1
|
Jiang J, Gwee J, Fang J, Leichter SM, Sanders D, Ji X, Song J, Zhong X. Substrate specificity and protein stability drive the divergence of plant-specific DNA methyltransferases. SCIENCE ADVANCES 2024; 10:eadr2222. [PMID: 39504374 PMCID: PMC11540031 DOI: 10.1126/sciadv.adr2222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 10/03/2024] [Indexed: 11/08/2024]
Abstract
DNA methylation is an important epigenetic mechanism essential for transposon silencing and genome integrity. Across evolution, the substrates of DNA methylation have diversified between kingdoms. In plants, chromomethylase3 (CMT3) and CMT2 mediate CHG and CHH methylation, respectively. However, how these two methyltransferases diverge on substrate specificities during evolution remains unknown. Here, we reveal that CMT2 originates from a duplication of an evolutionarily ancient CMT3 in flowering plants. Lacking a key arginine residue recognizing CHG in CMT2 impairs its CHG methylation activity in most flowering plants. An engineered V1200R mutation empowers CMT2 to restore CHG and CHH methylations in Arabidopsis cmt2cmt3 mutant, testifying a loss-of-function effect for CMT2 during evolution. CMT2 has evolved a long and unstructured amino terminus critical for protein stability, especially under heat stress, and is plastic to tolerate various natural mutations. Together, this study reveals the mechanism of chromomethylase divergence for context-specific DNA methylation in plants and sheds important lights on DNA methylation evolution and function.
Collapse
Affiliation(s)
- Jianjun Jiang
- Wisconsin Institute for Discovery and Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI 53715, USA
- State Key Laboratory of Crop Stress Adaptation and Improvement, Academy for Advanced Interdisplinary Studies and The Zhongzhou Laboratory for Integrative Biology, Henan University, Zhengzhou, Henan 450000, China
| | - Jia Gwee
- Wisconsin Institute for Discovery and Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI 53715, USA
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Jian Fang
- Department of Biochemistry, University of California, Riverside, CA 92521, USA
| | - Sarah M. Leichter
- Wisconsin Institute for Discovery and Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI 53715, USA
| | - Dean Sanders
- Wisconsin Institute for Discovery and Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI 53715, USA
| | - Xinrui Ji
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Jikui Song
- Department of Biochemistry, University of California, Riverside, CA 92521, USA
| | - Xuehua Zhong
- Wisconsin Institute for Discovery and Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI 53715, USA
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130, USA
| |
Collapse
|
2
|
Lin SM, Huang HT, Fang PJ, Chang CF, Satange R, Chang CK, Chou SH, Neidle S, Hou MH. Structural basis of water-mediated cis Watson-Crick/Hoogsteen base-pair formation in non-CpG methylation. Nucleic Acids Res 2024; 52:8566-8579. [PMID: 38989613 DOI: 10.1093/nar/gkae594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 05/30/2024] [Accepted: 06/28/2024] [Indexed: 07/12/2024] Open
Abstract
Non-CpG methylation is associated with several cellular processes, especially neuronal development and cancer, while its effect on DNA structure remains unclear. We have determined the crystal structures of DNA duplexes containing -CGCCG- regions as CCG repeat motifs that comprise a non-CpG site with or without cytosine methylation. Crystal structure analyses have revealed that the mC:G base-pair can simultaneously form two alternative conformations arising from non-CpG methylation, including a unique water-mediated cis Watson-Crick/Hoogsteen, (w)cWH, and Watson-Crick (WC) geometries, with partial occupancies of 0.1 and 0.9, respectively. NMR studies showed that an alternative conformation of methylated mC:G base-pair at non-CpG step exhibits characteristics of cWH with a syn-guanosine conformation in solution. DNA duplexes complexed with the DNA binding drug echinomycin result in increased occupancy of the (w)cWH geometry in the methylated base-pair (from 0.1 to 0.3). Our structural results demonstrated that cytosine methylation at a non-CpG step leads to an anti→syntransition of its complementary guanosine residue toward the (w)cWH geometry as a partial population of WC, in both drug-bound and naked mC:G base pairs. This particular geometry is specific to non-CpG methylated dinucleotide sites in B-form DNA. Overall, the current study provides new insights into DNA conformation during epigenetic regulation.
