1
|
Xiang L, Henderson MI, Drennan S, Sabuncu S, Fischer JM, Yildirim A. Peptide Amphiphile-Nanoparticle Assemblies for Mechano-Chemo Combination Therapy. NANO LETTERS 2025. [PMID: 40325883 DOI: 10.1021/acs.nanolett.5c01112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2025]
Abstract
Mechanical tumor ablation using focused ultrasound (FUS) offers minimally invasive ablation of solid tumors. However, mechanical tumor ablation requires highly intense FUS pulses, which may generate off-target effects. In addition, residual cancer cells that survive ablation can cause recurrence. To overcome these challenges, we developed a dual-functional nanomaterial by assembling peptide amphiphiles on hydrophobically modified nanoparticles. The hydrophobic nanoparticle core allows for the generation of cavitating bubbles at low FUS intensities to effectively ablate tumors. Peptide amphiphile shells interact dynamically with the hydrophobic nanoparticle surfaces and cell membranes, which improved tumor retention and cellular internalization of payloads attached to them. By conjugating a highly potent agent, Monomethyl auristatin E, to the peptide amphiphiles, we showed synergistic mechano- and chemotherapy using in vitro and in vivo models of human melanoma. This work presents a new nanoparticle approach to improving the outcomes of mechanical tumor ablation.
Collapse
Affiliation(s)
- Li Xiang
- CEDAR, Knight Cancer Institute, School of Medicine, Oregon Health & Science University, Portland, Oregon 97201, United States
| | - Michael I Henderson
- CEDAR, Knight Cancer Institute, School of Medicine, Oregon Health & Science University, Portland, Oregon 97201, United States
- Department of Biomedical Engineering, School of Medicine, Oregon Health & Science University, Portland, Oregon 97239, United States
| | - Samuel Drennan
- CEDAR, Knight Cancer Institute, School of Medicine, Oregon Health & Science University, Portland, Oregon 97201, United States
| | - Sinan Sabuncu
- CEDAR, Knight Cancer Institute, School of Medicine, Oregon Health & Science University, Portland, Oregon 97201, United States
| | - Jared M Fischer
- CEDAR, Knight Cancer Institute, School of Medicine, Oregon Health & Science University, Portland, Oregon 97201, United States
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, Oregon 97239, United States
| | - Adem Yildirim
- CEDAR, Knight Cancer Institute, School of Medicine, Oregon Health & Science University, Portland, Oregon 97201, United States
- Department of Biomedical Engineering, School of Medicine, Oregon Health & Science University, Portland, Oregon 97239, United States
- Division of Oncological Sciences, Knight Cancer Institute, School of Medicine, Oregon Health & Science University, Portland, Oregon 97201, United States
| |
Collapse
|
2
|
Sahu S, Paikin ZE, Talbott JM, Czabala P, Raj M. Coarctate reaction for synthesis of fluorescent N-heterocycles, late-stage functionalization, and photo-triggered drug delivery. Nat Commun 2025; 16:3780. [PMID: 40263307 PMCID: PMC12015227 DOI: 10.1038/s41467-025-59057-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 04/10/2025] [Indexed: 04/24/2025] Open
Abstract
Coarctate reactions, involving the simultaneous formation and cleavage of two bonds at single or multiple atoms, have remained largely unexplored for biomolecular applications. These reactions are characterized by complex helical orbitals in their transition state and produce unique chemical entities unattainable by other methods. This makes coarctate reactions particularly useful for expanding the chemical diversity and properties of biomolecules. In this study, we apply an azo-ene-yne coarctate reaction to synthesize isoindazole-based N-heterocycles and explore their biomolecular applications. The azo-ene-yne coarctate method demonstrates high chemoselectivity, thus enabling the synthesis of unnatural amino acids and drug conjugates, and late-stage peptide functionalization. These isoindazole-based N-heterocycles exhibit inherent fluorescence, which can be enhanced and red-shifted through electronic tuning. Additionally, we discover a photo-triggered cleavage of the isoindazole moiety from 2-amine-isoindazole, enabling the light-triggered selective delivery of secondary amine and hydroxyl-containing drugs, which represent over 70% of current pharmaceuticals. We also employ a light-triggered method for the selective deprotection of secondary amines and the late-stage functionalization of peptides with isoindazole, enabling access to previously unexplored chemical space.
Collapse
Affiliation(s)
- Samrat Sahu
- Department of Chemistry, Emory University, Atlanta, GA, 30322, USA
| | - Zachary E Paikin
- Department of Chemistry, Emory University, Atlanta, GA, 30322, USA
| | - John M Talbott
- Department of Chemistry, Emory University, Atlanta, GA, 30322, USA
| | - Patrick Czabala
- Department of Chemistry, Emory University, Atlanta, GA, 30322, USA
| | - Monika Raj
- Department of Chemistry, Emory University, Atlanta, GA, 30322, USA.
| |
Collapse
|
3
|
Mortaja M, Adams SR, McKay RR, Gutkind JS, Advani SJ. Spatially precise chemo-radio-immunotherapy by antibody drug conjugate directed tumor radiosensitization to potentiate immunotherapies. NPJ Precis Oncol 2025; 9:97. [PMID: 40181161 PMCID: PMC11968929 DOI: 10.1038/s41698-025-00885-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 03/18/2025] [Indexed: 04/05/2025] Open
Abstract
Concurrent chemo-radiotherapy is standard of care for locally advanced cancer patients. While radiotherapy and immuno-oncology have advanced precision oncology, chemotherapies in the chemo-radiotherapy paradigm remain non-targeted cytotoxins. Antibody drug conjugates offer an opportunity for targeted radiosensitization that stimulates immune responses while protecting normal tissues. Here, we discuss the rationale for combining antibody drug conjugates, radiotherapy and immunotherapies and opportunities for clinical translation to advance towards targeted chemo-radio-immunotherapy precision cancer care.
Collapse
Affiliation(s)
- Mahsa Mortaja
- Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, CA, 92093, USA
| | - Stephen R Adams
- Department of Pharmacology, University of California San Diego, La Jolla, CA, 92093, USA
| | - Rana R McKay
- Department of Medicine, University of California San Diego, La Jolla, CA, 92093, USA
- UC San Diego, Moores Cancer Center, La Jolla, CA, 92093, USA
- Department of Urology, University of California San Diego, La Jolla, CA, 92093, USA
| | - J Silvio Gutkind
- Department of Pharmacology, University of California San Diego, La Jolla, CA, 92093, USA
- UC San Diego, Moores Cancer Center, La Jolla, CA, 92093, USA
| | - Sunil J Advani
- Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, CA, 92093, USA.
- UC San Diego, Moores Cancer Center, La Jolla, CA, 92093, USA.
| |
Collapse
|
4
|
Li X, Patel NL, Kalen J, Schnermann MJ. Benzyl Ammonium Carbamates Undergo Two-Step Linker Cleavage and Improve the Properties of Antibody Conjugates. Angew Chem Int Ed Engl 2025; 64:e202417651. [PMID: 39696914 PMCID: PMC11795738 DOI: 10.1002/anie.202417651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Indexed: 12/20/2024]
Abstract
Targeted payload delivery strategies, such as antibody-drug conjugates (ADCs), have emerged as important therapeutics. Although considerable efforts have been made in the areas of antibody engineering and labeling methodology, improving the overall physicochemical properties of the linker/payload combination remains an important challenge. Here we report an approach to create an intrinsically hydrophilic linker domain. We find that benzyl α-ammonium carbamates (BACs) undergo tandem 1,6-1,2-elimination to release secondary amines. Using a fluorogenic hemicyanine as a model payload component, we show that a zwitterionic BAC linker improves labeling efficiency and reduces antibody aggregation when compared to a commonly used para-amino benzyl (PAB) linker as well as a cationic BAC. Cellular and in vivo fluorescence imaging studies demonstrate that the model payload is specifically released in antigen-expressing cells and tumors. The therapeutic potential of the BAC linker strategy was assessed using an MMAE payload, a potent microtubule-disrupting agent frequently used for ADC applications. The BAC-MMAE combination enhances labeling efficiency and cellular toxicity when compared to the routinely used PAB-Val-Cit ADC analogue. Broadly, this strategy provides a general approach to mask payload hydrophobicity and improve the properties of targeted agents.
Collapse
Affiliation(s)
- Xiaoyi Li
- Chemical Biology LaboratoryCenter for Cancer ResearchNational Cancer InstituteFrederickMaryland21702USA
| | - Nimit L. Patel
- Small Animal Imaging ProgramFrederick National Laboratory for Cancer ResearchLeidos Biomedical Research Inc.FrederickMaryland21702USA
| | - Joseph Kalen
- Small Animal Imaging ProgramFrederick National Laboratory for Cancer ResearchLeidos Biomedical Research Inc.FrederickMaryland21702USA
| | - Martin J. Schnermann
- Chemical Biology LaboratoryCenter for Cancer ResearchNational Cancer InstituteFrederickMaryland21702USA
| |
Collapse
|
5
|
Lei Y, Liu J, Bai Y, Zheng C, Wang D. Peptides as Versatile Regulators in Cancer Immunotherapy: Recent Advances, Challenges, and Future Prospects. Pharmaceutics 2025; 17:46. [PMID: 39861694 PMCID: PMC11768547 DOI: 10.3390/pharmaceutics17010046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 12/25/2024] [Accepted: 12/29/2024] [Indexed: 01/27/2025] Open
Abstract
The emergence of effective immunotherapies has revolutionized therapies for many types of cancer. However, current immunotherapy has limited efficacy in certain patient populations and displays therapeutic resistance after a period of treatment. To address these challenges, a growing number of immunotherapy drugs have been investigated in clinical and preclinical applications. The diverse functionality of peptides has made them attractive as a therapeutic modality, and the global market for peptide-based therapeutics is witnessing significant growth. Peptides can act as immunotherapeutic agents for the treatment of many malignant cancers. However, a systematic understanding of the interactions between different peptides and the host's immune system remains unclear. This review describes in detail the roles of peptides in regulating the function of the immune system for cancer immunotherapy. Initially, we systematically elaborate on the relevant mechanisms of cancer immunotherapy. Subsequently, we categorize peptide-based nanomaterials into the following three categories: peptide-based vaccines, anti-cancer peptides, and peptide-based delivery systems. We carefully analyzed the roles of these peptides in overcoming the current barriers in immunotherapy, including multiple strategies to enhance the immunogenicity of peptide vaccines, the synergistic effect of anti-cancer peptides in combination with other immune agents, and peptide assemblies functioning as immune stimulators or vehicles to deliver immune agents. Furthermore, we introduce the current status of peptide-based immunotherapy in clinical applications and discuss the weaknesses and future prospects of peptide-based materials for cancer immunotherapy. Overall, this review aims to enhance comprehension of the potential applications of peptide-based materials in cancer immunotherapy and lay the groundwork for future research and clinical applications.
