1
|
Zhou F, He X, Zhou M, Li N, Wang Q, Zhang X, Lian Z. Generation of perthiyl radicals for the synthesis of unsymmetric disulfides. Nat Commun 2025; 16:23. [PMID: 39747023 PMCID: PMC11695942 DOI: 10.1038/s41467-024-55310-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Accepted: 12/05/2024] [Indexed: 01/04/2025] Open
Abstract
Unsymmetric disulfides are prevalent in natural products and are essential in medicinal chemistry and materials science, but their robust synthesis poses significant challenges. In this paper, we report an expeditous transition-metal-free methodology for synthesizing unsymmetric disulfides through the addition of perthiyl radicals to alkenes. This study marks the use of generating perthiyl radicals by reacting SO2 with unactivated alkyl (pseudo)halides (Cl/Br/I/OTs). Various primary, secondary and tertiary alkyl (pseudo)halides substituted with different functional groups successfully function as suitable reactants. The formation of perthiyl radicals and their involvement in the reaction process are verified through mechanistic studies and DFT calculations. Overall, this method leverages readily available alkyl electrophiles and alkenes alongside SO2 in a single reaction setup to efficiently form both carbon-sulfur and sulfur-sulfur bonds simultaneously.
Collapse
Affiliation(s)
- Fei Zhou
- Department of Dermatology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaochun He
- Department of Dermatology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Mi Zhou
- Department of Dermatology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Na Li
- Warshel Institute for Computational Biology, School of Medicine, The Chinese University of Hong Kong, Shenzhen, China
| | - Qingqing Wang
- Department of Dermatology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Xuemei Zhang
- Department of Dermatology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China.
| | - Zhong Lian
- Department of Dermatology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
2
|
Liu L, Hou J, Ma Y, Xu WH, Liu JQ, Zhu D. Collaborative Reduction-Induced Nickel-Catalytic Selective C-S Coupling of Aryl Di/Trithiosulfonates with Aryl Halides. Org Lett 2024. [PMID: 39721973 DOI: 10.1021/acs.orglett.4c04390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2024]
Abstract
Metal-catalytic conversion of polysulfide reagents is a major challenge in organic synthesis due to its challenging activation modes of multiple S-S bonds. The utilization of aryl di- and trithiosulfonates in nickel-catalyzed reductive coupling with aryl halides has been unexplored. Herein, we unprecedentedly describe PPh3 and Zn-collaborative reduction-induced nickel-catalytic selective C-S coupling of aryl di/trithiosulfonates with aryl halides to access sulfides over common disulfides or trisulfides. Diverse mechanistic studies indicate that the key design of such a reaction could be attributed to the employment of PPh3 and MgCl2, which collaborate with Zn for the improved reduction potential that enables selective reductive cleavage of PhSO2(S)naryl (n = 2, 3) to electrophilic sulfur species for reductive sulfuration in a controllable fashion.
Collapse
Affiliation(s)
- Lulu Liu
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, People's Republic of China
| | - Jiaqi Hou
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, People's Republic of China
| | - Yingying Ma
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, People's Republic of China
| | - Wen-Hua Xu
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, People's Republic of China
| | - Ji-Quan Liu
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, People's Republic of China
| | - Dianhu Zhu
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, People's Republic of China
| |
Collapse
|
3
|
Martínez-Balart P, Velasco-Rubio Á, Barbeira-Arán S, Jiménez-Cristóbal H, Fañanás-Mastral M. Chemodivergent alkylation of trifluoromethyl alkenes via photocatalytic coupling with alkanes. GREEN CHEMISTRY : AN INTERNATIONAL JOURNAL AND GREEN CHEMISTRY RESOURCE : GC 2024; 26:11196-11205. [PMID: 39398964 PMCID: PMC11465006 DOI: 10.1039/d4gc04176c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 10/04/2024] [Indexed: 10/15/2024]
Abstract
gem-Difluoroalkenes and trifluoromethyl alkanes are prominent structures in biologically active compounds. Radical alkylation of α-trifluoromethyl alkenes represents a useful strategy to access these structures. However, reported methods have relied on the use of pre-functionalized radical precursors and examples involving the use of simple hydrocarbons as coupling partners are elusive. Here we report a chemodivergent methodology based on the direct activation of C(sp3)-H bonds enabled by HAT photoredox catalysis. This protocol provides an efficient platform for preparing both gem-difluoroalkenes and trifluoromethyl alkanes from ubiquitous hydrocarbon feedstocks, including gaseous alkanes. Importantly, chemoselectivity is easily achieved by simple modification of reaction conditions and/or additives.