Collapse
Affiliation(s)
- Shan-Meng Lin
- Graduate Institute of Genomics and Bioinformatics, National Chung Hsing University, Taichung 402, Taiwan
| | - Hsiang-Ti Huang
- Graduate Institute of Genomics and Bioinformatics, National Chung Hsing University, Taichung 402, Taiwan
| | - Pei-Ju Fang
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Chi-Fon Chang
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Roshan Satange
- Graduate Institute of Genomics and Bioinformatics, National Chung Hsing University, Taichung 402, Taiwan
| | - Chung-Ke Chang
- Taiwan Biobank, Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan
| | - Shan-Ho Chou
- Institute of Biochemistry, National Chung Hsing University, Taichung 402, Taiwan
| | - Stephen Neidle
- School of Pharmacy, University College London, London WC1N 1AX, UK
| | - Ming-Hon Hou
- Graduate Institute of Genomics and Bioinformatics, National Chung Hsing University, Taichung 402, Taiwan
- Doctoral Program in Medical Biotechnology, National Chung Hsing University, Taichung 402, Taiwan
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung 402, Taiwan
- Department of Life Sciences, National Chung Hsing University, Taichung 402, Taiwan
- Biotechnology Center, National Chung Hsing University, Taichung 402, Taiwan
| |
Collapse
|
3
|
Shao Z, Lu J, Khudaverdyan N, Song J. Multi-layered heterochromatin interaction as a switch for DIM2-mediated DNA methylation. Nat Commun 2024; 15:6815. [PMID: 39122718 PMCID: PMC11315935 DOI: 10.1038/s41467-024-51246-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 08/01/2024] [Indexed: 08/12/2024] Open
Abstract
Functional crosstalk between DNA methylation, histone H3 lysine-9 trimethylation (H3K9me3) and heterochromatin protein 1 (HP1) is essential for proper heterochromatin assembly and genome stability. However, how repressive chromatin cues guide DNA methyltransferases for region-specific DNA methylation remains largely unknown. Here, we report structure-function characterizations of DNA methyltransferase Defective-In-Methylation-2 (DIM2) in Neurospora. The DNA methylation activity of DIM2 requires the presence of both H3K9me3 and HP1. Our structural study reveals a bipartite DIM2-HP1 interaction, leading to a disorder-to-order transition of the DIM2 target-recognition domain that is essential for substrate binding. Furthermore, the structure of DIM2-HP1-H3K9me3-DNA complex reveals a substrate-binding mechanism distinct from that for its mammalian orthologue DNMT1. In addition, the dual recognition of H3K9me3 peptide by the DIM2 RFTS and BAH1 domains allosterically impacts the DIM2-substrate binding, thereby controlling DIM2-mediated DNA methylation. Together, this study uncovers how multiple heterochromatin factors coordinately orchestrate an activity-switching mechanism for region-specific DNA methylation.
Collapse
Affiliation(s)
- Zengyu Shao
- Department of Biochemistry, University of California, Riverside, CA, 92521, USA
| | - Jiuwei Lu
- Department of Biochemistry, University of California, Riverside, CA, 92521, USA
| | - Nelli Khudaverdyan
- Department of Biochemistry, University of California, Riverside, CA, 92521, USA
| | - Jikui Song
- Department of Biochemistry, University of California, Riverside, CA, 92521, USA.
