing benign safety profiles and the capability to generate antigen-specific humoral and cellular responses, cancer vaccines have been limited by the modest therapeutic efficacy, especially for immunologically cold solid tumors. One key challenge lies in the identification of tumor-specific antigens, which involves a costly and lengthy process of tumor cell isolation, DNA/RNA extraction, sequencing, mutation analysis, epitope prediction, peptide synthesis, and antigen screening. To address these issues, in situ cancer vaccines have been actively pursued to generate endogenous antigens directly from tumors and utilize the generated tumor antigens to elicit potent cytotoxic T lymphocyte (CTL) response. Biomaterials-based in situ cancer vaccines, in particular, have achieved significant progress by taking advantage of biomaterials that can synergize antigens and adjuvants, troubleshoot delivery issues, home, and manipulate immune cells in situ. This review will provide an overview of biomaterials-based in situ cancer vaccines, either living or artificial materials, under development or in the clinic, and discuss the design criteria for in situ cancer vaccines.
Collapse
Affiliation(s)
- Yang Bo
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Hua Wang
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Cancer Center at Illinois (CCIL), Urbana, IL, 61801, USA
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Carle College of Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| |
Collapse
|
7
|
Su Q, Wang Z, Li P, Wei X, Xiao J, Duan X. pH and ROS Dual-Responsive Autocatalytic Release System Potentiates Immunotherapy of Colorectal Cancer. Adv Healthc Mater 2024:e2401126. [PMID: 39344216 DOI: 10.1002/adhm.202401126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/03/2024] [Indexed: 10/01/2024]
Abstract
The immunosuppressive microenvironment severely limits the responsiveness of colorectal cancer (CRC) to immunotherapy. Herein, a pH and reactive oxygen species (ROS) dual-responsive autocatalytic release system (TPDM/PGA) is constructed to reverse the immunosuppressive microenvironment and potentiate CRC immunotherapy. Dihydroartemisinin (DHA) and mitoxantrone (MTO) are conjugated to ROS-responsive polyethylenimine (TP) via a ROS-cleavable linker, respectively, and then coated with polyglutamic acid (PGA) to endow pH and ROS dual-responsiveness. The dissociation of PGA within the acidic TME facilitates its deep penetration and cell internalization, while the intracellular released DHA and MTO in response to high levels of H2O2 further produced a large amount of ROS, forming positive feedback to accelerate drug release and exacerbate oxidative stress. TPDM/PGA collaboratively reversed the immunosuppressive microenvironment and induced a strong anti-tumor immune response when combined with anti-PD-L1 antibody, significantly inhibiting tumor growth and prolonging the survival time of CT26 and MC38 tumor-bearing mice. The excellent therapeutic effect, together with the good tolerance, make TPDM/PGA a promising candidate for enhanced immunotherapy of colorectal cancer.
Collapse
Affiliation(s)
- Qianyi Su
- Department of General Surgery, Zhujiang Hospital, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Zhenyu Wang
- Department of General Surgery, Zhujiang Hospital, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
- Department of Cardiology, Heart Center, Department of Pharmacy, Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Translational Medicine Research Center, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Peishan Li
- Department of General Surgery, Zhujiang Hospital, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Xin Wei
- Experimental Education/Administration Center, School of Basic Medical Science, Southern Medical University, Guangzhou, 510515, China
| | - Jisheng Xiao
- Department of General Surgery, Zhujiang Hospital, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
- Department of Cardiology, Heart Center, Department of Pharmacy, Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Translational Medicine Research Center, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Xiaopin Duan
- Department of General Surgery, Zhujiang Hospital, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| |
Collapse
|
8
|
Wang D, Zhou X, Huang M, Duan J, Qiu Y, Yi H, Wang Y, Xue H, Zhang J, Yang Q, Gao H, Guo Z, Zhang K. Cascade Enzymes Confined in DNA Nanoanchors for Antitumor Therapy. ACS APPLIED MATERIALS & INTERFACES 2024; 16:50295-50304. [PMID: 39265065 DOI: 10.1021/acsami.4c09835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/14/2024]
Abstract
Cascade-enzyme reaction systems have emerged as promising tools for treating malignant tumors by efficiently converting nutrients into toxic substances. However, the challenges of poor localized retention capacity and utilization of highly active enzymes often result in extratumoral toxicity and reduced therapeutic efficacy. In this study, we introduced a cell membrane-DNA nanoanchor (DNANA) with a spatially confined cascade enzyme for in vivo tumor therapy. The DNANAs are constructed using a polyvalent cholesterol-labeled DNA triangular prism, ensuring high stability in cell membrane attachment. Glucose oxidase (GOx) and horseradish peroxidase (HRP), both modified with streptavidin, are precisely confined to biotin-labeled DNANAs. Upon intratumoral injection, DNANA enzymes efficiently colonize the tumor site through cellular membrane engineering strategies, significantly reducing off-target enzyme leakage and the associated risks of extratumoral toxicity. Furthermore, DNANA enzymes demonstrated effective cancer therapy in vitro and in vivo by depleting glucose and producing highly cytotoxic hydroxyl radicals in the vicinity of tumor cells. This membrane-engineered cascade-enzyme reaction system presents a conceptual approach to tumor treatment.
Collapse
Affiliation(s)
- Danyu Wang
- Henan Key Laboratory of Nanomedicine for Targeting Diagnosis and Treatment, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Xin Zhou
- Institute of Biomedical Engineering, College of Life Sciences, Qingdao University, Qingdao 266071, China
| | - Mengyu Huang
- Henan Key Laboratory of Nanomedicine for Targeting Diagnosis and Treatment, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Jie Duan
- Henan Key Laboratory of Nanomedicine for Targeting Diagnosis and Treatment, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Yue Qiu
- Henan Key Laboratory of Nanomedicine for Targeting Diagnosis and Treatment, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Hua Yi
- Henan Key Laboratory of Nanomedicine for Targeting Diagnosis and Treatment, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Yang Wang
- Henan Key Laboratory of Nanomedicine for Targeting Diagnosis and Treatment, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Huimin Xue
- Henan Key Laboratory of Nanomedicine for Targeting Diagnosis and Treatment, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Jiali Zhang
- Henan Key Laboratory of Nanomedicine for Targeting Diagnosis and Treatment, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Qiuxia Yang
- Tianjian Laboratory of Advanced Biomedical Sciences, Zhengzhou University, Henan 450001, China
| | - Hua Gao
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Zhenzhen Guo
- Henan Key Laboratory of Nanomedicine for Targeting Diagnosis and Treatment, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Kaixiang Zhang
- Henan Key Laboratory of Nanomedicine for Targeting Diagnosis and Treatment, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
- Tianjian Laboratory of Advanced Biomedical Sciences, Zhengzhou University, Henan 450001, China
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou 450052, China
| |
Collapse
|
9
|
Xu C, Chen Y, Zhao S, Li D, Tang X, Zhang H, Huang J, Guo Z, Liu W. Mechanical Regulation of Polymer Gels. Chem Rev 2024; 124:10435-10508. [PMID: 39284130 DOI: 10.1021/acs.chemrev.3c00498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
The mechanical properties of polymer gels devote to emerging devices and machines in fields such as biomedical engineering, flexible bioelectronics, biomimetic actuators, and energy harvesters. Coupling network architectures and interactions has been explored to regulate supportive mechanical characteristics of polymer gels; however, systematic reviews correlating mechanics to interaction forces at the molecular and structural levels remain absent in the field. This review highlights the molecular engineering and structural engineering of polymer gel mechanics and a comprehensive mechanistic understanding of mechanical regulation. Molecular engineering alters molecular architecture and manipulates functional groups/moieties at the molecular level, introducing various interactions and permanent or reversible dynamic bonds as the dissipative energy. Molecular engineering usually uses monomers, cross-linkers, chains, and other additives. Structural engineering utilizes casting methods, solvent phase regulation, mechanochemistry, macromolecule chemical reactions, and biomanufacturing technology to construct and tailor the topological network structures, or heterogeneous modulus compositions. We envision that the perfect combination of molecular and structural engineering may provide a fresh view to extend exciting new perspectives of this burgeoning field. This review also summarizes recent representative applications of polymer gels with excellent mechanical properties. Conclusions and perspectives are also provided from five aspects of concise summary, mechanical mechanism, biofabrication methods, upgraded applications, and synergistic methodology.