Collapse
Affiliation(s)
- Yu Lei
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (Y.L.); (J.L.); (Y.B.)
- Hubei Provincial Clinical Research Center for Precision Radiology & Interventional Medicine, Wuhan 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Jiacheng Liu
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (Y.L.); (J.L.); (Y.B.)
- Hubei Provincial Clinical Research Center for Precision Radiology & Interventional Medicine, Wuhan 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Yaowei Bai
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (Y.L.); (J.L.); (Y.B.)
- Hubei Provincial Clinical Research Center for Precision Radiology & Interventional Medicine, Wuhan 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Chuansheng Zheng
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (Y.L.); (J.L.); (Y.B.)
- Hubei Provincial Clinical Research Center for Precision Radiology & Interventional Medicine, Wuhan 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Dongyuan Wang
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
6
|
Mortaja M, Cheng MM, Ali A, Lesperance J, Hingorani DV, Allevato MM, Dhawan K, Camargo MF, McKay RR, Adams SR, Gutkind JS, Advani SJ. Tumor-Targeted Cell-Penetrating Peptides Reveal That Monomethyl Auristatin E Temporally Modulates the Tumor Immune Microenvironment. Molecules 2024; 29:5618. [PMID: 39683778 PMCID: PMC11643828 DOI: 10.3390/molecules29235618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 11/24/2024] [Accepted: 11/25/2024] [Indexed: 12/18/2024] Open
Abstract
Chemotherapies remain standard therapy for cancers but have limited efficacy and cause significant side effects, highlighting the need for targeted approaches. In the progression of cancer, tumors increase matrix metalloproteinase (MMP) activity. Leveraging and therapeutically redirecting tumor MMPs through activatable cell-penetrating peptide (ACPP) technology offers new approaches for tumor-selective drug delivery and for studying how drug payloads engage the tumor immune microenvironment. ACPPs are biosensing peptides consisting of a drug-conjugated polycationic cell-penetrating peptide masked by an autoinhibitory polyanionic peptide through an interlinking peptide linker. Since tumors overexpress MMPs, ACPP tumor-targeting is achieved using an MMP cleavable linker. Monomethyl auristatin E (MMAE) is a potent anti-tubulin and common drug payload in antibody drug conjugates; however there are limited pre-clinical studies on how this clinically effective drug modulates the interplay of cancer cells and the immune system. Here, we report the versatility of ACPP conjugates in syngeneic murine cancer models and interrogate how MMAE temporally alters the tumor immune microenvironment. We show that cRGD-ACPP-MMAE preferentially delivered MMAE to tumors in murine models. Targeted cRGD-ACPP-MMAE demonstrated anti-tumor kill activity that activated the innate and adaptive arms of the immune system. Understanding how targeted MMAE engages tumors can optimize MMAE tumor kill activity and inform rational combinations with other cancer therapeutics.
Collapse
Affiliation(s)
- Mahsa Mortaja
- Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, CA 92093, USA; (M.M.); (M.M.C.); (A.A.); (J.L.); (D.V.H.); (K.D.); (M.F.C.)
| | - Marcus M. Cheng
- Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, CA 92093, USA; (M.M.); (M.M.C.); (A.A.); (J.L.); (D.V.H.); (K.D.); (M.F.C.)
| | - Alina Ali
- Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, CA 92093, USA; (M.M.); (M.M.C.); (A.A.); (J.L.); (D.V.H.); (K.D.); (M.F.C.)
| | - Jacqueline Lesperance
- Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, CA 92093, USA; (M.M.); (M.M.C.); (A.A.); (J.L.); (D.V.H.); (K.D.); (M.F.C.)
| | - Dina V. Hingorani
- Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, CA 92093, USA; (M.M.); (M.M.C.); (A.A.); (J.L.); (D.V.H.); (K.D.); (M.F.C.)
| | - Mike M. Allevato
- Department of Pharmacology, University of California San Diego, La Jolla, CA 92093, USA; (M.M.A.); (S.R.A.); (J.S.G.)
| | - Kanika Dhawan
- Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, CA 92093, USA; (M.M.); (M.M.C.); (A.A.); (J.L.); (D.V.H.); (K.D.); (M.F.C.)
| | - Maria F. Camargo
- Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, CA 92093, USA; (M.M.); (M.M.C.); (A.A.); (J.L.); (D.V.H.); (K.D.); (M.F.C.)
| | - Rana R. McKay
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA;
- Moores Cancer Center, UC San Diego, La Jolla, CA 92037, USA
| | - Stephen R. Adams
- Department of Pharmacology, University of California San Diego, La Jolla, CA 92093, USA; (M.M.A.); (S.R.A.); (J.S.G.)
| | - J. Silvio Gutkind
- Department of Pharmacology, University of California San Diego, La Jolla, CA 92093, USA; (M.M.A.); (S.R.A.); (J.S.G.)
- Moores Cancer Center, UC San Diego, La Jolla, CA 92037, USA
| | - Sunil J. Advani
- Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, CA 92093, USA; (M.M.); (M.M.C.); (A.A.); (J.L.); (D.V.H.); (K.D.); (M.F.C.)
- Moores Cancer Center, UC San Diego, La Jolla, CA 92037, USA
| |
Collapse
|
7
|
Braniewska A, Skorzynski M, Sas Z, Dlugolecka M, Marszalek I, Kurpiel D, Bühler M, Strzemecki D, Magiera A, Bialasek M, Walczak J, Cheda L, Komorowski M, Weiss T, Czystowska-Kuzmicz M, Kwapiszewska K, Boffi A, Krol M, Rygiel TP. A novel process for transcellular hemoglobin transport from macrophages to cancer cells. Cell Commun Signal 2024; 22:570. [PMID: 39605056 PMCID: PMC11603754 DOI: 10.1186/s12964-024-01929-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 11/05/2024] [Indexed: 11/29/2024] Open
Abstract
Hemoglobin (Hb) performs its physiological function within the erythrocyte. Extracellular Hb has prooxidative and proinflammatory properties and is therefore sequestered by haptoglobin and bound by the CD163 receptor on macrophages. In the present study, we demonstrate a novel process of Hb uptake by macrophages independent of haptoglobin and CD163. Unexpectedly, macrophages do not degrade the entire Hb, but instead transfer it to neighboring cells. We have shown that the phenomenon of Hb transfer from macrophages to other cells is mainly mediated by extracellular vesicles. In contrast to the canonical Hb degradation pathway by macrophages, Hb transfer has not been reported before. In addition, we have used the process of Hb transfer in anticancer therapy, where macrophages are loaded with a Hb-anticancer drug conjugate and act as cellular drug carriers. Both mouse and human macrophages loaded with Hb-monomethyl auristatin E (MMAE) effectively killed cancer cells when co-cultured in vitro.
Collapse
Affiliation(s)
- Agata Braniewska
- Department of Immunology, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106, Warsaw, Poland
- Department of Immunology, Medical University of Warsaw, Warsaw, Poland
| | - Marcin Skorzynski
- Department of Immunology, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106, Warsaw, Poland
| | - Zuzanna Sas
- Department of Immunology, Medical University of Warsaw, Warsaw, Poland
- School of Molecular Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Magdalena Dlugolecka
- Chair and Department of Biochemistry, Doctoral School, Medical University of Warsaw, Warsaw, Poland
| | | | | | - Marcel Bühler
- Laboratory of Molecular Neuro-Oncology, Department of Neurology, Clinical Neuroscience Center, University Hospital and University of Zurich, Zurich, Switzerland
| | - Damian Strzemecki
- Cellis AG, Zurich, Switzerland
- Department of Experimental Pharmacology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | - Aneta Magiera
- Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland
| | - Maciej Bialasek
- Cellis AG, Zurich, Switzerland
- Center of Cellular Immunotherapies, Warsaw University of Life Sciences, Warsaw, Poland
| | - Jaroslaw Walczak
- Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw, Poland
| | - Lukasz Cheda
- Faculty of Chemistry, University of Warsaw, Warsaw, Poland
| | - Michal Komorowski
- Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw, Poland
| | - Tobias Weiss
- Laboratory of Molecular Neuro-Oncology, Department of Neurology, Clinical Neuroscience Center, University Hospital and University of Zurich, Zurich, Switzerland
| | | | | | - Alberto Boffi
- Cellis AG, Zurich, Switzerland
- Department of Biochemical Sciences "Alessandro Rossi Fanelli", Sapienza University of Rome, Rome, Italy
- Center of Life Nano and Neuro Science, Italian Institute of Technology, Rome, Italy
| | - Magdalena Krol
- Cellis AG, Zurich, Switzerland
- Center of Cellular Immunotherapies, Warsaw University of Life Sciences, Warsaw, Poland
| | - Tomasz P Rygiel
- Department of Immunology, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106, Warsaw, Poland.
- Cellis AG, Zurich, Switzerland.
| |
Collapse
|
8
|
Leong M, Dai T, Tong L, Nast CC. A case of karyomegalic interstitial nephritis without FAN1 mutations in the setting of brentuximab, ifosfamide, and carboplatin exposure. BMC Nephrol 2024; 25:409. [PMID: 39543462 PMCID: PMC11566923 DOI: 10.1186/s12882-024-03689-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 07/30/2024] [Indexed: 11/17/2024] Open
Abstract
BACKGROUND Karyomegalic interstitial nephritis (KIN) is a rare renal diagnosis associated with both genetic and medication etiologies. The primary gene associated with KIN is the FAN1 gene which encodes a protein responsible for DNA interstrand repair. Common medication triggers of KIN are chemotherapeutic agents, especially those which disrupt DNA structure such as carboplatin. Despite overlap between these mechanisms, it has not clearly been established if medication usage requires an underlying genetic predisposition for triggering KIN or if medications alone are sufficient. This ambiguous pathogenesis can make it difficult to appropriately assess risk of KIN development when starting patients on one of the known KIN-inducing therapies. Additionally, brentuximab vedotin, an antibody-drug conjugate directed against CD30, has not been previously implicated in KIN development. CASE PRESENTATION We present a 49-year-old woman previously diagnosed with metastatic Hodgkin's lymphoma who was treated with doxorubicin, bleomycin, vinblastine, and dacarbazine, then 3 cycles of ifosfamide, carboplatin, etoposide, all of which were discontinued due to side effects. Following an episode of acute kidney injury, the serum creatinine was 1.09 mg/dL. She then received 2 doses of brentuximab, the serum creatinine rose, and the drug was discontinued. Kidney biopsy done 2 months after brentuximab and 5 months following ifosfamide therapies showed karyomegalic interstitial nephritis. Genetic evaluation showed no FAN1 gene mutations. The patient was started on pembrolizumab; no steroids were given due to concerns about interference with lymphoma immunotherapy. She remains with stable disease and stable chronic kidney disease. CONCLUSIONS This case presents a patient who developed KIN with a progressively rising serum creatinine after ifosfamide, carboplatin and brentuximab treatment. Although ifosfamide and carboplatin have known associations with the development of KIN, this case raises the possibility that brentuximab, which has a different mechanism of action, also may be associated with KIN. Additionally, the genetic findings demonstrate that drug-induced KIN can develop in the absence of FAN1 mutations, a finding not previously reported.