Collapse
Affiliation(s)
- Pol Martínez-Balart
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Universidade de Santiago de Compostela 15782 Santiago de Compostela Spain
| | - Álvaro Velasco-Rubio
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Universidade de Santiago de Compostela 15782 Santiago de Compostela Spain
| | - Sergio Barbeira-Arán
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Universidade de Santiago de Compostela 15782 Santiago de Compostela Spain
| | - Hugo Jiménez-Cristóbal
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Universidade de Santiago de Compostela 15782 Santiago de Compostela Spain
| | - Martín Fañanás-Mastral
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Universidade de Santiago de Compostela 15782 Santiago de Compostela Spain
| |
Collapse
|
4
|
Tu JL. Recent advances in photocatalytic and transition metal-catalyzed synthesis of disulfide compounds. Org Biomol Chem 2024. [PMID: 39498810 DOI: 10.1039/d4ob01362j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2024]
Abstract
Disulfide bonds are essential in protein folding, cellular redox balance, materials science, and drug development. Despite existing synthetic methods, the efficient and selective synthesis of unsymmetrical disulfides remains challenging. This review highlights innovative approaches in visible light photocatalysis, including decarboxylation, deoxydisulfidation of alcohols, and direct C-H disulfidation, showcasing broad substrate applicability and functional group tolerance under mild conditions. Additionally, it explores transition metal-catalyzed systems with copper, nickel, palladium, chromium, Iridium, Rhodium molybdenum, and scandium, offering effective strategies for unsymmetrical disulfide bond formation and late-stage functionalization of complex molecules through reductive coupling, selective oxidation, and novel insertion reactions.
Collapse
Affiliation(s)
- Jia-Lin Tu
- School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China.
| |
Collapse
|
5
|
Niu T, Zhang J, He Y, Hong M, Zhu L, Lan Y. Chloride Induced S-C bond selective cleavage of disulfides to access unsymmetrical β-fluorodisulfides. Chem Commun (Camb) 2024; 60:12714-12717. [PMID: 39397579 DOI: 10.1039/d4cc04065a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Selective S-C bond cleavage of disulfides presents a significant challenge due to the fact that S-S bonds are weaker than S-C bonds. In this study, we present a novel chloride-induced Selectfluor radical cation process for converting readily available symmetrical disulfides into unsymmetrical β-fluorodisulfides through selective S-C bond cleavage. Mechanistic investigations and DFT calculations suggest the involvement of a chlorinated disulfide radical, which subsequently reacts with alkenes to form β-fluorodisulfides via the atom transfer radical addition (ATRA) mechanism. Furthermore, this method exhibits broad functional group tolerance, enabling the synthesis of various target products in moderate to good yields.
Collapse
Affiliation(s)
- Tengfei Niu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China.
| | - Jiayuan Zhang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China.
| | - Yunpeng He
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China.
| | - Mei Hong
- College of Chemical Engineering, Nanjing Forestry University, Nanjing, P. R. China
| | - Lei Zhu
- College of Pharmacy, Third Military Medical University, Shanghai, P. R. China
| | - Yu Lan
- College of Chemistry, and Pingyuan Laboratory, Zhengzhou University, Zhengzhou, Henan, P. R. China.
| |
Collapse
|
6
|
Li H, Peng M, Li J, Wang L, Do H, Ni K, Wang M, Yuan Z, Zhao T, Zhang X, Zhang X, Hu Z, Ren F, An J. SO 2F 2 mediated click chemistry enables modular disulfide formation in diverse reaction media. Nat Commun 2024; 15:8325. [PMID: 39333088 PMCID: PMC11436863 DOI: 10.1038/s41467-024-52606-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 09/12/2024] [Indexed: 09/29/2024] Open
Abstract
The dynamic disulfide linkage plays a vital role in various biological processes as well as drugs and biomaterials. The conversion of thiols to their corresponding disulfides is a hallmark of sulfur chemistry, but notoriously difficult to control. Achieving optimal reactivity and selectivity continues to pose significant challenges. Here, we describe a click chemistry for disulfide formation from thiols in both batch and flow-mode using SO2F2, which display exceptional selectivity toward disulfide formation through an effective nucleophilic substitution cascade. This reaction's unique characteristics satisfy the stringent click-criteria with its high thermodynamic driving force, straightforward conditions, wide scope, quantitative yields, exceptional chemoselectivity, and non-chromatographic purification process. The modular synthesis of symmetrical, unsymmetrical, cyclic and polydisulfides is demonstrated, along with the formation of disulfide cross-linked hydrogels.
Collapse
Affiliation(s)
- Hengzhao Li
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100083, China
- College of Plant Protection, Northwest A&F University, Yangling, 712100, China
- Food Laboratory of Zhongyuan, Luohe, 462000, China
| | - Mengqi Peng
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100083, China
| | - Junyu Li
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100083, China
| | - Lijun Wang
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100083, China
| | - Hainam Do
- Department of Chemical and Environmental Engineering, University of Nottingham Ningbo China, Ningbo, 315100, China
| | - Ke Ni
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100083, China
| | - Minlong Wang
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100083, China
| | - Zhankui Yuan
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100083, China
| | - Tianxiao Zhao
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100083, China
| | - Xiaohe Zhang
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100083, China
| | - Xiaoxu Zhang
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100083, China
| | - Zhaonong Hu
- College of Plant Protection, Northwest A&F University, Yangling, 712100, China
| | - Fazheng Ren
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100083, China
| | - Jie An
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100083, China.
| |
Collapse
|
7
|
Chen W, Xu J, Rao W, Shen SS, Yang ZY, Ackermann L, Wang SY. Copper(0)-Catalyzed Reductive Coupling of Disulfurating Reagents and (Hetero)aryl/Alkyl Halides. Org Lett 2024. [PMID: 39291854 DOI: 10.1021/acs.orglett.4c03032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Herein, we reported a copper(0)-catalyzed reductive coupling of disulfurating reagents and (hetero)aryl/alkyl halides. Copper(0) can be directly inserted into tetrasulfide and then undergoes reductive coupling with (hetero)aryl Iodides to construct disulfide. The method features the unprecedented use of copper(0)-catalyzed disulfurating reagents (tetrasulfides) in cross-coupling chemistry and is convenient with broad substrate scopes, even applicable to different halogenated hydrocarbons. It is worth noting that the methodology is practical with the late-stage modification of bioactive scaffolds of pharmaceuticals. In the meantime, the synthesis of disulfides is successfully achieved on a gram scale, indicating the approach is highly valuable.