Collapse
Affiliation(s)
- Chenggong Xu
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yi Chen
- Key Laboratory of Instrumentation Science and Dynamic Measurement, Ministry of Education, North University of China, Taiyuan 030051, China
| | - Siyang Zhao
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Deke Li
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- School of materials engineering, Lanzhou Institute of Technology, Lanzhou 730000, China
| | - Xing Tang
- Hubei Collaborative Innovation Centre for Advanced Organic Chemical Materials and Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubeu University, Wuhan 430062, China
| | - Haili Zhang
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- Hubei Collaborative Innovation Centre for Advanced Organic Chemical Materials and Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubeu University, Wuhan 430062, China
| | - Jinxia Huang
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Zhiguang Guo
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- Hubei Collaborative Innovation Centre for Advanced Organic Chemical Materials and Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubeu University, Wuhan 430062, China
| | - Weimin Liu
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| |
Collapse
|
10
|
Lin Q, Li J, Abudousalamu Z, Sun Y, Xue M, Yao L, Chen M. Advancing Ovarian Cancer Therapeutics: The Role of Targeted Drug Delivery Systems. Int J Nanomedicine 2024; 19:9351-9370. [PMID: 39282574 PMCID: PMC11401532 DOI: 10.2147/ijn.s478313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 08/06/2024] [Indexed: 09/19/2024] Open
Abstract
Ovarian cancer (OC) is the most lethal reproductive system cancer and a leading cause of cancer-related death. The high mortality rate and poor prognosis of OC are primarily due to its tendency for extensive abdominal metastasis, late diagnosis in advanced stages, an immunosuppressive tumor microenvironment, significant adverse reactions to first-line chemotherapy, and the development of chemoresistance. Current adjuvant chemotherapies face challenges such as poor targeting, low efficacy, and significant side effects. Targeted drug delivery systems (TDDSs) are designed to deliver drugs precisely to the tumor site to enhance efficacy and minimize side effects. This review highlights recent advancements in the use of TDDSs for OC therapies, including drug conjugate delivery systems, nanoparticle drug delivery systems, and hydrogel drug delivery systems. The focus is on employing TDDS to conduct direct, effective, and safer interventions in OC through methods such as targeted tumor recognition and controlled drug release, either independently or in combination. This review also discusses the prospects and challenges for further development of TDDSs. Undoubtedly, the use of TDDSs shows promise in the battle against OCs.
Collapse
Affiliation(s)
- Qianhan Lin
- Department of Gynecologic Oncology, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, People's Republic of China
| | - Jiajia Li
- Department of Gynecologic Oncology, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, People's Republic of China
| | - Zulimire Abudousalamu
- Department of Gynecologic Oncology, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, People's Republic of China
| | - Yating Sun
- Department of Gynecologic Oncology, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, People's Republic of China
| | - Mengyang Xue
- Department of Gynecologic Oncology, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, People's Republic of China
| | - Liangqing Yao
- Department of Gynecologic Oncology, Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Mo Chen
- Department of Gynecologic Oncology, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, People's Republic of China
| |
Collapse
|
11
|
Xie R, Yan X, Yu J, Shen K, Zhang M, Li M, Lv Z, Zhang Y, Zhang Z, Lyu Y, Cheng Y, Chu D. pH-responsive bioadhesive with robust and stable wet adhesion for gastric ulcer healing. Biomaterials 2024; 309:122599. [PMID: 38703409 DOI: 10.1016/j.biomaterials.2024.122599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/22/2024] [Accepted: 04/26/2024] [Indexed: 05/06/2024]
Abstract
Development of bioadhesives that can be facilely delivered by endoscope and exhibit instant and robust adhesion with gastric tissues to promote gastric ulcer healing remains challenging. In this study, an advanced bioadhesive is prepared through free radical polymerization of ionized N-acryloyl phenylalanine (iAPA) and N-[tris (hydroxymethyl) methyl] acrylamide (THMA). The precursory polymer solution exhibits low viscosity with the capability for endoscope delivery, and the hydrophilic-hydrophobic transition of iAPA upon exposure to gastric acid can trigger gelation through phenyl groups assisted multiple hydrogen bonds formation and repel water molecules on tissue surface to establish favorable environment for interfacial interactions between THMA and functional groups on tissues. The in-situ formed hydrogel features excellent stability in acid environment (14 days) and exhibits firm wet adhesion to gastric tissue (33.4 kPa), which can efficiently protect the wound from the stimulation of gastric acid and pepsin. In vivo studies reveal that the bioadhesive can accelerate the healing of ulcers by inhibiting inflammation and promoting capillary formation in the acetic acid-induced gastric ulcer model in rats. Our work may provide an effective solution for the treatment of gastric ulcers clinically.
Collapse
Affiliation(s)
- Ruilin Xie
- Department of Gastroenterology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, PR China; Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, School of Chemistry, Xi'an Jiaotong University, Xi'an, 710049, PR China
| | - Xueli Yan
- Department of Gastroenterology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, PR China
| | - Jing Yu
- Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, School of Chemistry, Xi'an Jiaotong University, Xi'an, 710049, PR China
| | - Kaixiang Shen
- Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, School of Chemistry, Xi'an Jiaotong University, Xi'an, 710049, PR China
| | - Mengyuan Zhang
- Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, School of Chemistry, Xi'an Jiaotong University, Xi'an, 710049, PR China
| | - Meng Li
- Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, School of Chemistry, Xi'an Jiaotong University, Xi'an, 710049, PR China
| | - Zhuting Lv
- Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, School of Chemistry, Xi'an Jiaotong University, Xi'an, 710049, PR China
| | - Yuchen Zhang
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, 710049, PR China
| | - Zixi Zhang
- Department of Dermatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, PR China
| | - Yi Lyu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, PR China
| | - Yilong Cheng
- Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, School of Chemistry, Xi'an Jiaotong University, Xi'an, 710049, PR China.
| | - Dake Chu
- Department of Gastroenterology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, PR China.
| |
Collapse
|
12
|
Liu J, Li B, Li L, Ming X, Xu ZP. Advances in Nanomaterials for Immunotherapeutic Improvement of Cancer Chemotherapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2403024. [PMID: 38773882 DOI: 10.1002/smll.202403024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/10/2024] [Indexed: 05/24/2024]
Abstract
Immuno-stimulative effect of chemotherapy (ISECT) is recognized as a potential alternative to conventional immunotherapies, however, the clinical application is constrained by its inefficiency. Metronomic chemotherapy, though designed to overcome these limitations, offers inconsistent results, with effectiveness varying based on cancer types, stages, and patient-specific factors. In parallel, a wealth of preclinical nanomaterials holds considerable promise for ISECT improvement by modulating the cancer-immunity cycle. In the area of biomedical nanomaterials, current literature reviews mainly concentrate on a specific category of nanomaterials and nanotechnological perspectives, while two essential issues are still lacking, i.e., a comprehensive analysis addressing the causes for ISECT inefficiency and a thorough summary elaborating the nanomaterials for ISECT improvement. This review thus aims to fill these gaps and catalyze further development in this field. For the first time, this review comprehensively discusses the causes of ISECT inefficiency. It then meticulously categorizes six types of nanomaterials for improving ISECT. Subsequently, practical strategies are further proposed for addressing inefficient ISECT, along with a detailed discussion on exemplary nanomedicines. Finally, this review provides insights into the challenges and perspectives for improving chemo-immunotherapy by innovations in nanomaterials.
Collapse
Affiliation(s)
- Jie Liu
- Australian Institute for Bioengineering and Nanotechnology, the University of Queensland, St Lucia, QLD, 4072, Australia
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, 000000, China
- GoodMedX Tech Limited Company, Hong Kong SAR, 000000, China
| | - Bei Li
- Cancer Centre and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau SAR, 999078, China
| | - Li Li
- Australian Institute for Bioengineering and Nanotechnology, the University of Queensland, St Lucia, QLD, 4072, Australia
| | - Xin Ming
- Departments of Cancer Biology and Biomedical Engineering, Wake Forest University School of Medicine, Winston-Salem, North Carolina, 27157, USA
| | - Zhi Ping Xu
- Australian Institute for Bioengineering and Nanotechnology, the University of Queensland, St Lucia, QLD, 4072, Australia
- Institute of Biomedical Health Technology and Engineering, and Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen, Guangdong Province, 518107, China
| |
Collapse
|
13
|
Zuo R, Gong J, Gao X, Nepovimova E, Zhang J, Jiang S, Kuca K, Wu W, Guo D. Injectable nano-in situ-thermosensitive-hydrogels based on halofuginone and silver for postoperative treatment against triple-negative breast cancer. Int J Pharm 2024; 661:124384. [PMID: 38917957 DOI: 10.1016/j.ijpharm.2024.124384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 05/27/2024] [Accepted: 06/22/2024] [Indexed: 06/27/2024]
Abstract
Postoperative distant metastasis and high recurrence rate causes a dilemma in treating triple-negative breast cancer (TNBC) owing to its unforeseeable invasion into various organs or tissues. The wealth of nutrition provided by vascular may facilitate the proliferation and angiogenesis of cancer cells, which further enhance the rates of postoperative metastasis and recurrence. Chemotherapy, as a systemic postoperative adjuvant therapy, is generally applied to diminish recurrence and metastasis of TNBC. Herein, an halofuginone-silver nano thermosensitive hydrogel (HTPM&AgNPs-gel) was prepared via a physical swelling method. The in vitro anticancer efficacy of HTPM&AgNPs-gel was analyzed by investigating cell proliferation, migration, invasion, and angiogenesis capacity. Furthermore, the in vivo anti-cancer activity of HTPM&AgNPs-gel was further appraised through the tumor suppression, anti-metastatic, anti-angiogenic, and anti-inflammatory ability. The optimized HTPM&AgNPs-gel, a thermosensitive hydrogel, showed excellent properties, including syringeability, swelling behavior, and a sustained release effect without hemolysis. In addition, HTPM&AgNPs-gel was confirmed to effectively inhibit the proliferation, migration, invasion, and angiogenesis of MDA-MB-231 cells. An evaluation of the in vivo anti-tumor efficacy demonstrated that HTPM&AgNPs-gel showed a stronger tumor inhibition rate (68.17%) than did HTPM-gel or AgNPs-gel used alone and exhibited outstanding biocompatibility. Notably, HTPM&AgNPs-gel also inhibited lung metastasis induced by residual tumor tissue after surgery and further blocked angiogenesis-related inflammatory responses. Taken together, the suppression of inflammation by interdicting the blood vessels adjoining the tumor and inhibiting angiogenesis is a potential strategy to attenuate the recurrence and metastasis of TNBC. HTPM&AgNPs-gel is a promising anticancer agent for TNBC as a local postoperative treatment.