Collapse
Affiliation(s)
- Matthew Leong
- Department of Pathology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Tiane Dai
- Division of Nephrology and Hypertension, Lundquist Institute at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Lili Tong
- Division of Nephrology, Tibor Rubin VA Medical Center, Long Beach, CA, USA
| | - Cynthia C Nast
- Department of Pathology, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
| |
Collapse
|
9
|
Fu Y, He Y, Wei X, Zhang X, Tu W, Xue W, Xu Z, Li Z, Yan X, Fan K, Gao D. Sonocatalysis Regulates Tumor Autophagy for Enhanced Immunotherapy. ACS NANO 2024; 18:28793-28809. [PMID: 39377733 DOI: 10.1021/acsnano.4c08468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
Abstract
Immunotherapy stands as a groundbreaking strategy for cancer treatment, due to its ability to precisely and safely detect and eradicate tumors. However, the efficacy of immunotherapy is often limited by tumor autophagy, a natural defense mechanism that tumors exploit to resist immune attacks. Herein, we introduce a spatiotemporally controlled method to modulate tumor autophagy via sonocatalysis, aiming to improve immunotherapeutic outcomes. Specifically, we synthesized a tumor-targeting nanocatalyst based on a semiconductor heterojunction composed of Barium Titanate (BTO), Black Phosphorus (BP) integrated with Hyaluronic Acid (HA), referred to as BTO/BP-HA. Compared to traditional catalysts, the heterojunction structure enhances energy band bending and rapid electron-hole separation under ultrasonic stimulation, splitting water to generate H2. This promotes tumor cell apoptosis by inhibiting mitochondrial respiration and induces immunogenic cell death, triggering immune responses to eliminate tumor cells. However, the concurrent activation of autophagy mitigates the cytotoxic effectiveness of nanocatalysts. Within the nanocatalyst, BP undergoes lysosomal degradation to generate PO43-, which subsequently interacts with H+ to generate a conjugated acidic anion, increasing the lysosomal pH. This research ingeniously combines sonocatalysis with tumor autophagy, disrupting the activity of acidic hydrolases to inhibit autophagy, thereby enhancing the immune response and improving the effectiveness of immunotherapy.
Collapse
Affiliation(s)
- Yihan Fu
- State Key Laboratory of Metastable Materials Science and Technology, Nano-Biotechnology Key Lab of Hebei Province, Applying Chemistry Key Lab of Hebei Province, Yanshan University, Qinhuangdao 066004, P. R. China
| | - Yuchu He
- State Key Laboratory of Metastable Materials Science and Technology, Nano-Biotechnology Key Lab of Hebei Province, Applying Chemistry Key Lab of Hebei Province, Yanshan University, Qinhuangdao 066004, P. R. China
| | - Xindi Wei
- Department of Oral and Maxillo-Facial Implantology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology; Shanghai Research Institute of Stomatology, Shanghai 200011, China
| | - Xuwu Zhang
- State Key Laboratory of Metastable Materials Science and Technology, Nano-Biotechnology Key Lab of Hebei Province, Applying Chemistry Key Lab of Hebei Province, Yanshan University, Qinhuangdao 066004, P. R. China
| | - Wenkang Tu
- State Key Laboratory of Metastable Materials Science and Technology, Nano-Biotechnology Key Lab of Hebei Province, Applying Chemistry Key Lab of Hebei Province, Yanshan University, Qinhuangdao 066004, P. R. China
| | - WeiLi Xue
- State Key Laboratory of Metastable Materials Science and Technology, Nano-Biotechnology Key Lab of Hebei Province, Applying Chemistry Key Lab of Hebei Province, Yanshan University, Qinhuangdao 066004, P. R. China
| | - Zichuang Xu
- State Key Laboratory of Metastable Materials Science and Technology, Nano-Biotechnology Key Lab of Hebei Province, Applying Chemistry Key Lab of Hebei Province, Yanshan University, Qinhuangdao 066004, P. R. China
| | - Zhuo Li
- State Key Laboratory of Metastable Materials Science and Technology, Nano-Biotechnology Key Lab of Hebei Province, Applying Chemistry Key Lab of Hebei Province, Yanshan University, Qinhuangdao 066004, P. R. China
| | - Xiyun Yan
- CAS Engineering Laboratory for Nanozyme Key Laboratory of Biomacromolecules (CAS), CAS Center for Excellence in Biomacromolecules Institute of Biophysics Chinese Academy of Sciences, Beijing 100101, China
| | - Kelong Fan
- CAS Engineering Laboratory for Nanozyme Key Laboratory of Biomacromolecules (CAS), CAS Center for Excellence in Biomacromolecules Institute of Biophysics Chinese Academy of Sciences, Beijing 100101, China
| | - Dawei Gao
- State Key Laboratory of Metastable Materials Science and Technology, Nano-Biotechnology Key Lab of Hebei Province, Applying Chemistry Key Lab of Hebei Province, Yanshan University, Qinhuangdao 066004, P. R. China
| |
Collapse
|
10
|
Xi M, Zhu J, Zhang F, Shen H, Chen J, Xiao Z, Huangfu Y, Wu C, Sun H, Xia G. Antibody-drug conjugates for targeted cancer therapy: Recent advances in potential payloads. Eur J Med Chem 2024; 276:116709. [PMID: 39068862 DOI: 10.1016/j.ejmech.2024.116709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 07/22/2024] [Accepted: 07/23/2024] [Indexed: 07/30/2024]
Abstract
Antibody-drug conjugates (ADCs) represent a promising cancer therapy modality which specifically delivers highly toxic payloads to cancer cells through antigen-specific monoclonal antibodies (mAbs). To date, 15 ADCs have been approved and more than 100 ADC candidates have advanced to clinical trials for the treatment of various cancers. Among these ADCs, microtubule-targeting and DNA-damaging agents are at the forefront of payload development. However, several challenges including toxicity and drug resistance limit the potential of this modality. To tackle these issues, multiple innovative payloads such as immunomodulators and proteolysis targeting chimeras (PROTACs) are incorporated into ADCs to enable multimodal cancer therapy. In this review, we describe the mechanism of ADCs, highlight the importance of ADC payloads and summarize recent progresses of conventional and unconventional ADC payloads, trying to provide an insight into payload diversification as a key step in future ADC development.
Collapse
Affiliation(s)
- Meiyang Xi
- Zhejiang Engineering Research Center of Fat-soluble Vitamin, Shaoxing University, Shaoxing, 312000, China; College of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing, 312000, China
| | - Jingjing Zhu
- NovoCodex Biopharmaceuticals Co. Ltd., Shaoxing, 312090, China
| | - Fengxia Zhang
- NovoCodex Biopharmaceuticals Co. Ltd., Shaoxing, 312090, China
| | - Hualiang Shen
- Zhejiang Engineering Research Center of Fat-soluble Vitamin, Shaoxing University, Shaoxing, 312000, China; College of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing, 312000, China
| | - Jianhui Chen
- College of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing, 312000, China
| | - Ziyan Xiao
- College of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing, 312000, China
| | - Yanping Huangfu
- College of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing, 312000, China
| | - Chunlei Wu
- Zhejiang Engineering Research Center of Fat-soluble Vitamin, Shaoxing University, Shaoxing, 312000, China; College of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing, 312000, China
| | - Haopeng Sun
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing, 210009, China.
| | - Gang Xia
- NovoCodex Biopharmaceuticals Co. Ltd., Shaoxing, 312090, China
| |
Collapse
|
11
|
Prasanna PGS, Ahmed MM, Hong JA, Coleman CN. Best practices and novel approaches for the preclinical development of drug-radiotherapy combinations for cancer treatment. Lancet Oncol 2024; 25:e501-e511. [PMID: 39362261 DOI: 10.1016/s1470-2045(24)00199-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 03/31/2024] [Accepted: 04/04/2024] [Indexed: 10/05/2024]
Abstract
Drug-radiation combination therapy is a practical approach to improving clinical outcomes for many tumours. Unfortunately, most clinical combination studies combine drugs with radiotherapy empirically and do not exploit mechanistic synergy in cell death and the interconnectivity of molecular pathways of tumours or rationale for selecting the dose, fractionation, and schedule, which can result in suboptimal efficacy and exacerbation of toxic effects. However, opportunities exist to generate compelling preclinical evidence for combination therapies from fit-for-purpose translational studies for simulating the intended clinical study use scenarios with standardised preclinical assays and algorithms to evaluate complex molecular interactions and analysis of synergy before clinical research. Here, we analyse and discuss the core issues in the translation of preclinical data to enhance the relevance of preclinical assays, in vitro clonogenic survival along with apoptosis, in vivo tumour regression and growth delay assays, and toxicology of organs at risk without creating barriers to innovation and provide a synopsis of emerging areas in preclinical radiobiology.