Collapse
Affiliation(s)
- Wang Chen
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China
| | - Jiuwen Xu
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China
| | - Weidong Rao
- Key Laboratory of Biomass-Based Green Fuels and Chemicals, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Shu-Su Shen
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 99, Xuefu Road, Huqiu District, Suzhou 215009, P. R. China
| | - Zhao-Ying Yang
- Soochow College, Soochow University, Suzhou, 215123, China
| | - Lutz Ackermann
- Wöhler Research Institute for Sustainable Chemistry, Georg-August-Universität Göttingen, Tammannstraße 2, 37077 Göttingen, Germany
| | - Shun-Yi Wang
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China
| |
Collapse
|
8
|
Yue Z, Lu G, Wei W, Huang Y, Chen Z, Dingwall F, Shao S, Fan X. Engineered Half-Unit-Cell MoS 2/ZnIn 2S 4 Monolayer Photocatalysts and Adsorbed Hydroxyl Radicals-Assisted Activation of C α-H Bond for Efficient C β-O Bond Cleavage in Lignin to Aromatic Monomers. ACS APPLIED MATERIALS & INTERFACES 2024; 16:47724-47740. [PMID: 39215384 PMCID: PMC11403551 DOI: 10.1021/acsami.4c10515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Photocatalysis has high potential in the cleavage of Cβ-O bond in lignin into high-value aromatic monomers; however, the inefficient Cα-H bond activation in lignin and a low hydrogen transfer efficiency on the photocatalyst's surfaces have limited its application in photocatalytic lignin conversion. This study indicates that the cleavage of the Cβ-O bond can be improved by the generation of the Cα radical intermediate through Cα-H bond activation, and the formation of desirable aromatic products can be significantly improved by the enhanced hydrogen transfer efficiency from photocatalyst surfaces to aromatic monomeric radicals. We elaborately designed the half-unit-cell MoS2/ZnIn2S4 monolayer with a thickness of ∼1.7 nm to promote the hydrogen transfer efficiency on the photocatalyst surfaces. The ultrathin structure can shorten the diffusion distance of charge carriers from the interior to the surfaces and tight interface between MoS2 and ZnIn2S4 to facilitate the migration of photogenerated electrons from ZnIn2S4 to MoS2, therefore improving the selectivity of desirable products. The adsorbed hydroxyl radical (*OH) on the surfaces of MoS2/ZnIn2S4 from water oxidation can significantly reduce the bond dissociation energy (BDE) of Cα-H bond in PP-ol from 2.38 to 1.87 eV, therefore improving the Cα-H bond activation. The isotopic experiments of H2O/D2O indicate that the efficiency of *OH generation is an important step in Cα-H bond activation for PP-ol conversion to aromatic monomers. In summary, PP-ol can completely convert to 86.6% phenol and 82.3% acetophenone after 1 h of visible light irradiation by using 3% MoS2/ZnIn2S4 and the assistance of *OH, which shows the highest conversion rate compared to previous works.
Collapse
Affiliation(s)
- Zongyang Yue
- Institute for Materials and Processes, School of Engineering, The University of Edinburgh, Edinburgh EH9 3BF, U.K
| | - Guanchu Lu
- Institute for Materials and Processes, School of Engineering, The University of Edinburgh, Edinburgh EH9 3BF, U.K
| | - Wenjing Wei
- Institute for Materials and Processes, School of Engineering, The University of Edinburgh, Edinburgh EH9 3BF, U.K
| | - Yi Huang
- Institute for Materials and Processes, School of Engineering, The University of Edinburgh, Edinburgh EH9 3BF, U.K
| | - Zheng Chen
- Institute for Materials and Processes, School of Engineering, The University of Edinburgh, Edinburgh EH9 3BF, U.K
| | - Fergus Dingwall
- Institute for Materials and Processes, School of Engineering, The University of Edinburgh, Edinburgh EH9 3BF, U.K
| | - Shibo Shao
- Institute for Materials and Processes, School of Engineering, The University of Edinburgh, Edinburgh EH9 3BF, U.K
- Petrochemical Research Institute, PetroChina Company Limited, Beijing 102206, China
| | - Xianfeng Fan
- Institute for Materials and Processes, School of Engineering, The University of Edinburgh, Edinburgh EH9 3BF, U.K
| |
Collapse
|
9
|
Yu Q, Zhang X, Jiang X. Bilateral Unsymmetrical Disulfurating Reagent Design for Polysulfide Construction. Angew Chem Int Ed Engl 2024; 63:e202408158. [PMID: 38923731 DOI: 10.1002/anie.202408158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/25/2024] [Accepted: 06/25/2024] [Indexed: 06/28/2024]
Abstract
Polysulfides are significant compounds in life science, pharmaceutical science, and materials science. Therefore, polysulfide construction is in great demand. The controllable sequential installation of groups on both ends of a S-S motif faces an enormous challenge owing to the reversible nature of the covalent S-S bond. A library was established with two divergent mask groups for bilateral unsymmetrical disulfurating reagents (R1O-SS-SO2R2). Sequential coupling with preferential activation of the S-SO2 bond (37.6 kcal/mol) and controllable activation of the S-O bond (54.8 kcal/mol) in the presence of the S-S bond (62.0 kcal/mol) enabled successive reactions at each end of the S-S motif to afford unsymmetrical disulfides and trisulfides, even for the cross-linkage of natural products, pharmaceuticals, peptides, and a protein (bovine serum albumin).