| |
Collapse
|
4
|
Jiang J, Gwee J, Fang J, Leichter SM, Sanders D, Ji X, Song J, Zhong X. Substrate specificity and protein stability drive the divergence of plant-specific DNA methyltransferases. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.11.603080. [PMID: 39071332 PMCID: PMC11275764 DOI: 10.1101/2024.07.11.603080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
DNA methylation is an important epigenetic mechanism essential for transposon silencing and genome integrity. Across evolution, the substrates of DNA methylation have diversified between kingdoms to account for genome complexity. In plants, Chromomethylase3 (CMT3) and CMT2 are the major methyltransferases mediating CHG and CHH methylation, respectively. However, how these two enzymes diverge on substrate specificities during evolution remains unknown. Here, we reveal that CMT2 originates from a duplication of the evolutionarily more ancient CMT3 in flowering plants. Lacking a key arginine residue recognizing CHG in CMT2 impairs its CHG methylation activity in most flowering plants. An engineered V1200R mutation empowers CMT2 to restore both CHG and CHH methylation in Arabidopsis cmt2cmt3 mutant, testifying a loss-of-function effect for CMT2 after ∼200 million years of evolution. Interestingly, CMT2 has evolved a long and unstructured N-terminus critical for balancing protein stability, especially under heat stress. Furthermore, CMT2 N-terminus is plastic and can be tolerant to various natural mutations. Together, this study reveals the mechanism of chromomethylase divergence for context-specific DNA methylation in plants and sheds important lights on DNA methylation evolution and function.
Collapse
|
5
|
Yu G, Zhang B, Chen Q, Huang Z, Zhang B, Wang K, Han J. Dynamic DNA methylation modifications in the cold stress response of cassava. Genomics 2024; 116:110871. [PMID: 38806102 DOI: 10.1016/j.ygeno.2024.110871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 05/21/2024] [Accepted: 05/25/2024] [Indexed: 05/30/2024]
Abstract
Cassava, a crucial tropical crop, faces challenges from cold stress, necessitating an exploration of its molecular response. Here, we investigated the role of DNA methylation in moderating the response to moderate cold stress (10 °C) in cassava. Using whole-genome bisulfite sequencing, we examined DNA methylation patterns in leaf blades and petioles under control conditions, 5 h, and 48 h of cold stress. Tissue-specific responses were observed, with leaf blades exhibiting subtle changes, while petioles displayed a pronounced decrease in methylation levels under cold stress. We identified cold stress-induced differentially methylated regions (DMRs) that demonstrated both tissue and treatment specificity. Importantly, these DMRs were enriched in genes with altered expression, implying functional relevance. The cold-response transcription factor ERF105 associated with DMRs emerged as a significant and conserved regulator across tissues and treatments. Furthermore, we investigated DNA methylation dynamics in transposable elements, emphasizing the sensitivity of MITEs with bHLH binding motifs to cold stress. These findings provide insights into the epigenetic regulation of response to cold stress in cassava, contributing to an understanding of the molecular mechanisms underlying stress adaptation in this tropical plant.
Collapse
Affiliation(s)
- Guangrun Yu
- School of Life Sciences, Nantong University, Nantong 226019, China; Xinglin College, Nantong University, Qidong 226236, China
| | - Baowang Zhang
- Qingdao Smart Rural Development Service Center, Qingdao 266000, China
| | - Qi Chen
- School of Life Sciences, Nantong University, Nantong 226019, China; Xinglin College, Nantong University, Qidong 226236, China
| | - Zequan Huang
- Xinglin College, Nantong University, Qidong 226236, China
| | - Baohong Zhang
- Department of Biology, East Carolina University, Greenville, NC 27858, USA
| | - Kai Wang
- School of Life Sciences, Nantong University, Nantong 226019, China.
| | - Jinlei Han
- School of Life Sciences, Nantong University, Nantong 226019, China.
| |
Collapse
|
6
|
Wang Z, Xia A, Wang Q, Cui Z, Lu M, Ye Y, Wang Y, He Y. Natural polymorphisms in ZMET2 encoding a DNA methyltransferase modulate the number of husk layers in maize. PLANT PHYSIOLOGY 2024; 195:2129-2142. [PMID: 38431291 PMCID: PMC11213254 DOI: 10.1093/plphys/kiae113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 01/30/2024] [Accepted: 02/08/2024] [Indexed: 03/05/2024]
Abstract
DNA methylation affects agronomic traits and the environmental adaptability of crops, but the natural polymorphisms in DNA methylation-related genes and their contributions to phenotypic variation in maize (Zea mays) remain elusive. Here, we show that a polymorphic 10-bp insertion/deletion variant in the 3'UTR of Zea methyltransferase2 (ZMET2) alters its transcript level and accounts for variation in the number of maize husk layers. ZMET2 encodes a chromomethylase and is required for maintaining genome-wide DNA methylation in the CHG sequence context. Disruption of ZMET2 increased the number of husk layers and resulted in thousands of differentially methylated regions, a proportion of which were also distinguishable in natural ZMET2 alleles. Population genetic analyses indicated that ZMET2 was a target of selection and might play a role in the spread of maize from tropical to temperate regions. Our results provide important insights into the natural variation of ZMET2 that confers both global and locus-specific effects on DNA methylation, which contribute to phenotypic diversity in maize.