Collapse
Affiliation(s)
- Pataje G S Prasanna
- Radiation Research Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| | - Mansoor M Ahmed
- Division of Radiation Biology and Molecular Therapeutics, Department of Radiation Oncology, Albert Einstein College of Medicine, New York, NY, USA
| | - Julie A Hong
- Radiation Research Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - C Norman Coleman
- Radiation Research Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
12
|
Vidal-Calvo EE, Martin-Salazar A, Choudhary S, Dagil R, Raghavan SSR, Duvnjak L, Nordmaj MA, Clausen TM, Skafte A, Oberkofler J, Wang K, Agerbæk MØ, Løppke C, Jørgensen AM, Ropac D, Mujollari J, Willis S, Garcias López A, Miller RL, Karlsson RTG, Goerdeler F, Chen YH, Colaço AR, Wang Y, Lavstsen T, Martowicz A, Nelepcu I, Marzban M, Oo HZ, Ørum-Madsen MS, Wang Y, Nielsen MA, Clausen H, Wierer M, Wolf D, Gögenur I, Theander TG, Al-Nakouzi N, Gustavsson T, Daugaard M, Salanti A. Tumor-agnostic cancer therapy using antibodies targeting oncofetal chondroitin sulfate. Nat Commun 2024; 15:7553. [PMID: 39215044 PMCID: PMC11364678 DOI: 10.1038/s41467-024-51781-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 08/16/2024] [Indexed: 09/04/2024] Open
Abstract
Molecular similarities between embryonic and malignant cells can be exploited to target tumors through specific signatures absent in healthy adult tissues. One such embryonic signature tumors express is oncofetal chondroitin sulfate (ofCS), which supports disease progression and dissemination in cancer. Here, we report the identification and characterization of phage display-derived antibody fragments recognizing two distinct ofCS epitopes. These antibody fragments show binding affinity to ofCS in the low nanomolar range across a broad selection of solid tumor types in vitro and in vivo with minimal binding to normal, inflamed, or benign tumor tissues. Anti-ofCS antibody drug conjugates and bispecific immune cell engagers based on these targeting moieties disrupt tumor progression in animal models of human and murine cancers. Thus, anti-ofCS antibody fragments hold promise for the development of broadly effective therapeutic and diagnostic applications targeting human malignancies.
Collapse
Affiliation(s)
- Elena Ethel Vidal-Calvo
- Centre for Translational Medicine and Parasitology, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen University Hospital, Copenhagen, Denmark.
- VAR2 Pharmaceuticals ApS, Copenhagen, Denmark.
| | - Anne Martin-Salazar
- Centre for Translational Medicine and Parasitology, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen University Hospital, Copenhagen, Denmark
| | - Swati Choudhary
- Centre for Translational Medicine and Parasitology, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen University Hospital, Copenhagen, Denmark
- VAR2 Pharmaceuticals ApS, Copenhagen, Denmark
| | - Robert Dagil
- Centre for Translational Medicine and Parasitology, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen University Hospital, Copenhagen, Denmark
- VAR2 Pharmaceuticals ApS, Copenhagen, Denmark
| | - Sai Sundar Rajan Raghavan
- Centre for Translational Medicine and Parasitology, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen University Hospital, Copenhagen, Denmark
| | - Lara Duvnjak
- Centre for Translational Medicine and Parasitology, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen University Hospital, Copenhagen, Denmark
- VAR2 Pharmaceuticals ApS, Copenhagen, Denmark
| | - Mie Anemone Nordmaj
- Centre for Translational Medicine and Parasitology, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen University Hospital, Copenhagen, Denmark
| | | | - Ann Skafte
- Centre for Translational Medicine and Parasitology, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen University Hospital, Copenhagen, Denmark
- VAR2 Pharmaceuticals ApS, Copenhagen, Denmark
| | - Jan Oberkofler
- Centre for Translational Medicine and Parasitology, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen University Hospital, Copenhagen, Denmark
| | - Kaituo Wang
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mette Ø Agerbæk
- Centre for Translational Medicine and Parasitology, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen University Hospital, Copenhagen, Denmark
- VARCT Diagnostics, Copenhagen, Denmark
| | - Caroline Løppke
- Centre for Translational Medicine and Parasitology, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen University Hospital, Copenhagen, Denmark
| | - Amalie Mundt Jørgensen
- Centre for Translational Medicine and Parasitology, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen University Hospital, Copenhagen, Denmark
- VARCT Diagnostics, Copenhagen, Denmark
| | - Daria Ropac
- Centre for Translational Medicine and Parasitology, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen University Hospital, Copenhagen, Denmark
| | - Joana Mujollari
- Centre for Translational Medicine and Parasitology, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen University Hospital, Copenhagen, Denmark
| | - Shona Willis
- Centre for Translational Medicine and Parasitology, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen University Hospital, Copenhagen, Denmark
| | - Agnès Garcias López
- Centre for Translational Medicine and Parasitology, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen University Hospital, Copenhagen, Denmark
| | - Rebecca Louise Miller
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Richard Torbjörn Gustav Karlsson
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Felix Goerdeler
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Ana R Colaço
- Proteomics Research Infrastructure, University of Copenhagen, Copenhagen, Denmark
| | - Yong Wang
- College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Thomas Lavstsen
- Centre for Translational Medicine and Parasitology, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen University Hospital, Copenhagen, Denmark
| | - Agnieszka Martowicz
- Department of Internal Medicine V, Haematology & Oncology, Comprehensive Cancer Center Innsbruck (CCCI) and Tyrolean Cancer Research Institute (TKFI), Medical University of Innsbruck, Innsbruck, Austria
| | - Irina Nelepcu
- Vancouver Prostate Centre, Vancouver Coastal Health Research Institutes, Vancouver, BC, Canada
- Department of Urologic Sciences, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Mona Marzban
- Vancouver Prostate Centre, Vancouver Coastal Health Research Institutes, Vancouver, BC, Canada
- Department of Urologic Sciences, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Htoo Zarni Oo
- Vancouver Prostate Centre, Vancouver Coastal Health Research Institutes, Vancouver, BC, Canada
- Department of Urologic Sciences, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Maj Sofie Ørum-Madsen
- Vancouver Prostate Centre, Vancouver Coastal Health Research Institutes, Vancouver, BC, Canada
- Department of Urologic Sciences, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Yuzhuo Wang
- Vancouver Prostate Centre, Vancouver Coastal Health Research Institutes, Vancouver, BC, Canada
| | - Morten A Nielsen
- Centre for Translational Medicine and Parasitology, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen University Hospital, Copenhagen, Denmark
- VAR2 Pharmaceuticals ApS, Copenhagen, Denmark
| | - Henrik Clausen
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Michael Wierer
- Proteomics Research Infrastructure, University of Copenhagen, Copenhagen, Denmark
| | - Dominik Wolf
- Department of Internal Medicine V, Haematology & Oncology, Comprehensive Cancer Center Innsbruck (CCCI) and Tyrolean Cancer Research Institute (TKFI), Medical University of Innsbruck, Innsbruck, Austria
| | - Ismail Gögenur
- Center for Surgical Science, Department of Surgery, Zealand University Hospital Køge, Køge, Denmark
| | - Thor G Theander
- Centre for Translational Medicine and Parasitology, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen University Hospital, Copenhagen, Denmark
- VAR2 Pharmaceuticals ApS, Copenhagen, Denmark
| | - Nader Al-Nakouzi
- VAR2 Pharmaceuticals ApS, Copenhagen, Denmark
- Vancouver Prostate Centre, Vancouver Coastal Health Research Institutes, Vancouver, BC, Canada
- Department of Urologic Sciences, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Tobias Gustavsson
- Centre for Translational Medicine and Parasitology, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen University Hospital, Copenhagen, Denmark
- VAR2 Pharmaceuticals ApS, Copenhagen, Denmark
| | - Mads Daugaard
- VAR2 Pharmaceuticals ApS, Copenhagen, Denmark.
- Vancouver Prostate Centre, Vancouver Coastal Health Research Institutes, Vancouver, BC, Canada.
- Department of Urologic Sciences, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada.
| | - Ali Salanti
- Centre for Translational Medicine and Parasitology, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen University Hospital, Copenhagen, Denmark.
- VAR2 Pharmaceuticals ApS, Copenhagen, Denmark.
| |
Collapse
|
13
|
Luo C, Ren A, Jin Z, Zhang J, Shi W, Zeng Y, Liu Z, Lu M, Hou Y, Tang F, Huang W. Design and synthesis of novel site-specific antibody-drug conjugates that target TROP2. Bioorg Med Chem 2024; 110:117828. [PMID: 38981219 DOI: 10.1016/j.bmc.2024.117828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 06/28/2024] [Accepted: 06/30/2024] [Indexed: 07/11/2024]
Abstract
The approval of Trodelvy® validates TROP2 as a druggable but challenging target for antibody-drug conjugates (ADCs) to treat metastatic triple-negative breast cancer (mTNBC). Here, based on the TROP2-targeted antibody sacituzumab, we designed and developed several site-specific ADC candidates, which employ MMAE (monomethyl auristatin E) as the toxin, via IgG glycoengineering or affinity-directed traceless conjugation. Systematic evaluation of these site-specific ADCs in homogeneity, hydrophilicity, stability, and antitumor efficiency was conducted. The results indicate that the site-specific ADCs gsADC 3b made from one-step glycoengineering exhibit good aggregation stability and in vivo efficacy, providing a new format of ADCs that target TROP2.
Collapse
Affiliation(s)
- Caili Luo
- School of Pharmaceutical Science and Technology, Hangzhou Institute of Advanced Study, Hangzhou 310024, China; State Key Laboratory of Drug Research, Center for Biotherapeutics Discovery Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, No.555 Zuchongzhi Rd, Pudong, Shanghai 201203, China; University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China; Shanghai Biomedical Co., Ltd. Zhangjiang, Pudong, Shanghai 201203, China
| | - Anni Ren
- School of Pharmaceutical Science and Technology, Hangzhou Institute of Advanced Study, Hangzhou 310024, China; State Key Laboratory of Drug Research, Center for Biotherapeutics Discovery Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, No.555 Zuchongzhi Rd, Pudong, Shanghai 201203, China
| | - Zixuan Jin
- School of Pharmaceutical Science and Technology, Hangzhou Institute of Advanced Study, Hangzhou 310024, China; State Key Laboratory of Drug Research, Center for Biotherapeutics Discovery Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, No.555 Zuchongzhi Rd, Pudong, Shanghai 201203, China; University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Jianxin Zhang
- State Key Laboratory of Drug Research, Center for Biotherapeutics Discovery Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, No.555 Zuchongzhi Rd, Pudong, Shanghai 201203, China; Shanghai Biomedical Co., Ltd. Zhangjiang, Pudong, Shanghai 201203, China
| | - Wei Shi
- State Key Laboratory of Drug Research, Center for Biotherapeutics Discovery Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, No.555 Zuchongzhi Rd, Pudong, Shanghai 201203, China; University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Yue Zeng
- State Key Laboratory of Drug Research, Center for Biotherapeutics Discovery Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, No.555 Zuchongzhi Rd, Pudong, Shanghai 201203, China; University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Zhaojun Liu
- School of Pharmaceutical Science and Technology, Hangzhou Institute of Advanced Study, Hangzhou 310024, China; State Key Laboratory of Drug Research, Center for Biotherapeutics Discovery Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, No.555 Zuchongzhi Rd, Pudong, Shanghai 201203, China; University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Mengru Lu
- School of Pharmaceutical Science and Technology, Hangzhou Institute of Advanced Study, Hangzhou 310024, China; State Key Laboratory of Drug Research, Center for Biotherapeutics Discovery Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, No.555 Zuchongzhi Rd, Pudong, Shanghai 201203, China; University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Yajing Hou
- School of Pharmaceutical Science and Technology, Hangzhou Institute of Advanced Study, Hangzhou 310024, China; State Key Laboratory of Drug Research, Center for Biotherapeutics Discovery Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, No.555 Zuchongzhi Rd, Pudong, Shanghai 201203, China; University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Feng Tang
- School of Pharmaceutical Science and Technology, Hangzhou Institute of Advanced Study, Hangzhou 310024, China; State Key Laboratory of Drug Research, Center for Biotherapeutics Discovery Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, No.555 Zuchongzhi Rd, Pudong, Shanghai 201203, China; University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China.