Collapse
Affiliation(s)
- Qing Yu
- Hainan Institute of East China Normal University, State Key Laboratory of Petroleum Molecular & Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, P.R. China
| | - XiangJin Zhang
- Hainan Institute of East China Normal University, State Key Laboratory of Petroleum Molecular & Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, P.R. China
| | - Xuefeng Jiang
- Hainan Institute of East China Normal University, State Key Laboratory of Petroleum Molecular & Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, P.R. China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007, P.R. China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, P. R. China
| |
Collapse
|
10
|
Yuan T, Chen XY, Ji T, Yue H, Murugesan K, Rueping M. Nickel-catalyzed selective disulfide formation by reductive cross-coupling of thiosulfonates. Chem Sci 2024:d4sc02969k. [PMID: 39246351 PMCID: PMC11376093 DOI: 10.1039/d4sc02969k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 08/22/2024] [Indexed: 09/10/2024] Open
Abstract
Developing innovative methodologies for disulfide preparation is of importance in contemporary organic chemistry. Despite significant advancements in nickel-catalyzed reductive cross-coupling reactions for forming carbon-carbon and carbon-heteroatom bonds, the synthesis of S-S bonds remains a considerable challenge. In this context, we present a novel approach utilizing nickel catalysts for the reductive cross-coupling of thiosulfonates. This method operates under mild conditions, offering a convenient and efficient pathway to synthesize a wide range of both symmetrical and unsymmetrical disulfides from readily available, bench-stable thiosulfonates with exceptional selectivity. Notably, this approach is highly versatile, allowing for the late-stage modification of pharmaceuticals and the preparation of various targeted compounds. A comprehensive mechanistic investigation has been conducted to substantiate the proposed hypothesis.
Collapse
Affiliation(s)
- Tingting Yuan
- KAUST Catalysis Center, KCC, King Abdullah University of Science and Technology, KAUST Thuwal 23955-6900 Saudi Arabia
- Institute of Organic Chemistry, RWTH Aachen University Landoltweg 1 52074 Aachen Germany
| | - Xiang-Yu Chen
- Institute of Organic Chemistry, RWTH Aachen University Landoltweg 1 52074 Aachen Germany
- School of Chemical Science, University of Chinese Academy of Science Beijing 10049 China
| | - Tengfei Ji
- Institute of Organic Chemistry, RWTH Aachen University Landoltweg 1 52074 Aachen Germany
| | - Huifeng Yue
- KAUST Catalysis Center, KCC, King Abdullah University of Science and Technology, KAUST Thuwal 23955-6900 Saudi Arabia
| | - Kathiravan Murugesan
- KAUST Catalysis Center, KCC, King Abdullah University of Science and Technology, KAUST Thuwal 23955-6900 Saudi Arabia
| | - Magnus Rueping
- KAUST Catalysis Center, KCC, King Abdullah University of Science and Technology, KAUST Thuwal 23955-6900 Saudi Arabia
| |
Collapse
|
11
|
Bai Y, Ouyang F, Chen R, Jiang X, Liang Z, Yu W, Yu G, Chen YH, Wei B. Access to Valuable Chalcogen-Containing Biaryl Derivatives via Regioselective 2,2'-Dichalcogenation of 2-Bromobiaryls. Org Lett 2024; 26:6748-6753. [PMID: 39077872 DOI: 10.1021/acs.orglett.4c02456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/31/2024]
Abstract
The regioselective installation of chalcogen atoms into biaryl scaffolds is an important synthetic task due to the great value of chalcogen-containing biaryl derivatives in many fields. Here we undertake this task by developing a regioselective 2,2'-dichalcogenation of 2-bromobiaryls with common chalcogen sources using an organolanthanum-mediated one-pot, two-step protocol. This strategy features high regioselectivity, readily available substrates, transition-metal-free conditions, and performance superior to those of previous methods, thereby demonstrating the unique advantages of organolanthanum reagents in organic synthesis.