Collapse
Affiliation(s)
- Runan Zuo
- Animal-Derived Food Safety Innovation Team, College of Animal Science and Technology, Anhui Province Key Lab of Veterinary Pathobiology and Disease Control, Anhui Agricultural University, Hefei, Anhui 230036, PR China; Engineering Center of Innovative Veterinary Drugs, Center for Veterinary Drug Research and Evaluation, MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, PR China
| | - Jiahao Gong
- Engineering Center of Innovative Veterinary Drugs, Center for Veterinary Drug Research and Evaluation, MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, PR China
| | - Xiuge Gao
- Engineering Center of Innovative Veterinary Drugs, Center for Veterinary Drug Research and Evaluation, MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, PR China
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic
| | - Junren Zhang
- Engineering Center of Innovative Veterinary Drugs, Center for Veterinary Drug Research and Evaluation, MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, PR China
| | - Shanxiang Jiang
- Engineering Center of Innovative Veterinary Drugs, Center for Veterinary Drug Research and Evaluation, MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, PR China
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic; Biomedical Research Center, University Hospital Hradec Kralove, 50003 Hradec Kralove, Czech Republic; Andalusian Research Institute in Data Science and Computational Intelligence (DaSCI), University of Granada, Granada, Spain.
| | - Wenda Wu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, PR China.
| | - Dawei Guo
- Engineering Center of Innovative Veterinary Drugs, Center for Veterinary Drug Research and Evaluation, MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, PR China.
| |
Collapse
|
14
|
Patra P, Upadhyay TK, Alshammari N, Saeed M, Kesari KK. Alginate-Chitosan Biodegradable and Biocompatible Based Hydrogel for Breast Cancer Immunotherapy and Diagnosis: A Comprehensive Review. ACS APPLIED BIO MATERIALS 2024; 7:3515-3534. [PMID: 38787337 PMCID: PMC11190989 DOI: 10.1021/acsabm.3c00984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 12/21/2023] [Accepted: 12/21/2023] [Indexed: 05/25/2024]
Abstract
Breast cancer is the most common type of cancer and the second leading cause of cancer-related mortality in females. There are many side effects due to chemotherapy and traditional surgery, like fatigue, loss of appetite, skin irritation, and drug resistance to cancer cells. Immunotherapy has become a hopeful approach toward cancer treatment, generating long-lasting immune responses in malignant tumor patients. Recently, hydrogel has received more attention toward cancer therapy due to its specific characteristics, such as decreased toxicity, fewer side effects, and better biocompatibility drug delivery to the particular tumor location. Researchers globally reported various investigations on hydrogel research for tumor diagnosis. The hydrogel-based multilayer platform with controlled nanostructure has received more attention for its antitumor effect. Chitosan and alginate play a leading role in the formation of the cross-link in a hydrogel. Also, they help in the stability of the hydrogel. This review discusses the properties, preparation, biocompatibility, and bioavailability of various research and clinical approaches of the multipolymer hydrogel made of alginate and chitosan for breast cancer treatment. With a focus on cases of breast cancer and the recovery rate, there is a need to find out the role of hydrogel in drug delivery for breast cancer treatment.
Collapse
Affiliation(s)
- Pratikshya Patra
- Department
of Biotechnology, Parul Institute of Applied Sciences and Animal Cell
Culture and Immunobiochemistry Lab, Research and Development Cell, Parul University, Vadodara, Gujarat 391760, India
| | - Tarun Kumar Upadhyay
- Department
of Biotechnology, Parul Institute of Applied Sciences and Animal Cell
Culture and Immunobiochemistry Lab, Research and Development Cell, Parul University, Vadodara, Gujarat 391760, India
| | - Nawaf Alshammari
- Department
of Biology, College of Science, University
of Hail, Hail 53962, Saudi Arabia
| | - Mohd Saeed
- Department
of Biology, College of Science, University
of Hail, Hail 53962, Saudi Arabia
| | - Kavindra Kumar Kesari
- Department
of Applied Physics, School of Science, Aalto
University, Espoo FI-00076, Finland
- Centre
of Research Impact and Outcome, Chitkara
University, Rajpura 140417, Punjab, India
| |
Collapse
|
15
|
Lee W, Shin MJ, Kim S, Lee CE, Choi J, Koo HJ, Choi MJ, Kim JH, Kim K. Injectable composite hydrogels embedded with gallium-based liquid metal particles for solid breast cancer treatment via chemo-photothermal combination. Acta Biomater 2024; 180:140-153. [PMID: 38604467 DOI: 10.1016/j.actbio.2024.04.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/20/2024] [Accepted: 04/07/2024] [Indexed: 04/13/2024]
Abstract
Photothermal therapy (PTT) holds great promise as a cancer treatment modality by generating localized heat at the tumor site. Among various photothermal agents, gallium-based liquid metal (LM) has been widely used as a new photothermal-inducible metallic compound due to its structural transformability. To overcome limitations of random aggregation and dissipation of administrated LM particles into a human body, we developed LM-containing injectable composite hydrogel platforms capable of achieving spatiotemporal PTT and chemotherapy. Eutectic gallium-indium LM particles were first stabilized with 1,2-Distearoyl-sn‑glycero-3-phosphoethanolamine (DSPE) lipids. They were then incorporated into an interpenetrating hydrogel network composed of thiolated gelatin conjugated with 6-mercaptopurine (MP) chemodrug and poly(ethylene glycol)-diacrylate. The resulted composite hydrogel exhibited sufficient capability to induce MDA-MB-231 breast cancer cell death through a multi-step mechanism: (1) hyperthermic cancer cell death due to temperature elevation by near-infrared laser irradiation via LM particles, (2) leakage of glutathione (GSH) and cleavage of disulfide bonds due to destruction of cancer cells. As a consequence, additional chemotherapy was facilitated by GSH, leading to accelerated release of MP within the tumor microenvironment. The effectiveness of our composite hydrogel system was evaluated both in vitro and in vivo, demonstrating significant tumor suppression and killing. These results demonstrate the potential of this injectable composite hydrogel for spatiotemporal cancer treatment. In conclusion, integration of PTT and chemotherapy within our hydrogel platform offers enhanced therapeutic efficacy, suggesting promising prospects for future clinical applications. STATEMENT OF SIGNIFICANCE: Our research pioneers a breakthrough in cancer treatments by developing an injectable hydrogel platform incorporating liquid metal (LM) particle-mediated photothermal therapy and 6-mercaptopurine (MP)-based chemotherapy. The combination of gallium-based LM and MP achieves synergistic anticancer effects, and our injectable composite hydrogel acts as a localized reservoir for specific delivery of both therapeutic agents. This platform induces a multi-step anticancer mechanism, combining NIR-mediated hyperthermic tumor death and drug release triggered by released glutathione from damaged cancer populations. The synergistic efficacy validated in vitro and in vivo studies highlights significant tumor suppression. This injectable composite hydrogel with synergistic therapeutic efficacy holds immense promise for biomaterial-mediated spatiotemporal treatment of solid tumors, offering a potent targeted therapy for triple negative breast cancers.
Collapse
Affiliation(s)
- Wonjeong Lee
- Department of Chemical & Biochemical Engineering, Dongguk University, Seoul 04620, Republic of Korea
| | - Min Joo Shin
- Department of Physiology, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea
| | - Sungjun Kim
- Department of Chemical & Biochemical Engineering, Dongguk University, Seoul 04620, Republic of Korea
| | - Chae Eun Lee
- Department of Chemical & Biochemical Engineering, Dongguk University, Seoul 04620, Republic of Korea
| | - Jonghoon Choi
- School of Integrative Engineering, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Hyung-Jun Koo
- Department of Chemical and Biomolecular Engineering, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea
| | - Min-Jae Choi
- Department of Chemical & Biochemical Engineering, Dongguk University, Seoul 04620, Republic of Korea
| | - Jae Ho Kim
- Department of Physiology, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea.
| | - Kyobum Kim
- Department of Chemical & Biochemical Engineering, Dongguk University, Seoul 04620, Republic of Korea.
| |
Collapse
|
16
|
Zhang C, Han ZY, Chen KW, Wang YZ, Bao P, Ji P, Yan X, Rao ZY, Zeng X, Zhang XZ. In Situ Formed Microalgae-Integrated Living Hydrogel for Enhanced Tumor Starvation Therapy and Immunotherapy through Photosynthetic Oxygenation. NANO LETTERS 2024; 24:3801-3810. [PMID: 38477714 DOI: 10.1021/acs.nanolett.4c00471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/14/2024]
Abstract
The effectiveness of various cancer therapies for solid tumors is substantially limited by the highly hypoxic tumor microenvironment (TME). Here, a microalgae-integrated living hydrogel (ACG gel) is developed to concurrently enhance hypoxia-constrained tumor starvation therapy and immunotherapy. The ACG gel is formed in situ following intratumoral injection of a biohybrid fluid composed of alginate, Chlorella sorokiniana, and glucose oxidase, facilitated by the crossing-linking between divalent ions within tumors and alginate. The microalgae Chlorella sorokiniana embedded in ACG gel generate abundant oxygen through photosynthesis, enhancing glucose oxidase-catalyzed glucose consumption and shifting the TME from immunosuppressive to immunopermissive status, thus reducing the tumor cell energy supply and boosting antitumor immunity. In murine 4T1 tumor models, the ACG gel significantly suppresses tumor growth and effectively prevents postoperative tumor recurrence. This study, leveraging microalgae as natural oxygenerators, provides a versatile and universal strategy for the development of oxygen-dependent tumor therapies.