Collapse
Affiliation(s)
- Zi Wang
- State Key Laboratory of Maize Bio-breeding, National Maize Improvement Center of China, China Agricultural University, Beijing 100094, China
| | - Aiai Xia
- State Key Laboratory of Maize Bio-breeding, National Maize Improvement Center of China, China Agricultural University, Beijing 100094, China
| | - Qi Wang
- State Key Laboratory of Maize Bio-breeding, National Maize Improvement Center of China, China Agricultural University, Beijing 100094, China
| | - Zhenhai Cui
- Shenyang Key Laboratory of Maize Genomic Selection Breeding, Shenyang Agricultural University, Shenyang 110866, China
| | - Ming Lu
- Maize Research Institute, Jilin Academy of Agricultural Sciences, Gongzhuling 136100, China
| | - Yusheng Ye
- Maize Research Institute, Liaoning Academy of Agricultural Sciences, Shenyang 110065, China
| | - Yanbo Wang
- Maize Research Institute, Liaoning Academy of Agricultural Sciences, Shenyang 110065, China
| | - Yan He
- State Key Laboratory of Maize Bio-breeding, National Maize Improvement Center of China, China Agricultural University, Beijing 100094, China
| |
Collapse
|
7
|
Fossdal CG, Krokene P, Olsen JE, Strimbeck R, Viejo M, Yakovlev I, Mageroy MH. Epigenetic stress memory in gymnosperms. PLANT PHYSIOLOGY 2024; 195:1117-1133. [PMID: 38298164 PMCID: PMC11142372 DOI: 10.1093/plphys/kiae051] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 01/18/2024] [Accepted: 01/25/2024] [Indexed: 02/02/2024]
Abstract
Gymnosperms are long-lived, cone-bearing seed plants that include some of the most ancient extant plant species. These relict land plants have evolved to survive in habitats marked by chronic or episodic stress. Their ability to thrive in these environments is partly due to their phenotypic flexibility, and epigenetic regulation likely plays a crucial part in this plasticity. We review the current knowledge on abiotic and biotic stress memory in gymnosperms and the possible epigenetic mechanisms underlying long-term phenotypic adaptations. We also discuss recent technological improvements and new experimental possibilities that likely will advance our understanding of epigenetic regulation in these ancient and hard-to-study plants.