Collapse
Affiliation(s)
- Yike Bai
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan, People's Republic of China
| | - Feng Ouyang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan, People's Republic of China
| | - Rong Chen
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan, People's Republic of China
| | - Xihan Jiang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan, People's Republic of China
| | - Zhuoming Liang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan, People's Republic of China
| | - Wenhua Yu
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan, People's Republic of China
| | - Guipeng Yu
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan, People's Republic of China
| | - Yi-Hung Chen
- Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, Hubei, People's Republic of China
| | - Baosheng Wei
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan, People's Republic of China
| |
Collapse
|
12
|
Wang L, Chen L, Qin Z, Zhao B, Ni K, Li H, Li J, Duan H, Ren F, An J. Samarium-Oxo/Hydroxy Cluster: A Solar Photocatalyst for Chemoselective Aerobic Oxidation of Thiols for Disulfide Synthesis. J Org Chem 2024; 89:8357-8362. [PMID: 38819110 DOI: 10.1021/acs.joc.4c00104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
Oxidation contributes as a secondary driver of the prevailing carbon emission in the chemical industries. To address this issue, photocatalytic aerobic oxidation has emerged as a promising alternative. However, the challenge of achieving satisfactory chemoselectivity and effective use of solar light has hindered progress in this area. In this context, the present study introduces a novel homogeneous photocatalyst, [Sm6O(OH)8(H2O)24]I8(H2O)8 cluster (Sm-OC), via a unique auxiliary ligand-free oxidative hydrolysis. Using Sm-OC as catalyst, a solar photocatalyzed aerobic oxidation of thiols has been developed for the synthesis of valuable disulfides. Remarkably, this catalyst manifested a significant turnover number ≥2000 under tested conditions. Sm-OC-catalyzed aerobic oxidation showcased remarkable chemoselectivity. In thiol oxidations, despite the vulnerability of disulfides toward overoxidation, overoxidized byproducts or oxidation of nontarget functional groups was not detected across all 28 tested substrates. This investigation presents the first application of a lanthanide-oxo/hydroxy cluster in photocatalysis.
Collapse
Affiliation(s)
- Lijun Wang
- Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
- Department of Chemistry and Innovation Center of Pesticide Research, China Agricultural University, Beijing 100193, China
| | - Lingxia Chen
- Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| | - Zixuan Qin
- Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| | - Bihan Zhao
- Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| | - Ke Ni
- Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| | - Hengzhao Li
- Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| | - Junyu Li
- Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| | - Hongxia Duan
- Department of Chemistry and Innovation Center of Pesticide Research, China Agricultural University, Beijing 100193, China
| | - Fazheng Ren
- Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| | - Jie An
- Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| |
Collapse
|
13
|
Zhou X, Jiang Y, Li J, Wang J, Chen J, Yu Y, Cao H. Synthesis of (Furyl)Methyl Disulfides via Tandem Reaction of Conjugated Ene-Yne-Ketones with Acetyl-Masked Disulfide Nucleophiles. J Org Chem 2024; 89:6684-6693. [PMID: 38676651 DOI: 10.1021/acs.joc.3c02684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2024]
Abstract
In this study, we outline a general method for the construction of various (furyl)methyl disulfides from acetyl-masked disulfide nucleophiles and ene-yne-ketones. This protocol is feathered by metal-free, simple experimental conditions, high efficiency, and scalable potential, which make it attractive and practical.
Collapse
Affiliation(s)
- Xianhang Zhou
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Yuhao Jiang
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Jiaxin Li
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Jinsong Wang
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Jianxin Chen
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Yue Yu
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
- Guangdong Pharmaceutical University-University of Hong Kong Joint Biomedical Innovation Platform, Zhongshan 528437, PR China
| | - Hua Cao
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
- Guangdong Pharmaceutical University-University of Hong Kong Joint Biomedical Innovation Platform, Zhongshan 528437, PR China
| |
Collapse
|
14
|
Hong BC, Indurmuddam RR. Tetrabutylammonium decatungstate (TBADT), a compelling and trailblazing catalyst for visible-light-induced organic photocatalysis. Org Biomol Chem 2024; 22:3799-3842. [PMID: 38651982 DOI: 10.1039/d4ob00171k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
Tetrabutylammonium decatungstate (TBADT) has recently emerged as an intriguing photocatalyst under visible-light or near-visible-light irradiation in a wide range of organic reactions that were previously not conceivable. Given its ability to absorb visible light and excellent effectiveness in activating unactivated chemical bonds, it is a promising addition to traditional photocatalysts. This review covers some of the contemporary developments in visible-light or near-visible-light photocatalysis reactions enabled by the TBADT catalyst to 2023, with the contents organized by reaction type.
Collapse
Affiliation(s)
- Bor-Cherng Hong
- Department of Chemistry and Biochemistry, National Chung Cheng University, Chiayi 621, Taiwan.
| | | |
Collapse
|
15
|
Li B, Liu BX, Rao W, Shen SS, Sheng D, Wang SY. Copper-Catalyzed Chemoselective Coupling of N-Dithiophthalimides and Alkyl Halides: Synthesis of Unsymmetrical Disulfides and Sulfides. Org Lett 2024; 26:3634-3639. [PMID: 38660998 DOI: 10.1021/acs.orglett.4c01109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
In this paper, we report an unprecedented copper-catalyzed disulfides or sulfides coupling reaction involving unactivated alkyl halides and N-dithiophthalimides. This reaction can be conducted under mild conditions using low-cost metal catalysts and exhibits high chemical selectivity and functional group compatibility, enabling the efficient assembly of various sulfides and disulfides.