Collapse
Affiliation(s)
- Cheng Zhang
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, P. R. China
| | - Zi-Yi Han
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, P. R. China
| | - Ke-Wei Chen
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, P. R. China
| | - Yu-Zhang Wang
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, P. R. China
| | - Peng Bao
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, P. R. China
| | - Ping Ji
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, P. R. China
| | - Xiao Yan
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, P. R. China
| | - Zhi-Yong Rao
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, P. R. China
| | - Xuan Zeng
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, P. R. China
| | - Xian-Zheng Zhang
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, P. R. China
- Cancer Precision Diagnosis and Treatment and Translational Medicine Hubei Engineering Research Center, Zhongnan Hospital of Wuhan University, Wuhan 430071, P. R. China
| |
Collapse
|
17
|
Shu J, Deng H, Zhang Y, Wu F, He J. Cancer cell response to extrinsic and intrinsic mechanical cue: opportunities for tumor apoptosis strategies. Regen Biomater 2024; 11:rbae016. [PMID: 38476678 PMCID: PMC10932484 DOI: 10.1093/rb/rbae016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 01/31/2024] [Accepted: 02/07/2024] [Indexed: 03/14/2024] Open
Abstract
Increasing studies have revealed the importance of mechanical cues in tumor progression, invasiveness and drug resistance. During malignant transformation, changes manifest in either the mechanical properties of the tissue or the cellular ability to sense and respond to mechanical signals. The major focus of the review is the subtle correlation between mechanical cues and apoptosis in tumor cells from a mechanobiology perspective. To begin, we focus on the intracellular force, examining the mechanical properties of the cell interior, and outlining the role that the cytoskeleton and intracellular organelle-mediated intracellular forces play in tumor cell apoptosis. This article also elucidates the mechanisms by which extracellular forces guide tumor cell mechanosensing, ultimately triggering the activation of the mechanotransduction pathway and impacting tumor cell apoptosis. Finally, a comprehensive examination of the present status of the design and development of anti-cancer materials targeting mechanotransduction is presented, emphasizing the underlying design principles. Furthermore, the article underscores the need to address several unresolved inquiries to enhance our comprehension of cancer therapeutics that target mechanotransduction.
Collapse
Affiliation(s)
- Jun Shu
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, PR China
| | - Huan Deng
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, PR China
| | - Yu Zhang
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, PR China
| | - Fang Wu
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, PR China
| | - Jing He
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, PR China
| |
Collapse
|
18
|
Sobral MC, Mooney DJ. Materials-Based Approaches for Cancer Vaccination. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:179-187. [PMID: 38166245 DOI: 10.4049/jimmunol.2300482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 10/27/2023] [Indexed: 01/04/2024]
Abstract
Therapeutic cancer vaccines offer the promise of stimulating the immune system to specifically eradicate tumor cells and establish long-term memory to prevent tumor recurrence. However, despite showing benign safety profiles and the ability to generate Ag-specific cellular responses, cancer vaccines have been hampered by modest clinical efficacy. Lessons learned from these studies have led to the emergence of innovative materials-based strategies that aim to boost the clinical activity of cancer vaccines. In this Brief Review, we provide an overview of the key elements needed for an effective vaccine-induced antitumor response, categorize current approaches to therapeutic cancer vaccination, and explore recent advances in materials-based strategies to potentiate cancer vaccines.
Collapse
Affiliation(s)
- Miguel C Sobral
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA; and Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA
| | - David J Mooney
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA; and Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA
| |
Collapse
|
19
|
Hu X, Wang S, Fu S, Qin M, Lyu C, Ding Z, Wang Y, Wang Y, Wang D, Zhu L, Jiang T, Sun J, Ding H, Wu J, Chang L, Cui Y, Pang X, Wang Y, Huang W, Yang P, Wang L, Ma G, Wei W. Intranasal mask for protecting the respiratory tract against viral aerosols. Nat Commun 2023; 14:8398. [PMID: 38110357 PMCID: PMC10728126 DOI: 10.1038/s41467-023-44134-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 12/01/2023] [Indexed: 12/20/2023] Open
Abstract
The spread of many infectious diseases relies on aerosol transmission to the respiratory tract. Here we design an intranasal mask comprising a positively-charged thermosensitive hydrogel and cell-derived micro-sized vesicles with a specific viral receptor. We show that the positively charged hydrogel intercepts negatively charged viral aerosols, while the viral receptor on vesicles mediates the entrapment of viruses for inactivation. We demonstrate that when displaying matched viral receptors, the intranasal masks protect the nasal cavity and lung of mice from either severe acute respiratory syndrome coronavirus 2 or influenza A virus. With computerized tomography images of human nasal cavity, we further conduct computational fluid dynamics simulation and three-dimensional printing of an anatomically accurate human nasal cavity, which is connected to human lung organoids to generate a human respiratory tract model. Both simulative and experimental results support the suitability of intranasal masks in humans, as the likelihood of viral respiratory infections induced by different variant strains is dramatically reduced.
Collapse
Affiliation(s)
- Xiaoming Hu
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, 100190, Beijing, China
- School of Chemical Engineering, University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Shuang Wang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, 100190, Beijing, China
- School of Chemical Engineering, University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Shaotong Fu
- School of Chemical Engineering, University of Chinese Academy of Sciences, 100049, Beijing, China
- State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, 100190, Beijing, China
| | - Meng Qin
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, 100029, Beijing, China
| | - Chengliang Lyu
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, 100190, Beijing, China
| | - Zhaowen Ding
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, 100190, Beijing, China
| | - Yan Wang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, 100190, Beijing, China
- School of Chemical Engineering, University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Yishu Wang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, 100190, Beijing, China
- School of Chemical Engineering, University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Dongshu Wang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, 100071, Beijing, China
| | - Li Zhu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, 100071, Beijing, China
| | - Tao Jiang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, 100071, Beijing, China
| | - Jing Sun
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, 100029, Beijing, China
| | - Hui Ding
- Shenzhen Key Laboratory of Nanozymes and Translational Cancer Research, Department of Otolaryngology, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, 518035, Shenzhen, China
| | - Jie Wu
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, 100190, Beijing, China
- School of Chemical Engineering, University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Lingqian Chang
- Key Laboratory of Biomechanics and Mechanobiology, Ministry of Education Beijing Advanced Innovation Center for Biomedical Engineering School of Biological Science and Medical Engineering, Beihang University, 100083, Beijing, China
| | - Yimin Cui
- Department of Pharmacy, Peking University First Hospital, 100034, Beijing, China
- Institute of Clinical Pharmacology, Peking University, 100191, Beijing, China
| | - Xiaocong Pang
- Department of Pharmacy, Peking University First Hospital, 100034, Beijing, China
- Institute of Clinical Pharmacology, Peking University, 100191, Beijing, China
| | - Youchun Wang
- Division of HIV/AIDS and Sex-Transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC) and WHO Collaborating Center for Standardization and Evaluation of Biologicals, 102629, Beijing, China
| | - Weijin Huang
- Division of HIV/AIDS and Sex-Transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC) and WHO Collaborating Center for Standardization and Evaluation of Biologicals, 102629, Beijing, China
| | - Peidong Yang
- Department of Breast Surgery, Affiliated Quanzhou First Hospital of Fujian Medical University, 362000, Quanzhou, China
| | - Limin Wang
- School of Chemical Engineering, University of Chinese Academy of Sciences, 100049, Beijing, China.
- State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, 100190, Beijing, China.
| | - Guanghui Ma
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, 100190, Beijing, China.
- School of Chemical Engineering, University of Chinese Academy of Sciences, 100049, Beijing, China.
| | - Wei Wei
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, 100190, Beijing, China.
- School of Chemical Engineering, University of Chinese Academy of Sciences, 100049, Beijing, China.
| |
Collapse
|
20
|
Mikhail AS, Morhard R, Mauda-Havakuk M, Kassin M, Arrichiello A, Wood BJ. Hydrogel drug delivery systems for minimally invasive local immunotherapy of cancer. Adv Drug Deliv Rev 2023; 202:115083. [PMID: 37673217 DOI: 10.1016/j.addr.2023.115083] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 08/27/2023] [Accepted: 09/02/2023] [Indexed: 09/08/2023]
Abstract
Although systemic immunotherapy has achieved durable responses and improved survival for certain patients and cancer types, low response rates and immune system-related systemic toxicities limit its overall impact. Intratumoral (intralesional) delivery of immunotherapy is a promising technique to combat mechanisms of tumor immune suppression within the tumor microenvironment and reduce systemic drug exposure and associated side effects. However, intratumoral injections are prone to variable tumor drug distribution and leakage into surrounding tissues, which can compromise efficacy and contribute to toxicity. Controlled release drug delivery systems such as in situ-forming hydrogels are promising vehicles for addressing these challenges by providing improved spatio-temporal control of locally administered immunotherapies with the goal of promoting systemic tumor-specific immune responses and abscopal effects. In this review we will discuss concepts, applications, and challenges in local delivery of immunotherapy using controlled release drug delivery systems with a focus on intratumorally injected hydrogel-based drug carriers.