Collapse
Affiliation(s)
- Carl Gunnar Fossdal
- Division of Plant Health and Biotechnology, Norwegian Institute of Bioeconomy Research, Ås 1431, Norway
| | - Paal Krokene
- Division of Plant Health and Biotechnology, Norwegian Institute of Bioeconomy Research, Ås 1431, Norway
| | - Jorunn Elisabeth Olsen
- Department of Plant Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, Ås 1432, Norway
| | - Richard Strimbeck
- Department of Biology, Norwegian University of Science and Technology, Trondheim 7491, Norway
| | - Marcos Viejo
- Department of Functional Biology, University of Santiago de Compostela, Santiago de Compostela 15782, Spain
| | - Igor Yakovlev
- Division of Plant Health and Biotechnology, Norwegian Institute of Bioeconomy Research, Ås 1431, Norway
| | - Melissa H Mageroy
- Division of Plant Health and Biotechnology, Norwegian Institute of Bioeconomy Research, Ås 1431, Norway
| |
Collapse
|
8
|
Li X, Zhu B, Lu Y, Zhao F, Liu Q, Wang J, Ye M, Chen S, Nie J, Xiong L, Zhao Y, Wu C, Zhou DX. DNA methylation remodeling and the functional implication during male gametogenesis in rice. Genome Biol 2024; 25:84. [PMID: 38566207 PMCID: PMC10985897 DOI: 10.1186/s13059-024-03222-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 03/25/2024] [Indexed: 04/04/2024] Open
Abstract
BACKGROUND Epigenetic marks are reprogrammed during sexual reproduction. In flowering plants, DNA methylation is only partially remodeled in the gametes and the zygote. However, the timing and functional significance of the remodeling during plant gametogenesis remain obscure. RESULTS Here we show that DNA methylation remodeling starts after male meiosis in rice, with non-CG methylation, particularly at CHG sites, being first enhanced in the microspore and subsequently decreased in sperm. Functional analysis of rice CHG methyltransferase genes CMT3a and CMT3b indicates that CMT3a functions as the major CHG methyltransferase in rice meiocyte, while CMT3b is responsible for the increase of CHG methylation in microspore. The function of the two histone demethylases JMJ706 and JMJ707 that remove H3K9me2 may contribute to the decreased CHG methylation in sperm. During male gametogenesis CMT3a mainly silences TE and TE-related genes while CMT3b is required for repression of genes encoding factors involved in transcriptional and translational activities. In addition, CMT3b functions to repress zygotic gene expression in egg and participates in establishing the zygotic epigenome upon fertilization. CONCLUSION Collectively, the results indicate that DNA methylation is dynamically remodeled during male gametogenesis, distinguish the function of CMT3a and CMT3b in sex cells, and underpin the functional significance of DNA methylation remodeling during rice reproduction.
Collapse
Affiliation(s)
- Xue Li
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Bo Zhu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yue Lu
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, College of Agriculture, Yangzhou University, Yangzhou, 225009, China
| | - Feng Zhao
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Qian Liu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jiahao Wang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Miaomiao Ye
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Siyuan Chen
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Junwei Nie
- Vazyme Biotech Co., Ltd, Nanjing, 210000, China
| | - Lizhong Xiong
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yu Zhao
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Changyin Wu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Dao-Xiu Zhou
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China.
- Institute of Plant Science Paris-Saclay (IPS2), CNRS, INRAE, Université Paris-Saclay, 91405, Orsay, France.
| |
Collapse
|
9
|
Liu J, Zhong X. Population epigenetics: DNA methylation in the plant omics era. PLANT PHYSIOLOGY 2024; 194:2039-2048. [PMID: 38366882 PMCID: PMC10980424 DOI: 10.1093/plphys/kiae089] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/22/2024] [Accepted: 01/22/2024] [Indexed: 02/18/2024]
Abstract
DNA methylation plays an important role in many biological processes. The mechanisms underlying the establishment and maintenance of DNA methylation are well understood thanks to decades of research using DNA methylation mutants, primarily in Arabidopsis (Arabidopsis thaliana) accession Col-0. Recent genome-wide association studies (GWASs) using the methylomes of natural accessions have uncovered a complex and distinct genetic basis of variation in DNA methylation at the population level. Sequencing following bisulfite treatment has served as an excellent method for quantifying DNA methylation. Unlike studies focusing on specific accessions with reference genomes, population-scale methylome research often requires an additional round of sequencing beyond obtaining genome assemblies or genetic variations from whole-genome sequencing data, which can be cost prohibitive. Here, we provide an overview of recently developed bisulfite-free methods for quantifying methylation and cost-effective approaches for the simultaneous detection of genetic and epigenetic information. We also discuss the plasticity of DNA methylation in a specific Arabidopsis accession, the contribution of DNA methylation to plant adaptation, and the genetic determinants of variation in DNA methylation in natural populations. The recently developed technology and knowledge will greatly benefit future studies in population epigenomes.