Collapse
Affiliation(s)
- Bin Li
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China
| | - Bo-Xi Liu
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China
| | - Weidong Rao
- Key Laboratory of Biomass-based Green Fuels and Chemicals, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Shu-Su Shen
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, P. R. China
| | - Daopeng Sheng
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu 215123, China
| | - Shun-Yi Wang
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China
| |
Collapse
|
16
|
Sun Q, Xu Y, Yang L, Zheng CL, Wang G, Wang HB, Fang Z, Wang CS, Guo K. Direct C-H Sulfuration: Synthesis of Disulfides, Dithiocarbamates, Xanthates, Thiocarbamates and Thiocarbonates. Chem Asian J 2024; 19:e202400124. [PMID: 38421239 DOI: 10.1002/asia.202400124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 02/28/2024] [Accepted: 02/29/2024] [Indexed: 03/02/2024]
Abstract
In light of the important biological activities and widespread applications of organic disulfides, dithiocarbamates, xanthates, thiocarbamates and thiocarbonates, the continual persuit of efficient methods for their synthesis remains crucial. Traditionally, the preparation of such compounds heavily relied on intricate multi-step syntheses and the use of highly prefunctionalized starting materials. Over the past two decades, the direct sulfuration of C-H bonds has evolved into a straightforward, atom- and step-economical method for the preparation of organosulfur compounds. This review aims to provide an up-to-date discussion on direct C-H disulfuration, dithiocarbamation, xanthylation, thiocarbamation and thiocarbonation, with a special focus on describing scopes and mechanistic aspects. Moreover, the synthetic limitations and applications of some of these methodologies, along with the key unsolved challenges to be addressed in the future are also discussed. The majority of examples covered in this review are accomplished via metal-free, photochemical or electrochemical approaches, which are in alignment with the overraching objectives of green and sustainable chemistry. This comprehensive review aims to consolidate recent advancements, providing valuable insights into the dynamic landscape of efficient and sustainable synthetic strategies for these crucial classes of organosulfur compounds.
Collapse
Affiliation(s)
- Qiao Sun
- School of Food Science and Light Industry, Nanjing Tech University, 30 Puzhu Rd S., Nanjing, 211816, PR China
| | - Yuan Xu
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, 637371, Singapore
| | - Liu Yang
- School of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhu Rd S., Nanjing, 211816, PR China
| | - Chun-Ling Zheng
- School of Food Science and Light Industry, Nanjing Tech University, 30 Puzhu Rd S., Nanjing, 211816, PR China
| | - Guowei Wang
- School of Food Science and Light Industry, Nanjing Tech University, 30 Puzhu Rd S., Nanjing, 211816, PR China
| | - Hai-Bo Wang
- School of Chemistry and Molecular Engineering, Nanjing Tech University, 30 Puzhu Rd S., Nanjing, 211816, PR China
| | - Zheng Fang
- School of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhu Rd S., Nanjing, 211816, PR China
| | - Chang-Sheng Wang
- School of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhu Rd S., Nanjing, 211816, PR China
| | - Kai Guo
- School of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhu Rd S., Nanjing, 211816, PR China
| |
Collapse
|
17
|
Singh PP, Sinha S, Gahtori P, Tivari S, Srivastava V. Recent advances of decatungstate photocatalyst in HAT process. Org Biomol Chem 2024; 22:2523-2538. [PMID: 38456306 DOI: 10.1039/d4ob00213j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2024]
Abstract
The decatungstate anion (W10O324-) appears to exhibit especially interesting properties as a photocatalyst. Because of its unique photocatalytic properties, it is now recognised as a promising tool in organic chemistry. This study examines recent advances in decatungstate chemistry, primarily concerned with synthetic and, to some degree, mechanistic challenges. In this short review we have selected to give a number of illustrative examples that demonstrate the various applications of decatungstate in the hydrogen atom transfer (HAT) process.
Collapse
Affiliation(s)
- Praveen P Singh
- Department of Chemistry, United College of Engineering & Research, Prayagraj, U.P.-211010, India.
| | - Surabhi Sinha
- Department of Chemistry, United College of Engineering & Research, Prayagraj, U.P.-211010, India.
| | - Prashant Gahtori
- School of Pharmacy, Graphic Era Hill University, Dehradun, 248002 Uttarakhand, India
| | - Shraddha Tivari
- Department of Chemistry, CMP Degree College, University of Allahabad, Prayagraj, U.P.-211002, India.
| | - Vishal Srivastava
- Department of Chemistry, CMP Degree College, University of Allahabad, Prayagraj, U.P.-211002, India.
| |
Collapse
|
18
|
Wu H, Chen S, Liu C, Zhao Q, Wang Z, Jin Q, Sun S, Guo J, He X, Walsh PJ, Shang Y. Construction of C-S and C-Se Bonds from Unstrained Ketone Precursors under Photoredox Catalysis. Angew Chem Int Ed Engl 2024; 63:e202314790. [PMID: 38185472 DOI: 10.1002/anie.202314790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 12/23/2023] [Accepted: 01/03/2024] [Indexed: 01/09/2024]
Abstract
A mild photoredox catalyzed construction of sulfides, disulfides, selenides, sulfoxides and sulfones from unstrained ketone precursors is introduced. Combination of this deacylative process with SN 2 or coupling reactions provides novel and convenient modular strategies toward unsymmetrical or symmetric disulfides. Reactivity studies favor a bromine radical that initiates a HAT (Hydrogen Atom Transfer) from the aminal intermediate resulting in expulsion of a C-centered radical that is intercepted to make C-S and C-Se bonds. Gram scale reactions, broad substrate scope and tolerance towards various functional groups render this method appealing for future applications in the synthesis of organosulfur and selenium complexes.