Collapse
Affiliation(s)
- Andrew S Mikhail
- Center for Interventional Oncology, Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Robert Morhard
- Center for Interventional Oncology, Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA
| | - Michal Mauda-Havakuk
- Interventional Oncology service, Interventional Radiology, Tel Aviv Sourasky Medical Center, Tel Aviv District, Israel
| | - Michael Kassin
- Center for Interventional Oncology, Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA
| | | | - Bradford J Wood
- Center for Interventional Oncology, Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
21
|
Meng D, Li C, Hao C, Shi W, Xu J, Sun M, Kuang H, Xu C, Xu L. Interfacial Self-assembly of Chiral Selenide Nanomembrane for Enantiospecific Recognition. Angew Chem Int Ed Engl 2023; 62:e202311416. [PMID: 37677113 DOI: 10.1002/anie.202311416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 09/05/2023] [Accepted: 09/07/2023] [Indexed: 09/09/2023]
Abstract
Here, we report the synthesis of chiral selenium nanoparticles (NPs) using cysteine and the interfacial assembly strategy to generate a self-assembled nanomembrane on a large-scale with controllable morphology and handedness. The selenide (Se) NPs exhibited circular dichroism (CD) bands in the ultraviolet and visible region with a maximum intensity of 39.96 mdeg at 388 nm and optical anisotropy factors (g-factors) of up to 0.0013 while a self-assembled monolayer nanomembrane exhibited symmetrical CD approaching 72.8 mdeg at 391 nm and g-factors up to 0.0034. Analysis showed that a photocurrent of 20.97±1.55 nA was generated by the D-nanomembrane when irradiated under light while the L-nanomembrane generated a photocurrent of 20.58±1.36 nA. Owing to the asymmetric intensity of the photocurrent with respect to the handedness of the nanomembrane, an ultrasensitive recognition of enantioselective kynurenine (Kyn) was achieved by the ten-layer (10L) D-nanomembrane exhibiting a photocurrent for L-kynurenine (L-Kyn) that was 8.64-fold lower than that of D-Kyn, with a limit of detection (LOD) of 0.0074 nM for the L-Kyn, which was attributed to stronger affinity between L-Kyn and D-Se NPs. Noticeably, the chiral Se nanomembrane precisely distinguished L-Kyn in serum and cerebrospinal fluid samples from Alzheimer's disease patients and healthy subjects.
Collapse
Affiliation(s)
- Dan Meng
- International Joint Research Laboratory for Biointerface and Biodetection, State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
| | - Chen Li
- International Joint Research Laboratory for Biointerface and Biodetection, State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
| | - Changlong Hao
- International Joint Research Laboratory for Biointerface and Biodetection, State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
| | - Wenxiong Shi
- Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin, 300384, China
| | - Jun Xu
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, China National Clinical Research 8 Center for Neurological Diseases, No. 119 South 4th Ring West Road, Beijing, 100070, P. R. China
| | - Maozhong Sun
- International Joint Research Laboratory for Biointerface and Biodetection, State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
| | - Hua Kuang
- International Joint Research Laboratory for Biointerface and Biodetection, State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
| | - Chuanlai Xu
- International Joint Research Laboratory for Biointerface and Biodetection, State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
| | - Liguang Xu
- International Joint Research Laboratory for Biointerface and Biodetection, State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
| |
Collapse
|
22
|
Chen Z, Yue Z, Yang K, Shen C, Cheng Z, Zhou X, Li S. Four Ounces Can Move a Thousand Pounds: The Enormous Value of Nanomaterials in Tumor Immunotherapy. Adv Healthc Mater 2023; 12:e2300882. [PMID: 37539730 DOI: 10.1002/adhm.202300882] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 07/17/2023] [Indexed: 08/05/2023]
Abstract
The application of nanomaterials in healthcare has emerged as a promising strategy due to their unique structural diversity, surface properties, and compositional diversity. In particular, nanomaterials have found a significant role in improving drug delivery and inhibiting the growth and metastasis of tumor cells. Moreover, recent studies have highlighted their potential in modulating the tumor microenvironment (TME) and enhancing the activity of immune cells to improve tumor therapy efficacy. Various types of nanomaterials are currently utilized as drug carriers, immunosuppressants, immune activators, immunoassay reagents, and more for tumor immunotherapy. Necessarily, nanomaterials used for tumor immunotherapy can be grouped into two categories: organic and inorganic nanomaterials. Though both have shown the ability to achieve the purpose of tumor immunotherapy, their composition and structural properties result in differences in their mechanisms and modes of action. Organic nanomaterials can be further divided into organic polymers, cell membranes, nanoemulsion-modified, and hydrogel forms. At the same time, inorganic nanomaterials can be broadly classified as nonmetallic and metallic nanomaterials. The current work aims to explore the mechanisms of action of these different types of nanomaterials and their prospects for promoting tumor immunotherapy.
Collapse
Affiliation(s)
- Ziyin Chen
- Department of Urology, China-Japan Friendship Hospital, 100029, Beijing, P. R. China
| | - Ziqi Yue
- Department of Forensic Medicine, Harbin Medical University, 150001, Harbin, P. R. China
| | - Kaiqi Yang
- Clinical Medicine, Harbin Medical University, 150001, Harbin, P. R. China
| | - Congrong Shen
- Department of Urology, China-Japan Friendship Hospital, 100029, Beijing, P. R. China
| | - Zhe Cheng
- Department of Forensic Medicine, Harbin Medical University, 150001, Harbin, P. R. China
| | - Xiaofeng Zhou
- Department of Urology, China-Japan Friendship Hospital, 100029, Beijing, P. R. China
| | - Shenglong Li
- Second Ward of Bone and Soft Tissue Tumor Surgery, Cancer Hospital of Dalian University of Technology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, 110042, Shenyang, P. R. China
- The Liaoning Provincial Key Laboratory of Interdisciplinary Research on Gastrointestinal Tumor Combining Medicine with Engineering, Shenyang, 110042, China
| |
Collapse
|
23
|
Wang X, Zhu L, Zhou J, Zhao L, Li J, Liu C. Drug-loaded hybrid hydrogels for sonodynamic-chemodyanmic therapy and tumor metastasis suppression. Front Bioeng Biotechnol 2023; 11:1281157. [PMID: 37790250 PMCID: PMC10544978 DOI: 10.3389/fbioe.2023.1281157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 09/08/2023] [Indexed: 10/05/2023] Open
Abstract
Introduction: Although various therapies have been adopted to treat cancer, metastasis of tumor cells still is a big challenge that compromises therapeutic benefits. Methods: We herein report an injectable drug-loaded hybrid hydrogel that can achieve sonodynamic therapy (SDT) and chemodyanmic therapy (CDT) combined action and suppression of tumor metastasis. This alginate (ALG)-based hydrogel (termed as AMPS) contains manganese dioxide (MnO2) nanoparticles as the CDT agents, an organic polymer as the sonosensitizer, and a SIS3 drug as metastasis inhibitor. Results: AMPS is formed via the chelation of ALG by Ca2+ in tumor microenvironment, in which MnO2 nanoparticles mediate CDT via Fenton-like reaction and the organic polymers enable SDT under ultrasound (US) irradiation by generating singlet oxygen (1O2), allowing for combinational action of CDT and SDT. In addition, SIS3 is released from AMPS hydrogels to inhibit the metastasis of tumor cells. As such, the AMPS enables a combinational action of SDT and CDT to greatly inhibit the growths of subcutaneous tumors in living mice and also completely suppress the tumor metastasis in lungs and livers. Conclusion: This study thus offers a hybrid hydrogel platform for combinational therapy and metastasis suppression simultaneously.
Collapse
Affiliation(s)
- Xiaoying Wang
- Office of Hospital Infection and Disease Control and Prevention, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Liyun Zhu
- College of Biological Science and Medical Engineering, Donghua University, Shanghai, China
| | - Jianhui Zhou
- College of Biological Science and Medical Engineering, Donghua University, Shanghai, China
| | - Lingzhou Zhao
- Department of Nuclear Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jingchao Li
- College of Biological Science and Medical Engineering, Donghua University, Shanghai, China
| | - Changcun Liu
- Department of Nuclear Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
24
|
Fang T, Cao X, Shen B, Chen Z, Chen G. Injectable cold atmospheric plasma-activated immunotherapeutic hydrogel for enhanced cancer treatment. Biomaterials 2023; 300:122189. [PMID: 37307777 DOI: 10.1016/j.biomaterials.2023.122189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/19/2023] [Accepted: 05/31/2023] [Indexed: 06/14/2023]
Abstract
Despite the promise of immune checkpoint blockade (ICB) for cancer treatment, challenges associated with this therapy still exist, including low response rates and severe side effects in patients. Here, we report a hydrogel-mediated combination therapy for enhanced ICB therapy. Specifically, cold atmospheric plasma (CAP), an ionized gas consisting of therapeutically effective reactive oxygen species (ROS) and reactive nitrogen species (RNS), can effectively induce cancer immunogenic cell death, releasing tumor-associated antigens in situ and initiating anti-tumor immune responses, which, therefore, can synergistically augment the efficacy of immune checkpoint inhibitors. To minimize the systemic toxicity of immune checkpoint inhibitors and improve the tissue penetration of CAP, an injectable Pluronic hydrogel was employed as a delivery method. Our results show that major long-lived ROS and RNS in CAP can be effectively persevered in Pluronic hydrogel and remain efficacious in inducing cancer immunogenic cell death after intratumoral injection. Our findings suggest that local hydrogel-mediated combination of CAP and ICB treatment can evoke both strong innate and adaptive, local and systemic anti-tumor immune responses, thereby inhibiting both tumor growth and potential metastatic spread.