| | - Wei Huang
- School of Pharmaceutical Science and Technology, Hangzhou Institute of Advanced Study, Hangzhou 310024, China; State Key Laboratory of Drug Research, Center for Biotherapeutics Discovery Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, No.555 Zuchongzhi Rd, Pudong, Shanghai 201203, China; University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China; Shanghai Biomedical Co., Ltd. Zhangjiang, Pudong, Shanghai 201203, China.
| |
Collapse
|
14
|
Paul S, Konig MF, Pardoll DM, Bettegowda C, Papadopoulos N, Wright KM, Gabelli SB, Ho M, van Elsas A, Zhou S. Cancer therapy with antibodies. Nat Rev Cancer 2024; 24:399-426. [PMID: 38740967 PMCID: PMC11180426 DOI: 10.1038/s41568-024-00690-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/29/2024] [Indexed: 05/16/2024]
Abstract
The greatest challenge in cancer therapy is to eradicate cancer cells with minimal damage to normal cells. Targeted therapy has been developed to meet that challenge, showing a substantially increased therapeutic index compared with conventional cancer therapies. Antibodies are important members of the family of targeted therapeutic agents because of their extraordinarily high specificity to the target antigens. Therapeutic antibodies use a range of mechanisms that directly or indirectly kill the cancer cells. Early antibodies were developed to directly antagonize targets on cancer cells. This was followed by advancements in linker technologies that allowed the production of antibody-drug conjugates (ADCs) that guide cytotoxic payloads to the cancer cells. Improvement in our understanding of the biology of T cells led to the production of immune checkpoint-inhibiting antibodies that indirectly kill the cancer cells through activation of the T cells. Even more recently, bispecific antibodies were synthetically designed to redirect the T cells of a patient to kill the cancer cells. In this Review, we summarize the different approaches used by therapeutic antibodies to target cancer cells. We discuss their mechanisms of action, the structural basis for target specificity, clinical applications and the ongoing research to improve efficacy and reduce toxicity.
Collapse
Affiliation(s)
- Suman Paul
- Department of Oncology, Johns Hopkins School of Medicine, Baltimore, MD, USA.
| | - Maximilian F Konig
- Division of Rheumatology, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Drew M Pardoll
- Department of Oncology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Chetan Bettegowda
- Department of Neurosurgery, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | - Katharine M Wright
- Discovery Chemistry, Merck Research Laboratory, Merck and Co, West Point, PA, USA
| | - Sandra B Gabelli
- Discovery Chemistry, Merck Research Laboratory, Merck and Co, West Point, PA, USA.
| | - Mitchell Ho
- Antibody Engineering Program, Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA.
| | | | - Shibin Zhou
- Department of Oncology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| |
Collapse
|
15
|
Andrés CMC, Pérez de la Lastra JM, Bustamante Munguira E, Andrés Juan C, Pérez-Lebeña E. Michael Acceptors as Anti-Cancer Compounds: Coincidence or Causality? Int J Mol Sci 2024; 25:6099. [PMID: 38892287 PMCID: PMC11172677 DOI: 10.3390/ijms25116099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/25/2024] [Accepted: 05/29/2024] [Indexed: 06/21/2024] Open
Abstract
Michael acceptors represent a class of compounds with potential anti-cancer properties. They act by binding to nucleophilic sites in biological molecules, thereby disrupting cancer cell function and inducing cell death. This mode of action, as well as their ability to be modified and targeted, makes them a promising avenue for advancing cancer therapy. We are investigating the molecular mechanisms underlying Michael acceptors and their interactions with cancer cells, in particular their ability to interfere with cellular processes and induce apoptosis. The anti-cancer properties of Michael acceptors are not accidental but are due to their chemical structure and reactivity. The electrophilic nature of these compounds allows them to selectively target nucleophilic residues on disease-associated proteins, resulting in significant therapeutic benefits and minimal toxicity in various diseases. This opens up new perspectives for the development of more effective and precise cancer drugs. Nevertheless, further studies are essential to fully understand the impact of our discoveries and translate them into clinical practice.
Collapse
Affiliation(s)
| | - José Manuel Pérez de la Lastra
- Institute of Natural Products and Agrobiology, CSIC-Spanish Research Council, Avda. Astrofísico Fco. Sánchez, 3, 38206 La Laguna, Spain
| | | | - Celia Andrés Juan
- Cinquima Institute and Department of Organic Chemistry, Faculty of Sciences, Valladolid University, Paseo de Belén, 7, 47011 Valladolid, Spain
| | | |
Collapse
|
16
|
Kim HS, Hariri K, Zhang X, Chen L, Katz BB, Pei H, Louie SG, Zhang Y. Synthesis of site-specific Fab-drug conjugates using ADP-ribosyl cyclases. Protein Sci 2024; 33:e4924. [PMID: 38501590 PMCID: PMC10949397 DOI: 10.1002/pro.4924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 01/27/2024] [Accepted: 01/29/2024] [Indexed: 03/20/2024]
Abstract
Targeted delivery of small-molecule drugs via covalent attachments to monoclonal antibodies has proved successful in clinic. For this purpose, full-length antibodies are mainly used as drug-carrying vehicles. Despite their flexible conjugation sites and versatile biological activities, intact immunoglobulins with conjugated drugs, which feature relatively large molecular weights, tend to have restricted tissue distribution and penetration and low fractions of payloads. Linking small-molecule therapeutics to other formats of antibody may lead to conjugates with optimal properties. Here, we designed and synthesized ADP-ribosyl cyclase-enabled fragment antigen-binding (Fab) drug conjugates (ARC-FDCs) by utilizing CD38 catalytic activity. Through rapidly forming a stable covalent bond with a nicotinamide adenine dinucleotide (NAD+ )-based drug linker at its active site, CD38 genetically fused with Fab mediates robust site-specific drug conjugations via enzymatic reactions. Generated ARC-FDCs with defined drug-to-Fab ratios display potent and antigen-dependent cytotoxicity against breast cancer cells. This work demonstrates a new strategy for developing site-specific FDCs. It may be applicable to different antibody scaffolds for therapeutic conjugations, leading to novel targeted agents.
Collapse
Affiliation(s)
- Hyo Sun Kim
- Department of Pharmacology and Pharmaceutical Sciences, Alfred E. Mann School of Pharmacy and Pharmaceutical SciencesUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Kimia Hariri
- Department of Pharmacology and Pharmaceutical Sciences, Alfred E. Mann School of Pharmacy and Pharmaceutical SciencesUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Xiao‐Nan Zhang
- Department of Pharmacology and Pharmaceutical Sciences, Alfred E. Mann School of Pharmacy and Pharmaceutical SciencesUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Liang‐Chieh Chen
- Department of Pharmacology and Pharmaceutical Sciences, Alfred E. Mann School of Pharmacy and Pharmaceutical SciencesUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Benjamin B. Katz
- Department of ChemistryUniversity of California, IrvineIrvineCaliforniaUSA
| | - Hua Pei
- Titus Family Department of Clinical Pharmacy, Alfred E. Mann School of Pharmacy and Pharmaceutical SciencesUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Stan G. Louie
- Titus Family Department of Clinical Pharmacy, Alfred E. Mann School of Pharmacy and Pharmaceutical SciencesUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
- Norris Comprehensive Cancer CenterUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Yong Zhang
- Department of Pharmacology and Pharmaceutical Sciences, Alfred E. Mann School of Pharmacy and Pharmaceutical SciencesUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
- Norris Comprehensive Cancer CenterUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
- Department of Chemistry, Dornsife College of Letters, Arts and SciencesUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
- Research Center for Liver DiseasesUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| |
Collapse
|
17
|
Youssef S, Tsang E, Samanta A, Kumar V, Gothelf KV. Reversible Protection and Targeted Delivery of DNA Origami with a Disulfide-Containing Cationic Polymer. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2301058. [PMID: 37916910 DOI: 10.1002/smll.202301058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 10/08/2023] [Indexed: 11/03/2023]
Abstract
DNA nanostructures have considerable biomedical potential as intracellular delivery vehicles as they are highly homogeneous and can be functionalized with high spatial resolution. However, challenges like instability under physiological conditions, limited cellular uptake, and lysosomal degradation limit their use. This paper presents a bio-reducible, cationic polymer poly(cystaminebisacrylamide-1,6-diaminohexane) (PCD) as a reversible DNA origami protector. PCD displays a stronger DNA affinity than other cationic polymers. DNA nanostructures with PCD protection are shielded from low salt conditions and DNase I degradation and show a 40-fold increase in cell-association when linked to targeting antibodies. Confocal microscopy reveals a potential secondary cell uptake mechanism, directly delivering the nanostructures to the cytoplasm. Additionally, PCD can be removed by cleaving its backbone disulfides using the intracellular reductant, glutathione. Finally, the application of these constructs is demonstrated for targeted delivery of a cytotoxic agent to cancer cells, which efficiently decreases their viability. The PCD protective agent that is reported here is a simple and efficient method for the stabilization of DNA origami structures. With the ability to deprotect the DNA nanostructures upon entry of the intracellular space, the possibility for the use of DNA origami in pharmaceutical applications is enhanced.