Collapse
Affiliation(s)
- Jie Liu
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Xuehua Zhong
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130, USA
| |
Collapse
|
10
|
Liu J, Zhong X. Epiallelic variation of non-coding RNA genes and their phenotypic consequences. Nat Commun 2024; 15:1375. [PMID: 38355746 PMCID: PMC10867003 DOI: 10.1038/s41467-024-45771-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 02/01/2024] [Indexed: 02/16/2024] Open
Abstract
Epigenetic variations contribute greatly to the phenotypic plasticity and diversity. Current functional studies on epialleles have predominantly focused on protein-coding genes, leaving the epialleles of non-coding RNA (ncRNA) genes largely understudied. Here, we uncover abundant DNA methylation variations of ncRNA genes and their significant correlations with plant adaptation among 1001 natural Arabidopsis accessions. Through genome-wide association study (GWAS), we identify large numbers of methylation QTL (methylQTL) that are independent of known DNA methyltransferases and enriched in specific chromatin states. Proximal methylQTL closely located to ncRNA genes have a larger effect on DNA methylation than distal methylQTL. We ectopically tether a DNA methyltransferase MQ1v to miR157a by CRISPR-dCas9 and show de novo establishment of DNA methylation accompanied with decreased miR157a abundance and early flowering. These findings provide important insights into the genetic basis of epigenetic variations and highlight the contribution of epigenetic variations of ncRNA genes to plant phenotypes and diversity.
Collapse
Affiliation(s)
- Jie Liu
- Department of Biology, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - Xuehua Zhong
- Department of Biology, Washington University in St. Louis, St. Louis, MO, 63130, USA.
| |
Collapse
|
11
|
Orłowska R, Zimny J, Zebrowski J, Androsiuk P, Bednarek PT. An insight into tissue culture-induced variation origin shared between anther culture-derived triticale regenerants. BMC PLANT BIOLOGY 2024; 24:43. [PMID: 38200422 PMCID: PMC10782687 DOI: 10.1186/s12870-023-04679-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 12/11/2023] [Indexed: 01/12/2024]
Abstract
BACKGROUND The development of the plant in vitro techniques has brought about the variation identified in regenerants known as somaclonal or tissue culture-induced variation (TCIV). S-adenosyl-L-methionine (SAM), glutathione (GSH), low methylated pectins (LMP), and Cu(II) ions may be implicated in green plant regeneration efficiency (GPRE) and TCIV, according to studies in barley (Hordeum vulgare L.) and partially in triticale (× Triticosecale spp. Wittmack ex A. Camus 1927). Using structural equation models (SEM), these metabolites have been connected to the metabolic pathways (Krebs and Yang cycles, glycolysis, transsulfuration), but not for triticale. Using metabolomic and (epi)genetic data, the study sought to develop a triticale regeneration efficiency statistical model. The culture's induction medium was supplemented with various quantities of Cu(II) and Ag(I) ions for regeneration. The period of plant regeneration has also changed. The donor plant, anther-derived regenerants, and metAFLP were utilized to analyze TCIV concerning DNA in symmetric (CG, CHG) and asymmetric (CHH) sequence contexts. Attenuated Total Reflectance-Fourier Transfer Infrared (ATR-FTIR) spectroscopy was used to gather the metabolomic information on LMP, SAM, and GSH. To frame the data, a structural equation model was employed. RESULTS According to metAFLP analysis, the average sequence change in the CHH context was 8.65%, and 0.58% was de novo methylation. Absorbances of FTIR spectra in regions specific for LMP, SAM, and GSH were used as variables values introduced to the SEM model. The average number of green regenerants per 100 plated anthers was 2.55. CONCLUSIONS The amounts of pectin demethylation, SAM, de novo methylation, and GSH are connected in the model to explain GPRE. By altering the concentration of Cu(II) ions in the medium, which influences the amount of pectin, triticale's GPRE can be increased.