Collapse
Affiliation(s)
- Tianxu Fang
- Department of Biomedical Engineering, McGill University, Montreal, QC, H3G 0B1, Canada; Rosalind & Morris Goodman Cancer Institute, McGill University, Montreal, QC, H3G 0B1, Canada
| | - Xiaona Cao
- Department of Biomedical Engineering, McGill University, Montreal, QC, H3G 0B1, Canada; Rosalind & Morris Goodman Cancer Institute, McGill University, Montreal, QC, H3G 0B1, Canada; School of Nursing, Tianjin Medical University, Tianjin, China
| | - Bingzheng Shen
- Department of Biomedical Engineering, McGill University, Montreal, QC, H3G 0B1, Canada; Rosalind & Morris Goodman Cancer Institute, McGill University, Montreal, QC, H3G 0B1, Canada
| | - Zhitong Chen
- Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China; Center for Advanced Therapy, National Innovation Center for Advanced Medical Devices, Shenzhen, China.
| | - Guojun Chen
- Department of Biomedical Engineering, McGill University, Montreal, QC, H3G 0B1, Canada; Rosalind & Morris Goodman Cancer Institute, McGill University, Montreal, QC, H3G 0B1, Canada.
| |
Collapse
|
25
|
Ren E, Wang Y, Liang T, Zheng H, Shi J, Cheng Z, Li H, Gu Z. Local Drug Delivery Techniques for Triggering Immunogenic Cell Death. SMALL METHODS 2023; 7:e2300347. [PMID: 37259275 DOI: 10.1002/smtd.202300347] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 05/10/2023] [Indexed: 06/02/2023]
Abstract
Immunogenic cell death (ICD), a dying state of the cells, encompasses the changes in the conformations of cell surface and the release of damage-associated molecular patterns, which could initiate an adaptive immune response by stimulating the dendritic cells to present antigens to T cells. Advancements in biomaterials, nanomedicine, and micro- and nano-technologies have facilitated the development of effective ICD inducers, but the potential toxicity of these vesicles encountered in drug delivery via intravenous administration hampers their further application. As alternatives, the local drug delivery systems have gained emerging attention due to their ability to prolong the retention of high payloads at the lesions, sequester drugs from harsh environments, overcome biological barriers to exert optimal efficacy, and minimize potential side effects to guarantee bio-safety. Herein, a brief overview of the local drug delivery techniques used for ICD inducers is provided, explaining how these techniques broaden, alter, and enhance the therapeutic capability while circumventing systemic toxicity at the same time. The historical context and prominent examples of the local administration of ICD inducers are introduced. The complexities, potential pitfalls, and opportunities for local drug delivery techniques in cancer immunotherapy are also discussed.
Collapse
Affiliation(s)
- En Ren
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Yanfang Wang
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Tingxizi Liang
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Hanqi Zheng
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Jiaqi Shi
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Zesheng Cheng
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Hongjun Li
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
- Department of Hepatobiliary and Pancreatic Surgery the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, P. R. China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, 311121, P. R. China
- Jinhua Institute of Zhejiang University, Zhejiang University, Jinhua, 321299, P. R. China
| | - Zhen Gu
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, 311121, P. R. China
- Jinhua Institute of Zhejiang University, Zhejiang University, Jinhua, 321299, P. R. China
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, P. R. China
- The National Laboratory of Advanced Drug Delivery and Release Systems, Hangzhou, 310058, P. R. China
| |
Collapse
|
26
|
Lee KW, Yam JWP, Mao X. Dendritic Cell Vaccines: A Shift from Conventional Approach to New Generations. Cells 2023; 12:2147. [PMID: 37681880 PMCID: PMC10486560 DOI: 10.3390/cells12172147] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/21/2023] [Accepted: 08/23/2023] [Indexed: 09/09/2023] Open
Abstract
In the emerging era of cancer immunotherapy, immune checkpoint blockades (ICBs) and adoptive cell transfer therapies (ACTs) have gained significant attention. However, their therapeutic efficacies are limited due to the presence of cold type tumors, immunosuppressive tumor microenvironment, and immune-related side effects. On the other hand, dendritic cell (DC)-based vaccines have been suggested as a new cancer immunotherapy regimen that can address the limitations encountered by ICBs and ACTs. Despite the success of the first generation of DC-based vaccines, represented by the first FDA-approved DC-based therapeutic cancer vaccine Provenge, several challenges remain unsolved. Therefore, new DC vaccine strategies have been actively investigated. This review addresses the limitations of the currently most adopted classical DC vaccine and evaluates new generations of DC vaccines in detail, including biomaterial-based, immunogenic cell death-inducing, mRNA-pulsed, DC small extracellular vesicle (sEV)-based, and tumor sEV-based DC vaccines. These innovative DC vaccines are envisioned to provide a significant breakthrough in cancer immunotherapy landscape and are expected to be supported by further preclinical and clinical studies.
Collapse
Affiliation(s)
- Kyu-Won Lee
- Department of Pathology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong; (K.-W.L.); (J.W.P.Y.)
| | - Judy Wai Ping Yam
- Department of Pathology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong; (K.-W.L.); (J.W.P.Y.)
- State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong
| | - Xiaowen Mao
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao
| |
Collapse
|
27
|
Bera S, Datta HK, Dastidar P. An injectable supramolecular hydrogel as a self-drug-delivery system for local chemoimmunotherapy against melanoma. Biomater Sci 2023; 11:5618-5633. [PMID: 37404092 DOI: 10.1039/d3bm00758h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/06/2023]
Abstract
Skin-cancer melanoma caused 57k death in 2020. Some of the available therapies are: topical application of a gel loaded with an anti-skin cancer drug and intravenous injection of immune cytokines; however, both the approaches have drawbacks such as inefficient internalization of the drug in cancer cells and a short half-life with severe side effects, respectively. Interestingly, we observed for the first time that a subcutaneously implanted hydrogel designed and synthesized by coordinating NSAIDs and 5-AP with Zn(II) can effectively combat melanoma cell (B16-F10)-induced tumors in C57BL/6 mice. Both in vitro and in vivo results show that it can effectively reduce PGE2 expression, consequently upregulating IFN-γ and IL-12 that eventually engage M1-macrophages for activating T cells (CD8+), triggering apoptosis. This unique all-in-one self-drug-delivery approach, wherein the hydrogel implant is made from the drug molecules itself providing both chemotherapy and immunotherapy in combating deadly melanoma, highlights the supramolecular chemistry-based bottom-up approach in cancer therapy.
Collapse
Affiliation(s)
- Sourabh Bera
- School of Chemical Sciences, Indian Association for the Cultivation of Science (IACS), 2A and 2B, Raja S. C. Mullick Road, Jadavpur, Kolkata-700032, West Bengal, India.
| | - Hemanta Kumar Datta
- School of Chemical Sciences, Indian Association for the Cultivation of Science (IACS), 2A and 2B, Raja S. C. Mullick Road, Jadavpur, Kolkata-700032, West Bengal, India.
| | - Parthasarathi Dastidar
- School of Chemical Sciences, Indian Association for the Cultivation of Science (IACS), 2A and 2B, Raja S. C. Mullick Road, Jadavpur, Kolkata-700032, West Bengal, India.
| |
Collapse
|
28
|
Chen W, Li C, Jiang X. Advanced Biomaterials with Intrinsic Immunomodulation Effects for Cancer Immunotherapy. SMALL METHODS 2023; 7:e2201404. [PMID: 36811240 DOI: 10.1002/smtd.202201404] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 01/17/2023] [Indexed: 05/17/2023]
Abstract
In recent years, tumor immunotherapy has achieved significant success in tumor treatment based on immune checkpoint blockers and chimeric antigen receptor T-cell therapy. However, about 70-80% of patients with solid tumors do not respond to immunotherapy due to immune evasion. Recent studies found that some biomaterials have intrinsic immunoregulatory effects, except serve as carriers for immunoregulatory drugs. Moreover, these biomaterials have additional advantages such as easy functionalization, modification, and customization. In this review, the recent advances of these immunoregulatory biomaterials in cancer immunotherapy and their interaction with cancer cells, immune cells, and the immunosuppressive tumor microenvironment are summarized. Finally, the opportunities and challenges of immunoregulatory biomaterials used in the clinic and the prospect of their future in cancer immunotherapy are discussed.