Collapse
Affiliation(s)
- Sarah Youssef
- Department of Chemistry and Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus C, 8000, Denmark
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, 11566, Egypt
| | - Emily Tsang
- Department of Chemistry and Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus C, 8000, Denmark
| | - Anirban Samanta
- Department of Chemistry and Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus C, 8000, Denmark
| | - Vipin Kumar
- Department of Chemistry and Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus C, 8000, Denmark
| | - Kurt V Gothelf
- Department of Chemistry and Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus C, 8000, Denmark
| |
Collapse
|
18
|
Tang B, Lau KM, Zhu Y, Shao C, Wong WT, Chow LMC, Wong CTT. Chemical Modification of Cytochrome C for Acid-Responsive Intracellular Apoptotic Protein Delivery for Cancer Eradication. Pharmaceutics 2024; 16:71. [PMID: 38258082 PMCID: PMC10819283 DOI: 10.3390/pharmaceutics16010071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/29/2023] [Accepted: 12/30/2023] [Indexed: 01/24/2024] Open
Abstract
Delivering bioactive proteins into cells without carriers presents significant challenges in biomedical applications due to limited cell membrane permeability and the need for targeted delivery. Here, we introduce a novel carrier-free method that addresses these challenges by chemically modifying proteins with an acid-responsive cell-penetrating peptide (CPP) for selective intracellular delivery within tumours. Cytochrome C, a protein known for inducing apoptosis, served as a model for intracellular delivery of therapeutic proteins for cancer treatment. The CPP was protected with 2,3-dimethyl maleic anhydride (DMA) and chemically conjugated onto the protein surface, creating an acid-responsive protein delivery system. In the acidic tumour microenvironment, DMA deprotects and exposes the positively charged CPP, enabling membrane penetration. Both in vitro and in vivo assays validated the pH-dependent shielding mechanism, demonstrating the modified cytochrome C could induce apoptosis in cancer cells in a pH-selective manner. These findings provide a promising new approach for carrier-free and tumour-targeted intracellular delivery of therapeutic proteins for a wide range of potential applications.
Collapse
Affiliation(s)
| | | | | | | | | | - Larry M. C. Chow
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, Hong Kong Polytechnic University, Kowloon, Hong Kong, China; (B.T.); (K.M.L.); (Y.Z.); (C.S.); (W.-T.W.)
| | - Clarence T. T. Wong
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, Hong Kong Polytechnic University, Kowloon, Hong Kong, China; (B.T.); (K.M.L.); (Y.Z.); (C.S.); (W.-T.W.)
| |
Collapse
|
19
|
Chauhan P, V R, Kumar M, Molla R, Mishra SD, Basa S, Rai V. Chemical technology principles for selective bioconjugation of proteins and antibodies. Chem Soc Rev 2024; 53:380-449. [PMID: 38095227 DOI: 10.1039/d3cs00715d] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Proteins are multifunctional large organic compounds that constitute an essential component of a living system. Hence, control over their bioconjugation impacts science at the chemistry-biology-medicine interface. A chemical toolbox for their precision engineering can boost healthcare and open a gateway for directed or precision therapeutics. Such a chemical toolbox remained elusive for a long time due to the complexity presented by the large pool of functional groups. The precise single-site modification of a protein requires a method to address a combination of selectivity attributes. This review focuses on guiding principles that can segregate them to simplify the task for a chemical method. Such a disintegration systematically employs a multi-step chemical transformation to deconvolute the selectivity challenges. It constitutes a disintegrate (DIN) theory that offers additional control parameters for tuning precision in protein bioconjugation. This review outlines the selectivity hurdles faced by chemical methods. It elaborates on the developments in the perspective of DIN theory to demonstrate simultaneous regulation of reactivity, chemoselectivity, site-selectivity, modularity, residue specificity, and protein specificity. It discusses the progress of such methods to construct protein and antibody conjugates for biologics, including antibody-fluorophore and antibody-drug conjugates (AFCs and ADCs). It also briefs how this knowledge can assist in developing small molecule-based covalent inhibitors. In the process, it highlights an opportunity for hypothesis-driven routes to accelerate discoveries of selective methods and establish new targetome in the precision engineering of proteins and antibodies.
Collapse
Affiliation(s)
- Preeti Chauhan
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, 462 066, India.
| | - Ragendu V
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, 462 066, India.
| | - Mohan Kumar
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, 462 066, India.
| | - Rajib Molla
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, 462 066, India.
| | - Surya Dev Mishra
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, 462 066, India.
| | - Sneha Basa
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, 462 066, India.
| | - Vishal Rai
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, 462 066, India.
| |
Collapse
|
20
|
Mao Y, Wei D, Fu F, Wang H, Sun Z, Huang Z, Wang Y, Zhang G, Zhang X, Jiang B, Chen H. Development of a MMAE-based antibody-drug conjugate targeting B7-H3 for glioblastoma. Eur J Med Chem 2023; 257:115489. [PMID: 37235999 DOI: 10.1016/j.ejmech.2023.115489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/11/2023] [Accepted: 05/13/2023] [Indexed: 05/28/2023]
Abstract
B7-H3 (immunoregulatory protein B7-homologue 3) is overexpressed in many cancer cells with limited expression in normal tissues, considered to be a promising target for tumor therapeutics. Clinical trials of antibody-drug conjugates (ADCs) against different targets for glioblastoma have been investigated and showed potent efficacies. In this study, we developed a homogeneous ADC 401-4 with a drug-to-antibody ratio (DAR) of 4, which was prepared by conjugation of Monomethyl auristatin E (MMAE) to a humanized anti-B7-H3 mAb 401, through a divinylsulfonamide-mediated disulfide re-bridging approach. In vitro studies, 401-4 displayed specific killing against B7-H3-expressing tumors and was more effective in cells with higher levels of B7-H3 for different glioblastoma cells. 401-4 was furthered labeled with Cy5.5 to yield a fluorescent conjugate 401-4-Cy5.5. The in vivo imaging studies showed that the conjugate accumulated in tumor regions and exhibited the ability to target-specific delivery. In addition, significant antitumor activities for 401-4 was observed against U87-derived tumor xenografts in a dose dependent manner.
Collapse
Affiliation(s)
- Yurong Mao
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, 201210, China; School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Ding Wei
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, 201210, China; School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Fengqing Fu
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, NO.178 Ganjiang Road, Suzhou, 215000, China; State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, 215123, China
| | - Huihui Wang
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, 201210, China; School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Ziyu Sun
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, 201210, China; School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Ziyi Huang
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, NO.178 Ganjiang Road, Suzhou, 215000, China
| | - Yan Wang
- State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, 215123, China; Department of Clinical Pharmacology, The First Affiliated Hospital of Soochow University, NO.899 Pinghai Road, Suzhou, 215006, China
| | - Guangbo Zhang
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, NO.178 Ganjiang Road, Suzhou, 215000, China
| | - Xueguang Zhang
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, NO.178 Ganjiang Road, Suzhou, 215000, China; State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, 215123, China; Suzhou Bright Scistar Antibody Biotech. Co., Ltd, Block 7, NO.17 ChangPing Road, Suzhou, 215152, China.
| | - Biao Jiang
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, 201210, China; School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China; Shanghai Clinical Research and Trial Center, Shanghai, 201210, China.
| | - Hongli Chen
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, 201210, China; School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China; Shanghai Clinical Research and Trial Center, Shanghai, 201210, China.
| |
Collapse
|
21
|
Nieto‐Jiménez C, Sanvicente A, Díaz‐Tejeiro C, Moreno V, lopez de Sá A, Calvo E, Martínez‐López J, Pérez‐Segura P, Ocaña A. Uncovering therapeutic opportunities in the clinical development of antibody-drug conjugates. Clin Transl Med 2023; 13:e1329. [PMID: 37740463 PMCID: PMC10517221 DOI: 10.1002/ctm2.1329] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 06/28/2023] [Accepted: 07/06/2023] [Indexed: 09/24/2023] Open
Abstract
INTRODUCTION Antibody-drug conjugates (ADCs) are a family of therapeutic agents that have demonstrated clinical activity in several indications. MATERIAL AND METHODS In this article, we performed a deep analysis of their clinical landscape matched with public genomic human datasets from tumour antigen targets (TATs), to identify empty areas for clinical development. RESULTS We observed that TATs used in haematological malignancies were more specific than the ones developed in solid cancers. Those included CD19, CD22, CD30, CD33 and CD79b. In solid tumours, we identified TATs, with approved ADCs, widely expressed in non-explored niche indications like Enfortumab vedotin (anti-Nectin4) in lung or cervical cancer; Tisotumab vedotin (anti-TF) in glioblastoma or pancreatic cancer; and Sacituzumab govitecan (anti-TROP2) in pancreatic, gastric, thyroid or endometrial cancer, among others. Similarly, niche indications for ADCs in clinical development included targets for CD71, PSMA, PTK7 or CD74, in tumours like breast, lung, stomach or colon. Some of these TATs were essential for the survival of tumour cells like CD71, PSMA and PTK7. CONCLUSIONS In summary, our study opens the door for further evaluation of ADCs in several indications not explored before.
Collapse
Affiliation(s)
- Cristina Nieto‐Jiménez
- Experimental Therapeutics UnitHospital Clínico San Carlos (HCSC) Instituto de investigación sanitaria San Carlos (IdISSC)MadridSpain
| | - Adrián Sanvicente
- Experimental Therapeutics UnitHospital Clínico San Carlos (HCSC) Instituto de investigación sanitaria San Carlos (IdISSC)MadridSpain
- Facultad Ciencias QuímicasUniversidad ComplutenseMadridSpain
| | - Cristina Díaz‐Tejeiro
- Experimental Therapeutics UnitHospital Clínico San Carlos (HCSC) Instituto de investigación sanitaria San Carlos (IdISSC)MadridSpain
| | - Víctor Moreno
- START Madrid‐FJDHospital Fundación Jiménez DíazMadridSpain
| | - Alfonso lopez de Sá
- Experimental Therapeutics UnitHospital Clínico San Carlos (HCSC) Instituto de investigación sanitaria San Carlos (IdISSC)MadridSpain
| | - Emiliano Calvo
- START Madrid‐FJDHospital Fundación Jiménez DíazMadridSpain
| | - Joaquín Martínez‐López
- Hospital Universitario 12 de Octubre‐Centro Nacional de Investigaciones Oncológicas (H12O‐CNIO) Haematological Malignancies Clinical Research UnitSpanish National Cancer Research CentreMadridSpain
- Department of Hematology, Hospital Universitario 12 de Octubre‐Universidad ComplutenseInstituto de Investigación Sanitaria Hospital 12 de Octubre (imas12)MadridSpain
| | - Pedro Pérez‐Segura
- Experimental Therapeutics UnitHospital Clínico San Carlos (HCSC) Instituto de investigación sanitaria San Carlos (IdISSC)MadridSpain
| | - Alberto Ocaña
- Experimental Therapeutics UnitHospital Clínico San Carlos (HCSC) Instituto de investigación sanitaria San Carlos (IdISSC)MadridSpain
- START Madrid‐FJDHospital Fundación Jiménez DíazMadridSpain
- Breast cancerCentro de Investigación Biomédica en Red en Oncología (CIBERONC)MadridSpain
| |
Collapse
|
22
|
Sun M, Li Y, Zhang W, Gu X, Wen R, Zhang K, Mao J, Huang C, Zhang X, Nie M, Zhang Z, Qi C, Cai K, Liu G. Allomelanin-based biomimetic nanotherapeutics for orthotopic glioblastoma targeted photothermal immunotherapy. Acta Biomater 2023; 166:552-566. [PMID: 37236575 DOI: 10.1016/j.actbio.2023.05.037] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 05/09/2023] [Accepted: 05/19/2023] [Indexed: 05/28/2023]
Abstract
Immune checkpoint blockade (ICB) therapy has shown great potential in the treatment of malignant tumors, but its therapeutic effect on glioblastoma (GBM) is unsatisfactory because of the low immunogenicity and T cell infiltration, as well as the presence of blood-brain barrier (BBB) that blocks most of ICB agents to the GBM tissues. Herein, we developed a biomimetic nanoplatform of AMNP@CLP@CCM for GBM-targeted photothermal therapy (PTT) and ICB synergistic therapy by loading immune checkpoint inhibitor CLP002 into the allomelanin nanoparticles (AMNPs) and followed by coating cancer cell membranes (CCM). The resulting AMNP@CLP@CCM can successfully cross the BBB and deliver CLP002 to GBM tissues due to the homing effect of CCM. As a natural photothermal conversion agent, AMNPs are used for tumor PTT. The increased local temperature by PTT not only enhances BBB penetration but also upregulates the PD-L1 level on GBM cells. Importantly, PTT can effectively stimulate immunogenic cell death to induce tumor-associated antigen exposure and promote T lymphocyte infiltration, which can further amplify the antitumor immune responses of GBM cells to CLP002-mediated ICB therapy, resulting in significant growth inhibition of the orthotopic GBM. Therefore, AMNP@CLP@CCM has great potential for the treatment of orthotopic GBM by PTT and ICB synergistic therapy. STATEMENT OF SIGNIFICANCE: The effect of ICB therapy on GBM is limited by the low immunogenicity and insufficient T-cell infiltration. Here we developed a biomimetic nanoplatform of AMNP@CLP@CCM for GBM-targeted PTT and ICB synergistic therapy. In this nanoplatform, AMNPs are used as both photothermal conversion agents for PTT and nanocarriers for CLP002 delivery. PTT not only enhances BBB penetration but also upregulates the PD-L1 level on GBM cells by increasing local temperature. Additionally, PTT also induces tumor-associated antigen exposure and promotes T lymphocyte infiltration to amplify the antitumor immune responses of GBM cells to CLP002-mediated ICB therapy, resulting in significant growth inhibition of the orthotopic GBM. Thus, this nanoplatform holds great potential for orthotopic GBM treatment.