Collapse
Affiliation(s)
- Renata Orłowska
- Plant Breeding and Acclimatization Institute, National Research Institute, Radzików, Błonie, 05-870, Poland
| | - Janusz Zimny
- Plant Breeding and Acclimatization Institute, National Research Institute, Radzików, Błonie, 05-870, Poland
| | - Jacek Zebrowski
- Institute of Biotechnology, College of Natural Science, University of Rzeszow, Al. Rejtana 16c, Rzeszow, 35-959, Poland
| | - Piotr Androsiuk
- Department of Plant Physiology, Genetics and Biotechnology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, 10-719, Poland
| | - Piotr T Bednarek
- Plant Breeding and Acclimatization Institute, National Research Institute, Radzików, Błonie, 05-870, Poland.
| |
Collapse
|
12
|
Chen J, Lu J, Liu J, Fang J, Zhong X, Song J. DNA conformational dynamics in the context-dependent non-CG CHH methylation by plant methyltransferase DRM2. J Biol Chem 2023; 299:105433. [PMID: 37926286 PMCID: PMC10711165 DOI: 10.1016/j.jbc.2023.105433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 10/05/2023] [Accepted: 10/29/2023] [Indexed: 11/07/2023] Open
Abstract
DNA methylation provides an important epigenetic mechanism that critically regulates gene expression, genome imprinting, and retrotransposon silencing. In plants, DNA methylation is prevalent not only in a CG dinucleotide context but also in non-CG contexts, namely CHG and CHH (H = C, T, or A) methylation. It has been established that plant non-CG DNA methylation is highly context dependent, with the +1- and +2-flanking sequences enriched with A/T nucleotides. How DNA sequence, conformation, and dynamics influence non-CG methylation remains elusive. Here, we report structural and biochemical characterizations of the intrinsic substrate preference of DOMAINS REARRANGED METHYLTRANSFERASE 2 (DRM2), a plant DNA methyltransferase responsible for establishing all cytosine methylation and maintaining CHH methylation. Among nine CHH motifs, the DRM2 methyltransferase (MTase) domain shows marked substrate preference toward CWW (W = A or T) motifs, correlating well with their relative abundance in planta. Furthermore, we report the crystal structure of DRM2 MTase in complex with a DNA duplex containing a flexible TpA base step at the +1/+2-flanking sites of the target nucleotide. Comparative structural analysis of the DRM2-DNA complexes provides a mechanism by which flanking nucleotide composition impacts DRM2-mediated DNA methylation. Furthermore, the flexibility of the TpA step gives rise to two alternative DNA conformations, resulting in different interactions with DRM2 and consequently temperature-dependent shift of the substrate preference of DRM2. Together, this study provides insights into how the interplay between the conformational dynamics of DNA and temperature as an environmental factor contributes to the context-dependent CHH methylation by DRM2.
Collapse
Affiliation(s)
- Jianbin Chen
- Department of Biochemistry, University of California, Riverside, California, USA
| | - Jiuwei Lu
- Department of Biochemistry, University of California, Riverside, California, USA
| | - Jie Liu
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Jian Fang
- Department of Biochemistry, University of California, Riverside, California, USA
| | - Xuehua Zhong
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Jikui Song
- Department of Biochemistry, University of California, Riverside, California, USA.
| |
Collapse
|
13
|
Liu B, Zhao M. How transposable elements are recognized and epigenetically silenced in plants? CURRENT OPINION IN PLANT BIOLOGY 2023; 75:102428. [PMID: 37481986 DOI: 10.1016/j.pbi.2023.102428] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 06/27/2023] [Accepted: 06/28/2023] [Indexed: 07/25/2023]
Abstract
Plant genomes are littered with transposable elements (TEs). Because TEs are potentially highly mutagenic, host organisms have evolved a set of defense mechanisms to recognize and epigenetically silence them. Although the maintenance of TE silencing is well studied, our understanding of the initiation of TE silencing is limited, but it clearly involves small RNAs and DNA methylation. Once TEs are silent, the silent state can be maintained to subsequent generations. However, under some circumstances, such inheritance is unstable, leading to the escape of TEs to the silencing machinery, resulting in the transcriptional activation of TEs. Epigenetic control of TEs has been found to be closely linked to many other epigenetic phenomena, such as genomic imprinting, and is known to contribute to regulation of genes, especially those near TEs. Here we review and discuss the current models of TE silencing, its unstable inheritance after hybridization, and the effects of epigenetic regulation of TEs on genomic imprinting.
Collapse
Affiliation(s)
- Beibei Liu
- Department of Biology, Miami University, Oxford, OH 45056, USA
| | - Meixia Zhao
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL 32611, USA.
| |
Collapse
|