Collapse
Affiliation(s)
- Weizhi Chen
- MOE Key Laboratory of High Performance Polymer Materials and Technology and Department of Polymer Science and Engineering, College of Chemistry and Chemical Engineering, Jiangsu Key Laboratory for Nanotechnology, Nanjing University, Nanjing, 210023, P. R. China
| | - Cheng Li
- MOE Key Laboratory of High Performance Polymer Materials and Technology and Department of Polymer Science and Engineering, College of Chemistry and Chemical Engineering, Jiangsu Key Laboratory for Nanotechnology, Nanjing University, Nanjing, 210023, P. R. China
| | - Xiqun Jiang
- MOE Key Laboratory of High Performance Polymer Materials and Technology and Department of Polymer Science and Engineering, College of Chemistry and Chemical Engineering, Jiangsu Key Laboratory for Nanotechnology, Nanjing University, Nanjing, 210023, P. R. China
| |
Collapse
|
29
|
Li Y, Yuan R, Luo Y, Guo X, Yang G, Li X, Zhou S. A Hierarchical Structured Fiber Device Remodeling the Acidic Tumor Microenvironment for Enhanced Cancer Immunotherapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2300216. [PMID: 36912443 DOI: 10.1002/adma.202300216] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 02/23/2023] [Indexed: 05/26/2023]
Abstract
The acidic microenvironment of tumors significantly reduces the anti-tumor effect of immunotherapy. Herein, a hierarchically structured fiber device is developed as a local drug delivery system for remodeling the acidic tumor microenvironment (TME) to improve the therapeutic effect of immunotherapy. Proton pump inhibitors in the fiber matrix can be sustainedly released to inhibit the efflux of intracellular H+ from tumor cells, resulting in the remodeling of the acidic TME. The targeted micelles and M1 macrophage membrane-coated nanoparticles in internal cavities of fiber can induce immunogenic cell death (ICD) of tumor cells and phenotypic transformation of tumor-associated macrophages (TAMs), respectively. The relief of the acidity in the TME further promotes ICD and the polarization of TAMs, alleviating the immunosuppressive microenvironment and synergistically enhancing the antitumor immune response. In vivo results reveal this local drug delivery system restores the pH value of TME from 6.8 to 7.2 and exhibit an excellent immunotherapeutic effect.
Collapse
Affiliation(s)
- Yan Li
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, 610031, P. R. China
- Key Laboratory of Advanced Technologies of Materials Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, P. R. China
| | - Ruiting Yuan
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, 610031, P. R. China
- Key Laboratory of Advanced Technologies of Materials Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, P. R. China
| | - Yang Luo
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, 610031, P. R. China
- Key Laboratory of Advanced Technologies of Materials Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, P. R. China
| | - Xing Guo
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, 610031, P. R. China
- Key Laboratory of Advanced Technologies of Materials Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, P. R. China
| | - Guang Yang
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, 610031, P. R. China
- Key Laboratory of Advanced Technologies of Materials Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, P. R. China
| | - Xilin Li
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, 610031, P. R. China
- Key Laboratory of Advanced Technologies of Materials Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, P. R. China
| | - Shaobing Zhou
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, 610031, P. R. China
- Key Laboratory of Advanced Technologies of Materials Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, P. R. China
| |
Collapse
|
30
|
An injectable and pH-responsive hyaluronic acid hydrogel as metformin carrier for prevention of breast cancer recurrence. Carbohydr Polym 2023; 304:120493. [PMID: 36641175 DOI: 10.1016/j.carbpol.2022.120493] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 12/13/2022] [Accepted: 12/20/2022] [Indexed: 12/25/2022]
Abstract
To achieve the pH-responsive release of metformin in tumor acidic microenvironment, we prepared OHA-Met by covalently grafting metformin (Met) onto oxidized hyaluronic acid (OHA) through imine bonds, and then prepared carboxymethyl chitosan (CMCS)/OHA-Met drug loaded hydrogels. The CMCS/OHA-Met hydrogels showed the in-situ injection performance. At pH = 7.4, the cumulative release rate of metformin from CMCS/OHA-Met20 hydrogel was 42.7 ± 2.6 % in 6 h, and the release tended to balance after 72 h. At pH = 5.5, the release kept constant and the cumulative release rate was 79.3 ± 4.7 % at 6 h, showing good pH-responsive behavior. Metformin induced apoptosis of MCF-7 cells through the caspase 3/PARP pathway. CMCS/OHA-Met20 hydrogel could effectively kill MCF-7 cells, while reducing the cytotoxicity of free metformin to L929 cells. In vivo breast cancer recurrence experiments showed CMCS/OHA-Met20 hydrogel could achieve local injection and pH-responsive smart drug delivery at the tumor resection site, inhibiting breast cancer recurrence. Compared with direct administration, CMCS/OHA-Met20 hydrogel reduced the metformin dosage, frequency of administration and systemic side effects.
Collapse
|
31
|
Zhao M, Xu R, Yang Y, Tong L, Liang J, Jiang Q, Fan Y, Zhang X, Sun Y. Bioabsorbable nano-micelle hybridized hydrogel scaffold prevents postoperative melanoma recurrence. J Control Release 2023; 356:219-231. [PMID: 36889462 DOI: 10.1016/j.jconrel.2023.03.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 02/27/2023] [Accepted: 03/02/2023] [Indexed: 03/10/2023]
Abstract
The residual and scattered small tumor tissue or cells after surgery are the main reason for tumor recurrence. Chemotherapy has a powerful ability to eradicate tumors but always accompanied by serious side effects. In this work, tissue-affinity mercapto gelatin (GelS) and dopamine-modified hyaluronic acid (HAD) were employed to fabricate a hybridized cross-linked hydrogel scaffold (HG) by multiple chemical reactions, which could integrate the doxorubicin (DOX) loaded reduction-responsive nano-micelle (PP/DOX) into this scaffold via click reaction to obtain the bioabsorbable nano-micelle hybridized hydrogel scaffold (HGMP). With the degradation of HGMP, PP/DOX was slowly released and formed targeted PP/DOX with degraded gelatin fragments as target molecules, which increased the intracellular accumulation, and inhibited the aggregation of B16F10 cells in vitro. In mouse models, HGMP absorbed the scattered B16F10 cells and released targeted PP/DOX to suppress tumorigenesis. For another, implantation of HGMP at the surgical site reduced the recurrence rate of postoperative melanoma and inhibited the growth of recurrent tumors. Meanwhile, HGMP significantly relieved the damage of free DOX to hair follicle tissue. This bioabsorbable nano-micelle hybridized hydrogel scaffold provided a valuable strategy for adjuvant therapy after tumor surgery.
Collapse
Affiliation(s)
- Mingda Zhao
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu 610064, PR China; College of Biomedical Engineering, Sichuan University, 29 Wangjiang Road, Chengdu 610064, PR China
| | - Ruiling Xu
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu 610064, PR China; College of Biomedical Engineering, Sichuan University, 29 Wangjiang Road, Chengdu 610064, PR China
| | - Yuedi Yang
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu 610064, PR China; College of Biomedical Engineering, Sichuan University, 29 Wangjiang Road, Chengdu 610064, PR China
| | - Lei Tong
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu 610064, PR China; College of Biomedical Engineering, Sichuan University, 29 Wangjiang Road, Chengdu 610064, PR China
| | - Jie Liang
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu 610064, PR China; College of Biomedical Engineering, Sichuan University, 29 Wangjiang Road, Chengdu 610064, PR China; Sichuan Testing Centre for Biomaterials and Medical Devices, No.29 Wangjiang Road, Chengdu, Sichuan 610064, PR China
| | - Qing Jiang
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu 610064, PR China; College of Biomedical Engineering, Sichuan University, 29 Wangjiang Road, Chengdu 610064, PR China
| | - Yujiang Fan
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu 610064, PR China; College of Biomedical Engineering, Sichuan University, 29 Wangjiang Road, Chengdu 610064, PR China
| | - Xingdong Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu 610064, PR China; College of Biomedical Engineering, Sichuan University, 29 Wangjiang Road, Chengdu 610064, PR China
| | - Yong Sun
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu 610064, PR China; College of Biomedical Engineering, Sichuan University, 29 Wangjiang Road, Chengdu 610064, PR China.
| |
Collapse
|
32
|
Zhou T, Yuan S, Qian P, Wu Y. Enzymes in Nanomedicine for Anti-tumor Therapy. Chem Res Chin Univ 2023. [DOI: 10.1007/s40242-023-2349-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
33
|
Yu J, Zhou B, Zhang S, Yin H, Sun L, Pu Y, Zhou B, Sun Y, Li X, Fang Y, Wang L, Zhao C, Du D, Zhang Y, Xu H. Design of a self-driven probiotic-CRISPR/Cas9 nanosystem for sono-immunometabolic cancer therapy. Nat Commun 2022; 13:7903. [PMID: 36550159 PMCID: PMC9780327 DOI: 10.1038/s41467-022-35580-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022] Open
Abstract
Reprogramming the tumor immunosuppressive microenvironment is a promising strategy for improving tumor immunotherapy efficacy. The clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated protein 9 system can be used to knockdown tumor immunosuppression-related genes. Therefore, here, a self-driven multifunctional delivery vector is constructed to efficiently deliver the CRISPR-Cas9 nanosystem for indoleamine 2,3-dioxygenase-1 (IDO1) knockdown in order to amplify immunogenic cell death (ICD) and then reverse tumor immunosuppression. Lactobacillus rhamnosus GG (LGG) is a self-driven safety probiotic that can penetrate the hypoxia tumor center, allowing efficient delivery of the CRISPR/Cas9 system to the tumor region. While LGG efficiently colonizes the tumor area, it also stimulates the organism to activate the immune system. The CRISPR/Cas9 nanosystem can generate abundant reactive oxygen species (ROS) under the ultrasound irradiation, resulting in ICD, while the produced ROS can induce endosomal/lysosomal rupture and then releasing Cas9/sgRNA to knock down the IDO1 gene to lift immunosuppression. The system generates immune responses that effectively attack tumor cells in mice, contributing to the inhibition of tumor re-challenge in vivo. In addition, this strategy provides an immunological memory effect which offers protection against lung metastasis.