Collapse
Affiliation(s)
- Maoyuan Sun
- Department of Neurosurgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Yan Li
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Wenli Zhang
- Department of Radiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Xiang Gu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Rong Wen
- Department of Neurosurgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Ke Zhang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Jinning Mao
- Health management center, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China
| | - Chengyao Huang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Xiong Zhang
- Department of Neurology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China
| | - Mao Nie
- Department of Orthopedics, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China
| | - Zhiwen Zhang
- School of Pharmacy & Key Laboratory of Smart Drug Delivery (Ministry of Education), Fudan University, Shanghai, 201203, China
| | - Chao Qi
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China.
| | - Kaiyong Cai
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China.
| | - Guodong Liu
- Department of Neurosurgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
23
|
Huang CH, Chang E, Zheng L, Raj JGJ, Wu W, Pisani LJ, Daldrup-Link HE. Tumor protease-activated theranostic nanoparticles for MRI-guided glioblastoma therapy. Theranostics 2023; 13:1745-1758. [PMID: 37064879 PMCID: PMC10091873 DOI: 10.7150/thno.79342] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 02/28/2023] [Indexed: 04/18/2023] Open
Abstract
Rationale: As a cancer, Glioblastoma (GBM) is a highly lethal and difficult-to-treat. With the aim of improving therapies to GBM, we developed novel and target-specific theranostic nanoparticles (TNPs) that can be selectively cleaved by cathepsin B (Cat B) to release the potent toxin monomethyl auristatin E (MMAE). Methods: We synthesized TNPs composed of a ferumoxytol-based nanoparticle carrier and a peptide prodrug with a Cat-B-responsive linker and the tubulin inhibitor MMAE. We hypothesized that intratumoral Cat B can cleave our TNPs and release MMAE to kill GBM cells. The ferumoxytol core enables in vivo drug tracking with magnetic resonance imaging (MRI). We incubated U87-MG GBM cells with TNPs or ferumoxytol and evaluated the TNP content in the cells with transmission electron microscopy and Prussian blue staining. In addition, we stereotaxically implanted 6- to 8-week-old nude mice with U87-MG with U87-MG GBM cells that express a fusion protein of Green Fluorescence Protein and firefly Luciferase (U87-MG/GFP-fLuc). We then treated the animals with an intravenous dose of TNPs (25 mg/kg of ferumoxytol, 0.3 mg/kg of MMAE) or control. We also evaluated the combination of TNP treatment with radiation therapy. We performed MRI before and after TNP injection. We compared the results for tumor and normal brain tissue between the TNP and control groups. We also monitored tumor growth for a period of 21 days. Results: We successfully synthesized TNPs with a hydrodynamic size of 41 ± 5 nm and a zeta potential of 6 ± 3 mV. TNP-treated cells demonstrated a significantly higher iron content than ferumoxytol-treated cells (98 ± 1% vs. 3 ± 1% of cells were iron-positive, respectively). We also found significantly fewer live attached cells in the TNP-treated group (3.8 ± 2.0 px2) than in the ferumoxytol-treated group (80.0 ± 14.5 px2, p < 0001). In vivo MRI studies demonstrated a decline in the tumor signal after TNP (T2= 28 ms) but not control (T2= 32 ms) injections. When TNP injection was combined with radiation therapy, the tumor signals dropped further (T2 = 24 ms). The combination therapy of radiation therapy and TNPs extended the median survival from 14.5 days for the control group to 45 days for the combination therapy group. Conclusion: The new cleavable TNPs reported in this work accumulate in GBM, cause tumor cell death, and have synergistic effects with radiation therapy.
Collapse
Affiliation(s)
- Ching-Hsin Huang
- Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Stanford University, CA, U.S.A
| | - Edwin Chang
- Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Stanford University, CA, U.S.A
- Stanford Center for Innovation in In vivo Imaging (SCi 3 ) at Porter, Canary Center for Cancer Early Detection, Stanford University, CA, U.S.A
| | - Li Zheng
- Sarafan Chemistry, Engineering & Medicine for Human Health (Chem-H), Stanford University, Stanford, CA, U.S.A
| | - Joe Gerald Jesu Raj
- Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Stanford University, CA, U.S.A
| | - Wei Wu
- Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Stanford University, CA, U.S.A
| | - Laura J. Pisani
- Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Stanford University, CA, U.S.A
- Stanford Center for Innovation in In vivo Imaging (SCi 3 ) at Clark, James H. Clark Center, Stanford University, CA, U.S.A
| | - Heike E. Daldrup-Link
- Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Stanford University, CA, U.S.A
| |
Collapse
|
24
|
Hashad RA, Jap E, Casey JL, Candace Ho YT, Wright A, Thalmann C, Sleeman M, Lupton DW, Hagemeyer CE, Cryle MJ, Robert R, Alt K. Chemoselective Methionine Labelling of Recombinant Trastuzumab Shows High In Vitro and In Vivo Tumour Targeting. Chemistry 2023; 29:e202202491. [PMID: 36451579 PMCID: PMC10946977 DOI: 10.1002/chem.202202491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 11/28/2022] [Accepted: 11/29/2022] [Indexed: 12/03/2022]
Abstract
A highly effective 2-step system for site-specific antibody modification and conjugation of the monoclonal antibody Herceptin (commercially available under Trastuzumab) in a cysteine-independent manner was used to generate labelled antibodies for in vivo imaging. The first step contains redox-activated chemical tagging (ReACT) of thioethers via engineered methionine residues to introduce specific alkyne moieties, thereby offering a novel easy way to fundamentally change the process of antibody bioconjugation. The second step involves modification of the introduced alkyne via azide-alkyne cycloaddition 'click' conjugation. The versatility of this 2-step approach is demonstrated here by the selective incorporation of a fluorescent dye but can also be applied to a wide variety of different conjugation partners depending on the desired application in a facile manner. Methionine-modified antibodies were characterised in vitro, and the diagnostic potential of the most promising variant was further analysed in an in vivo xenograft animal model using a fluorescence imaging modality. This study demonstrates how methionine-mediated antibody conjugation offers an orthogonal and versatile route to the generation of tailored antibody conjugates with in vivo applicability.
Collapse
Affiliation(s)
- Rania A. Hashad
- Australian Centre for Blood DiseasesCentral Clinical SchoolMonash UniversityMelbourneVictoria3004Australia
- Department of Pharmaceutics and Industrial PharmacyFaculty of PharmacyAin Shams University1181CairoEgypt
| | - Edwina Jap
- Australian Centre for Blood DiseasesCentral Clinical SchoolMonash UniversityMelbourneVictoria3004Australia
| | - Joanne L. Casey
- Department of PhysiologyBiomedicine Discovery InstituteMonash UniversityClaytonVictoria3800Australia
| | - Y. T. Candace Ho
- Department of Biochemistry and Molecular BiologyBiomedicine Discovery InstituteMonash UniversityClaytonVictoria 3800 (Australia)EMBL AustraliaMonash UniversityClaytonVictoria3800Australia
- ARC Centre of Excellence for Innovations in Peptide and Protein ScienceMonash UniversityClayton3800VictoriaAustralia
| | - Alexander Wright
- School of ChemistryMonash UniversityClayton3800VictoriaAustralia
| | - Claudia Thalmann
- Department of PhysiologyBiomedicine Discovery InstituteMonash UniversityClaytonVictoria3800Australia
| | - Mark Sleeman
- Department of PhysiologyBiomedicine Discovery InstituteMonash UniversityClaytonVictoria3800Australia
| | - David W. Lupton
- School of ChemistryMonash UniversityClayton3800VictoriaAustralia
| | - Christoph E. Hagemeyer
- Australian Centre for Blood DiseasesCentral Clinical SchoolMonash UniversityMelbourneVictoria3004Australia
| | - Max J. Cryle
- Department of Biochemistry and Molecular BiologyBiomedicine Discovery InstituteMonash UniversityClaytonVictoria 3800 (Australia)EMBL AustraliaMonash UniversityClaytonVictoria3800Australia
- ARC Centre of Excellence for Innovations in Peptide and Protein ScienceMonash UniversityClayton3800VictoriaAustralia
| | - Remy Robert
- Department of PhysiologyBiomedicine Discovery InstituteMonash UniversityClaytonVictoria3800Australia
| | - Karen Alt
- Australian Centre for Blood DiseasesCentral Clinical SchoolMonash UniversityMelbourneVictoria3004Australia
| |
Collapse
|
25
|
Yang Y, Wang S, Ma P, Jiang Y, Cheng K, Yu Y, Jiang N, Miao H, Tang Q, Liu F, Zha Y, Li N. Drug conjugate-based anticancer therapy - Current status and perspectives. Cancer Lett 2023; 552:215969. [PMID: 36279982 DOI: 10.1016/j.canlet.2022.215969] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 10/08/2022] [Accepted: 10/13/2022] [Indexed: 11/07/2022]
Abstract
Drug conjugates are conjugates comprising a tumor-homing carrier tethered to a cytotoxic agent via a linker that are designed to deliver an ultra-toxic payload directly to the target cancer cells. This strategy has been successfully used to increase the therapeutic efficacy of cytotoxic agents and reduce their toxic side effects. Drug conjugates are being developed worldwide, with the potential to revolutionize current cancer treatment strategies. Antibody-drug conjugates (ADCs) have developed rapidly, and 14 of them have received market approval since the first approval event by the Food and Drug Administration in 2000. However, there are some limitations in the use of antibodies as carriers. Other classes of drug conjugates are emerging, such as targeted drugs conjugated with peptides (peptide-drug conjugates, PDCs) and polymers (polymer-drug conjugates, PolyDCs) with the remaining constructs similar to those of ADCs. These novel drug conjugates are gaining attention because they overcome the limitations of ADCs. This review summarizes the current state and advancements in knowledge regarding the design, constructs, and clinical efficacy of different drug conjugates.