Collapse
Affiliation(s)
- Hao Wu
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241000, P. R. China
| | - Shuguang Chen
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241000, P. R. China
| | - Chunni Liu
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241000, P. R. China
| | - Quansheng Zhao
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241000, P. R. China
| | - Zhen Wang
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241000, P. R. China
| | - Qiren Jin
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241000, P. R. China
| | - Shijie Sun
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241000, P. R. China
| | - Jing Guo
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241000, P. R. China
| | - Xinwei He
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241000, P. R. China
| | - Patrick J Walsh
- Roy and Diana Vagelos Laboratories Department of Chemistry, University of Pennsylvania 231 South 34th Street, Philadelphia, PA 19104-6323, USA
| | - Yongjia Shang
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241000, P. R. China
| |
Collapse
|
19
|
Yu Y, Zhou X, Wang J, Jiang Y, Cao H. Construction of β-Acetoxy or β-Hydroxyl Disulfides via Highly Regioselective Ring-Opening of Epoxides with Acetyl Masked Disulfide Nucleophiles. Org Lett 2023. [PMID: 38054746 DOI: 10.1021/acs.orglett.3c03826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
In the organic or water phase, acetyl masked disulfide nucleophiles were used as the disulfide source to react with a wide range of epoxides, affording various β-acetoxy or β-hydroxyl disulfides in good yields with high regioselectivity. This method features transition-metal-free, simple experimental conditions, high atom economy, and scalable potential, which make it attractive and practical.
Collapse
Affiliation(s)
- Yue Yu
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China
- Guangdong Pharmaceutical University-University of Hong Kong Joint Biomedical Innovation Platform, Zhongshan 528437, PR China
| | - Xianhang Zhou
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China
| | - Jinsong Wang
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China
| | - Yuhao Jiang
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China
| | - Hua Cao
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China
- Guangdong Pharmaceutical University-University of Hong Kong Joint Biomedical Innovation Platform, Zhongshan 528437, PR China
| |
Collapse
|
20
|
Chen W, Sheng D, Jiang YF, Zhu WC, Rao W, Shen SS, Yang ZY, Wang SY. Nickel-Catalyzed Acid Chlorides with Tetrasulfides for the Synthesis of Thioesters and Acyl Disulfides. J Org Chem 2023; 88:15871-15880. [PMID: 37882877 DOI: 10.1021/acs.joc.3c01948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2023]
Abstract
Herein, we report a novel method for the synthesis of thioesters and acyl disulfides via nickel-catalyzed reductive cross-electrophile coupling of acid chlorides with tetrasulfides. This approach for the synthesis of thioesters and acyl disulfides is convenient and practical under mild reaction conditions, relying on easy availability. In addition, a wide range of thioesters and acyl disulfides were obtained in medium to good yields with good functional group tolerance. Moreover, thioesters and acyl disulfides can also be prepared at the gram scale, indicating that they have certain potential for industrial application.
Collapse
Affiliation(s)
- Wang Chen
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, 215123, China
| | - Daopeng Sheng
- Key Laboratory of Biomass-based Green Fuels and Chemicals, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, China
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu 215123, China
| | - Yi-Fan Jiang
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, 215123, China
| | - Wei-Chen Zhu
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, 215123, China
| | - Weidong Rao
- Key Laboratory of Biomass-based Green Fuels and Chemicals, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Shu-Su Shen
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 99, Xuefu Road, Huqiu District, Suzhou, 215009, PR China
| | - Zhao-Ying Yang
- Soochow College, Soochow University, Suzhou, 215123, China
| | - Shun-Yi Wang
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, 215123, China
| |
Collapse
|
21
|
Yang K, Luo Y, Hu Q, Song M, Liu J, Li Z, Li B, Sun X. Selective C(sp 3)-S Bond Cleavage of Thioethers to Build Up Unsymmetrical Disulfides. J Org Chem 2023; 88:13699-13711. [PMID: 37747962 DOI: 10.1021/acs.joc.3c01355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
The selective C(sp3)-S bond cleavage of thioethers was first developed to prepare unsymmetrical disulfides by using electrophilic halogenation reagents. In this strategy, NBS (N-bromosuccinimide) achieves selective furfuryl C(sp3)-S bond cleavage of furfuryl alkylthioethers at room temperature. Meanwhile, NFSI (N-fluorobenzenesulfonimide) enables selective methyl C(sp3)-S bond cleavage of aryl and alkyl methylthioethers at an elevated temperature. Notably, the substrate scope investigation indicates that the order of selectivity of the C-S bond cleavage is furfuryl C(sp3)-S > benzyl C(sp3)-S > alkyl C(sp3)-S > C(sp2)-S bond. Moreover, this practical and operationally simple strategy also provides an important complementary way to access various unsymmetrical disulfides with excellent functional group tolerances and moderate to good yields.