Collapse
Affiliation(s)
- Jifeng Yu
- grid.8547.e0000 0001 0125 2443Department of Ultrasound, Zhongshan Hospital, Institute of Ultrasound in Medicine and Engineering, Fudan University, Shanghai, 200032 P. R. China
| | - Bangguo Zhou
- grid.24516.340000000123704535Department of Medical Ultrasound, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, 200072 P. R. China ,grid.89957.3a0000 0000 9255 8984Department of Medical Ultrasound, Shanghai Tenth Hospital, School of Clinical Medicine of Nanjing Medical University, Shanghai, 200072 P. R. China ,Shanghai Engineering Research Center of Ultrasound Diagnosis and Treatment, Shanghai, 200072 P. R. China
| | - Shen Zhang
- grid.24516.340000000123704535Department of Medical Ultrasound, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, 200072 P. R. China ,grid.89957.3a0000 0000 9255 8984Department of Medical Ultrasound, Shanghai Tenth Hospital, School of Clinical Medicine of Nanjing Medical University, Shanghai, 200072 P. R. China ,Shanghai Engineering Research Center of Ultrasound Diagnosis and Treatment, Shanghai, 200072 P. R. China
| | - Haohao Yin
- grid.8547.e0000 0001 0125 2443Department of Ultrasound, Zhongshan Hospital, Institute of Ultrasound in Medicine and Engineering, Fudan University, Shanghai, 200032 P. R. China ,grid.24516.340000000123704535Department of Medical Ultrasound, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, 200072 P. R. China ,grid.89957.3a0000 0000 9255 8984Department of Medical Ultrasound, Shanghai Tenth Hospital, School of Clinical Medicine of Nanjing Medical University, Shanghai, 200072 P. R. China ,Shanghai Engineering Research Center of Ultrasound Diagnosis and Treatment, Shanghai, 200072 P. R. China
| | - Liping Sun
- grid.24516.340000000123704535Department of Medical Ultrasound, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, 200072 P. R. China ,grid.89957.3a0000 0000 9255 8984Department of Medical Ultrasound, Shanghai Tenth Hospital, School of Clinical Medicine of Nanjing Medical University, Shanghai, 200072 P. R. China ,Shanghai Engineering Research Center of Ultrasound Diagnosis and Treatment, Shanghai, 200072 P. R. China
| | - Yinying Pu
- grid.24516.340000000123704535Department of Medical Ultrasound, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, 200072 P. R. China ,grid.89957.3a0000 0000 9255 8984Department of Medical Ultrasound, Shanghai Tenth Hospital, School of Clinical Medicine of Nanjing Medical University, Shanghai, 200072 P. R. China ,Shanghai Engineering Research Center of Ultrasound Diagnosis and Treatment, Shanghai, 200072 P. R. China
| | - Boyang Zhou
- grid.8547.e0000 0001 0125 2443Department of Ultrasound, Zhongshan Hospital, Institute of Ultrasound in Medicine and Engineering, Fudan University, Shanghai, 200032 P. R. China
| | - Yikang Sun
- grid.8547.e0000 0001 0125 2443Department of Ultrasound, Zhongshan Hospital, Institute of Ultrasound in Medicine and Engineering, Fudan University, Shanghai, 200032 P. R. China
| | - Xiaolong Li
- grid.8547.e0000 0001 0125 2443Department of Ultrasound, Zhongshan Hospital, Institute of Ultrasound in Medicine and Engineering, Fudan University, Shanghai, 200032 P. R. China
| | - Yan Fang
- grid.24516.340000000123704535Department of Medical Ultrasound, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, 200072 P. R. China ,grid.89957.3a0000 0000 9255 8984Department of Medical Ultrasound, Shanghai Tenth Hospital, School of Clinical Medicine of Nanjing Medical University, Shanghai, 200072 P. R. China ,Shanghai Engineering Research Center of Ultrasound Diagnosis and Treatment, Shanghai, 200072 P. R. China
| | - Lifan Wang
- grid.8547.e0000 0001 0125 2443Department of Ultrasound, Zhongshan Hospital, Institute of Ultrasound in Medicine and Engineering, Fudan University, Shanghai, 200032 P. R. China
| | - Chongke Zhao
- grid.8547.e0000 0001 0125 2443Department of Ultrasound, Zhongshan Hospital, Institute of Ultrasound in Medicine and Engineering, Fudan University, Shanghai, 200032 P. R. China
| | - Dou Du
- grid.24516.340000000123704535Department of Medical Ultrasound, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, 200072 P. R. China ,grid.89957.3a0000 0000 9255 8984Department of Medical Ultrasound, Shanghai Tenth Hospital, School of Clinical Medicine of Nanjing Medical University, Shanghai, 200072 P. R. China ,Shanghai Engineering Research Center of Ultrasound Diagnosis and Treatment, Shanghai, 200072 P. R. China
| | - Yan Zhang
- grid.24516.340000000123704535Department of Medical Ultrasound, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, 200072 P. R. China ,grid.89957.3a0000 0000 9255 8984Department of Medical Ultrasound, Shanghai Tenth Hospital, School of Clinical Medicine of Nanjing Medical University, Shanghai, 200072 P. R. China ,Shanghai Engineering Research Center of Ultrasound Diagnosis and Treatment, Shanghai, 200072 P. R. China
| | - Huixiong Xu
- grid.8547.e0000 0001 0125 2443Department of Ultrasound, Zhongshan Hospital, Institute of Ultrasound in Medicine and Engineering, Fudan University, Shanghai, 200032 P. R. China
| |
Collapse
|
34
|
Cho KJ, Cho YE, Kim J. Locoregional Lymphatic Delivery Systems Using Nanoparticles and Hydrogels for Anticancer Immunotherapy. Pharmaceutics 2022; 14:2752. [PMID: 36559246 PMCID: PMC9788085 DOI: 10.3390/pharmaceutics14122752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/22/2022] [Accepted: 12/07/2022] [Indexed: 12/13/2022] Open
Abstract
The lymphatic system has gained significant interest as a target tissue to control cancer progress, which highlights its central role in adaptive immune response. Numerous mechanistic studies have revealed the benefits of nano-sized materials in the transport of various cargos to lymph nodes, overcoming barriers associated with lymphatic physiology. The potential of sustained drug delivery systems in improving the therapeutic index of various immune modulating agents is also being actively discussed. Herein, we aim to discuss design rationales and principles of locoregional lymphatic drug delivery systems for invigorating adaptive immune response for efficient antitumor immunotherapy and provide examples of various advanced nanoparticle- and hydrogel-based formulations.
Collapse
Affiliation(s)
- Kyeong Jin Cho
- Division of Biological Science and Technology, Yonsei University, Wonju 26493, Republic of Korea
| | - Young-Eun Cho
- Department of Food and Nutrition, Andong National University, Andong 36729, Republic of Korea
| | - Jihoon Kim
- Division of Biological Science and Technology, Yonsei University, Wonju 26493, Republic of Korea
| |
Collapse
|
35
|
Pei Z, Chen S, Ding L, Liu J, Cui X, Li F, Qiu F. Current perspectives and trend of nanomedicine in cancer: A review and bibliometric analysis. J Control Release 2022; 352:211-241. [PMID: 36270513 DOI: 10.1016/j.jconrel.2022.10.023] [Citation(s) in RCA: 59] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/12/2022] [Accepted: 10/14/2022] [Indexed: 11/07/2022]
Abstract
The limitations of traditional cancer treatments are driving the creation and development of new nanomedicines. At present, with the rapid increase of research on nanomedicine in the field of cancer, there is a lack of intuitive analysis of the development trend, main authors and research hotspots of nanomedicine in the field of cancer, as well as detailed elaboration of possible research hotspots. In this review, data collected from the Web of Science Core Collection database between January 1st, 2000, and December 31st, 2021, were subjected to a bibliometric analysis. The co-authorship, co-citation, and co-occurrence of countries, institutions, authors, literature, and keywords in this subject were examined using VOSviewer, Citespace, and a well-known online bibliometrics platform. We collected 19,654 published papers, China produced the most publications (36.654%, 7204), followed by the United States (29.594%, 5777), and India (7.780%, 1529). An interesting fact is that, despite China having more publications than the United States, the United States still dominates this field, having the highest H-index and the most citations. Acs Nano, Nano Letters, and Biomaterials are the top three academic publications that publish articles on nanomedicine for cancer out of a total of 7580 academic journals. The most significant increases were shown for the keywords "cancer nanomedicine", "tumor microenvironment", "nanoparticles", "prodrug", "targeted nanomedicine", "combination", and "cancer immunotherapy" indicating the promising area of research. Meanwhile, the development prospects and challenges of nanomedicine in cancer are also discussed and provided some solutions to the major obstacles.
Collapse
Affiliation(s)
- Zerong Pei
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Shuting Chen
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Liqin Ding
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Jingbo Liu
- College of Horticulture and Landscape Architecture, Tianjin Agricultural University, Tianjin 300384, China
| | - Xinyi Cui
- College of Horticulture and Landscape Architecture, Tianjin Agricultural University, Tianjin 300384, China
| | - Fengyun Li
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Feng Qiu
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| |
Collapse
|