Collapse
Affiliation(s)
- Yuqi Yang
- NHC Key Laboratory of Pulmonary Immune-related Diseases, Guizhou Provincial People's Hospital, Guiyang, 550002, China
| | - Shuhang Wang
- National Central Cancer Registry, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Peiwen Ma
- National Central Cancer Registry, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Yale Jiang
- National Central Cancer Registry, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Keman Cheng
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, China
| | - Yue Yu
- National Central Cancer Registry, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Ning Jiang
- National Central Cancer Registry, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Huilei Miao
- National Central Cancer Registry, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Qiyu Tang
- National Central Cancer Registry, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Funan Liu
- First Affiliated Hospital of China Medical University, Shenyang, 110002, China
| | - Yan Zha
- NHC Key Laboratory of Pulmonary Immune-related Diseases, Guizhou Provincial People's Hospital, Guiyang, 550002, China.
| | - Ning Li
- National Central Cancer Registry, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| |
Collapse
|
26
|
Zhang X, Zhu X, He Y, Zhang Y, Huang S, Yi X, Li Y, Hou Z, Fan Z. Biomimetic dual-responsive bioengineered nanotheranostics for intracellular cascade-synthesizing chemo-drugs and efficient oncotherapy. J Mater Chem B 2022; 11:119-130. [PMID: 36504220 DOI: 10.1039/d2tb01943d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Intracellular-synthesized chemo-drugs based on the inherent characteristics of the tumor microenvironment (TME) have been extensively applied in oncotherapy. However, combining other therapeutic strategies to convert nontoxic small molecules into toxic small-molecule chemo-drugs in the TME is still a huge challenge. To address this issue, herein we have developed a biomimetic dual-responsive bioengineered nanotheranostics system via the supramolecular co-assembly of the nontoxic small-molecule 1,5-dihydroxynaphthalene (DHN) and small-molecule photosensitizer indocyanine green (ICG) followed by surface cloaking through red blood cell membranes (RBCs) for intracellular cascade-synthesizing chemo-drugs and efficient oncotherapy. Such nanotheranostics with a suitable diameter, core-shell structure, ultrahigh dual-drug payload rate, and excellent stability can efficiently accumulate in tumor regions and then internalize into tumor cells. Under the dual stimulations of near-infrared laser irradiation and acidic lysosomes, the nanotheranostics system exhibited exceptional instability under heat-primed membrane rupture and pH decrease, thereby achieving rapid disassembly and on-demand drug release. Furthermore, the released ICG can efficiently convert 3O2 into 1O2. After that, the generated 1O2 can efficiently oxidize the released nontoxic DHN into the highly toxic chemo-drug juglone, thereby realizing intracellular cascade-synthesizing chemo-drugs and synergistic photodynamic-chemotherapy while reducing detrimental side effects on normal cells or tissues. Overall, it is envisioned that RBC-cloaked nanotheranostics with intracellular cascade-synthesizing chemo-drugs can provide a promising strategy for intracellular chemo-drug synthesis-based oncotherapy.
Collapse
Affiliation(s)
- Xin Zhang
- College of Materials, Xiamen University, Xiamen, 361005, China.
| | - Xinglin Zhu
- College of Materials, Xiamen University, Xiamen, 361005, China.
| | - Yuan He
- Department of Cardiothoracic Surgery, the Affiliated Dongnan Hospital of Xiamen University, Zhangzhou, 363005, China
| | - Ying Zhang
- Department of Radiology, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, 271016, China.
| | - Shan Huang
- Xiamen Key Laboratory of Traditional Chinese Bio-engineering, Xiamen Medical College, Xiamen, 361021, China.
| | - Xue Yi
- Institute of Respiratory Diseases, Xiamen Medical College, Xiamen, 361021, China
| | - Ying Li
- Xiamen Key Laboratory of Traditional Chinese Bio-engineering, Xiamen Medical College, Xiamen, 361021, China.
| | - Zhenqing Hou
- College of Materials, Xiamen University, Xiamen, 361005, China.
| | - Zhongxiong Fan
- College of Materials, Xiamen University, Xiamen, 361005, China. .,Institute of Materia Medica & College of Life Science and Technology, Xinjiang University, Urumqi, 830017, China
| |
Collapse
|
27
|
Augustin JE, Soussan P, Bass AJ. Targeting the complexity of ERBB2 biology in gastroesophageal carcinoma. Ann Oncol 2022; 33:1134-1148. [PMID: 35963482 DOI: 10.1016/j.annonc.2022.08.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 08/02/2022] [Accepted: 08/02/2022] [Indexed: 12/20/2022] Open
Abstract
ERBB2 is the most prominent therapeutic target in gastroesophageal adenocarcinoma (GEA). For two decades, trastuzumab was the only treatment available for GEA overexpressing ERBB2. Several drugs showing evidence of efficacy over or in complement to trastuzumab in breast cancer failed to show clinical benefit in GEA. This resistance to anti-ERBB2 therapy is peculiarly recurrent in GEA and is mostly due to tumor heterogeneity with the existence of low expressing ERBB2 tumor clones and loss of ERBB2 over time. The development of new ERBB2 testing strategies and the use of antibody-drug conjugates having a bystander effect are providing new tools to fight heterogeneity in ERBB2-positive GEA. Co-amplifications of tyrosine kinase receptors, alterations in mitogen-activated protein kinase (MAPK) and phosphatidylinositol-3-kinase (PI3K) signaling pathways and in proteins controlling cell cycle are well known to contribute resistance to anti-ERBB2 therapy, and they can be targeted by dual therapy. Recently described, NF1 mutations are responsible for Ras phosphorylation and activation and can also be targeted by MEK/ERK inhibition along with anti-ERBB2 therapy. Multiple lines of evidence suggest that immune mechanisms involving antibody-dependent cell-mediated cytotoxicity are preponderant over intracellular signaling in anti-ERBB2 therapy action. A better comprehension of these mechanisms could leverage immune action of anti-ERBB2 therapy and elucidate efficacy of combinations associating immunotherapy and anti-ERBB2 therapy, as suggested by the recent intermediate positive results of the KEYNOTE-811 trial.
Collapse
Affiliation(s)
- J E Augustin
- Department of Medical Oncology, Dana Farber Cancer Institute, Harvard Medical School, Boston, USA; Department of Pathology, Henri Mondor University Hospital, Assistance Publique - Hôpitaux de Paris, Créteil, France; INSERM U955 Team 18, Université Paris Est Créteil - Faculté de Médecine, Créteil, France
| | - P Soussan
- Institut National de la Santé et de la Recherche Médicale U938, Centre de Recherche Saint-Antoine, Sorbonne Université - Faculté Saint Antoine, Paris, France; Department of Virology, GHU Paris-Est, Assistance Publique - Hôpitaux de Paris, Paris, France
| | - A J Bass
- Department of Medical Oncology, Dana Farber Cancer Institute, Harvard Medical School, Boston, USA; Herbert Irving Comprehensive Cancer Center, Columbia University, New York, USA.
| |
Collapse
|
28
|
Chavda VP, Solanki HK, Davidson M, Apostolopoulos V, Bojarska J. Peptide-Drug Conjugates: A New Hope for Cancer Management. Molecules 2022; 27:7232. [PMID: 36364057 PMCID: PMC9658517 DOI: 10.3390/molecules27217232] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/29/2022] [Accepted: 10/18/2022] [Indexed: 08/07/2023] Open
Abstract
Cancer remains the leading cause of death worldwide despite advances in treatment options for patients. As such, safe and effective therapeutics are required. Short peptides provide advantages to be used in cancer management due to their unique properties, amazing versatility, and progress in biotechnology to overcome peptide limitations. Several appealing peptide-based therapeutic strategies have been developed. Here, we provide an overview of peptide conjugates, the better equivalents of antibody-drug conjugates, as the next generation of drugs for required precise targeting, enhanced cellular permeability, improved drug selectivity, and reduced toxicity for the efficient treatment of cancers. We discuss the basic components of drug conjugates and their release action, including the release of cytotoxins from the linker. We also present peptide-drug conjugates under different stages of clinical development as well as regulatory and other challenges.
Collapse
Affiliation(s)
- Vivek P. Chavda
- Department of Pharmaceutics and Pharmaceutical Technology, L M College of Pharmacy, Ahmedabad 380008, Gujarat, India
| | - Hetvi K. Solanki
- Department of Pharmaceutics and Pharmaceutical Technology, L M College of Pharmacy, Ahmedabad 380008, Gujarat, India
| | - Majid Davidson
- Institute for Health and Sport, Victoria University, Melbourne, VIC 3030, Australia
| | - Vasso Apostolopoulos
- Institute for Health and Sport, Victoria University, Melbourne, VIC 3030, Australia
- Immunology Program, Australian Institute for Musculoskeletal Science, Melbourne, VIC 3021, Australia
| | - Joanna Bojarska
- Institute of General and Ecological Chemistry, Faculty of Chemistry, Lodz University of Technology, 116 Zeromskiego Street, 90-924 Lodz, Poland
| |
Collapse
|