Collapse
Affiliation(s)
- Ke Yang
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu 213164, China
| | - Yanqi Luo
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu 213164, China
| | - Qingyue Hu
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu 213164, China
| | - Mengjie Song
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu 213164, China
| | - Junxiang Liu
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Zhengyi Li
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu 213164, China
| | - Bijin Li
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Xiaoqiang Sun
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu 213164, China
| |
Collapse
|
22
|
Abstract
Organosulfur functionalities are ubiquitous in nature, pharmaceuticals, agrochemicals, materials and flavourants. Historically, these moieties were introduced almost exclusively using ionic chemistry; however, radical-based methods for the installation of sulfur-based functional groups have recently come to the fore. These radical methods have enabled their late-stage introduction into complex molecules, avoiding the need to preserve labile organosulfur moieties through multistep synthetic sequences. Here, we discuss homolytic C-S bond-forming processes, with a particular emphasis on radical substitution approaches to sulfide, disulfide and sulfinyl products, and the use of sulfur dioxide and its surrogates to build sulfonyl products. We also highlight the mechanistic considerations that we hope will guide further development of radical-based strategies compatible with the various organosulfur moieties that feature in modern chemistry.
Collapse
Affiliation(s)
- Zijun Wu
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario, Canada
| | - Derek A Pratt
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario, Canada.
| |
Collapse
|
23
|
Tan H, Zhang C, Deng Y, Zhang M, Cheng X, Wu J, Zheng D. Photoinduced Radical Sulfinylation of C(sp 3)-H Bonds with Sulfinyl Sulfones. Org Lett 2023; 25:2883-2888. [PMID: 37052454 DOI: 10.1021/acs.orglett.3c00868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
A direct C(sp3)-H sulfinylation reaction of alkanes with sulfinyl sulfones via decatungstate photocatalysis is reported. The sulfinyl sulfones generated in situ from sulfinates in the presence of an acylating reagent were able to trap the alkyl radicals that were produced via the photoinduced direct hydrogen atom transfer of alkanes, leading to a range of sulfoxides. This radical sulfinylation process provides an efficient and concise method for the synthesis of sulfoxides from abundant alkanes under mild conditions. Using the same strategy, aldehydes can also be transferred to the corresponding sulfoxides via decarbonylative sulfinylation.
Collapse
Affiliation(s)
- Heping Tan
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, Jiangsu 210009, China
| | - Changmei Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, Jiangsu 210009, China
| | - Yangling Deng
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, Jiangsu 210009, China
| | - Mengxuan Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, Jiangsu 210009, China
| | - Xiya Cheng
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, Jiangsu 210009, China
| | - Jie Wu
- School of Pharmaceutical and Materials Engineering and Institute for Advanced Studies, Taizhou University, 1139 Shifu Avenue, Taizhou, Zhejiang 318000, China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Danqing Zheng
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, Jiangsu 210009, China
| |
Collapse
|
24
|
Liu Q, Ding Y, Gao Y, Yang Y, Gao L, Pan Z, Xia C. Decatungstate Catalyzed Photochemical Acetylation of C(sp 3)–H Bonds. Org Lett 2022; 24:7983-7987. [DOI: 10.1021/acs.orglett.2c03142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Qinglong Liu
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Provincial Center for Research & Development of Natural Products, School of Pharmacy, Yunnan University, Kunming 650091, China
| | - Yuzhen Ding
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Provincial Center for Research & Development of Natural Products, School of Pharmacy, Yunnan University, Kunming 650091, China
| | - Yuxi Gao
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Provincial Center for Research & Development of Natural Products, School of Pharmacy, Yunnan University, Kunming 650091, China
| | - Yunhong Yang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Provincial Center for Research & Development of Natural Products, School of Pharmacy, Yunnan University, Kunming 650091, China
| | - Lijuan Gao
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Provincial Center for Research & Development of Natural Products, School of Pharmacy, Yunnan University, Kunming 650091, China
| | - Zhiqiang Pan
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Provincial Center for Research & Development of Natural Products, School of Pharmacy, Yunnan University, Kunming 650091, China
| | - Chengfeng Xia
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Provincial Center for Research & Development of Natural Products, School of Pharmacy, Yunnan University, Kunming 650091, China
| |
Collapse
|
25
|
Meng X, Guo W, Nan G, Li M. Synthesis of pyrrole disulfides via umpolung of β-ketothioamides. Org Biomol Chem 2022; 20:7609-7612. [PMID: 36156622 DOI: 10.1039/d2ob01506d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A Na2CO3-promoted reaction of β-ketothioamides (KTAs) and cyanoacetates was developed for the synthesis of pyrrole disulfides using air as a green oxidant. This protocol features a broad substrate scope and mild reaction conditions. Preliminary mechanistic studies indicate that the reaction involves a tandem unusual umpolung of KTAs, N-cyclization, tautomerization and oxidative coupling process.
Collapse
Affiliation(s)
- Xiangrui Meng
- Key Lab of Natural Product Chemistry and Application in Xinjiang, School of Chemistry and Environmental Science, Yili Normal University, Yining 835000, P. R. China.
| | - Weisi Guo
- College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China.
| | - Guangming Nan
- Key Lab of Natural Product Chemistry and Application in Xinjiang, School of Chemistry and Environmental Science, Yili Normal University, Yining 835000, P. R. China.
| | - Ming Li
- Key Lab of Natural Product Chemistry and Application in Xinjiang, School of Chemistry and Environmental Science, Yili Normal University, Yining 835000, P. R. China. .,College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China.
| |
Collapse
|