1
|
Senatore E, Avolio R, Rinaldi L, Chiuso F, Oliva MA, D'Ambrosio C, Bianco AG, Dalla E, Pagnotta SM, Flammia R, Ambrosino C, Memoli D, Turacchio G, Mimoune SI, Toiron Y, Audebert S, Camoin L, Lignitto L, Scaloni A, Arcella A, Feliciello A. Praja2 controls P-body assembly and translation in glioblastoma by non-proteolytic ubiquitylation of DDX6. EMBO Rep 2025:10.1038/s44319-025-00425-5. [PMID: 40148504 DOI: 10.1038/s44319-025-00425-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 02/17/2025] [Accepted: 02/27/2025] [Indexed: 03/29/2025] Open
Abstract
Glioblastoma multiforme (GBM) is the most lethal form of malignant brain tumor in adults. Dysregulation of protein synthesis contributes to cancer cell plasticity, driving GBM cell heterogeneity, metastatic behavior, and drug resistance. Understanding the complex network and signaling pathways governing protein translation, is therefore an important goal for GBM treatment. Here we identify a novel signaling network centered on the E3 ubiquitin ligase praja2 that controls protein translation in GBM. Praja2 forms a multimeric complex with the RNA helicase DDX6, which inhibits translation of target RNAs within processing bodies (P-bodies). Stimulation of cAMP signaling through activation of G-protein-coupled receptors induces P-body assembly through praja2-mediated non-proteolytic polyubiquitylation of DDX6. Genetic inactivation of praja2 reshapes DDX6/mRNA complexes and translating polysomes and promotes cellular senescence and GBM growth arrest. Expression of an ubiquitylation-defective DDX6 mutant suppresses the assembly of P-bodies and sustains GBM growth. Taken together, our findings identify a cAMP-driven network that controls translation in P-bodies and GBM growth.
Collapse
Affiliation(s)
- Emanuela Senatore
- Department of Molecular Medicine and Medical Biotechnology, University Federico II, Naples, Italy
| | - Rosario Avolio
- Department of Molecular Medicine and Medical Biotechnology, University Federico II, Naples, Italy
| | - Laura Rinaldi
- Department of Molecular Medicine and Medical Biotechnology, University Federico II, Naples, Italy
| | - Francesco Chiuso
- Department of Molecular Medicine and Medical Biotechnology, University Federico II, Naples, Italy
| | | | - Chiara D'Ambrosio
- Proteomics, Metabolomics and Mass Spectrometry Laboratory, ISPAAM, National Research Council, Portici, Naples, Italy
| | - Antonio Giuseppe Bianco
- Department of Molecular Medicine and Medical Biotechnology, University Federico II, Naples, Italy
| | - Emiliano Dalla
- Department of Medicine, University of Udine, Udine, Italy
| | | | - Raffaella Flammia
- Department of Science and Technology, University of Sannio, Benevento, Italy
| | - Concetta Ambrosino
- Department of Science and Technology, University of Sannio, Benevento, Italy
| | - Domenico Memoli
- Department of Medicine, Surgery and Dentistry SMS, University of Salerno, Salerno, Italy
| | - Gabriele Turacchio
- Institute of Biochemistry and Cell Biology, National Research Council, Naples, Italy
| | - Sonia Ines Mimoune
- Cancer Research Center of Marseille (CRCM), CNRS, Aix Marseille University, INSERM, Institut Paoli-Calmettes, Marseille, France
| | - Yves Toiron
- Cancer Research Center of Marseille (CRCM), CNRS, Aix Marseille University, INSERM, Institut Paoli-Calmettes, Marseille, France
| | - Stephane Audebert
- Cancer Research Center of Marseille (CRCM), CNRS, Aix Marseille University, INSERM, Institut Paoli-Calmettes, Marseille, France
| | - Luc Camoin
- Cancer Research Center of Marseille (CRCM), CNRS, Aix Marseille University, INSERM, Institut Paoli-Calmettes, Marseille, France
| | - Luca Lignitto
- Cancer Research Center of Marseille (CRCM), CNRS, Aix Marseille University, INSERM, Institut Paoli-Calmettes, Marseille, France
| | - Andrea Scaloni
- Proteomics, Metabolomics and Mass Spectrometry Laboratory, ISPAAM, National Research Council, Portici, Naples, Italy
| | | | - Antonio Feliciello
- Department of Molecular Medicine and Medical Biotechnology, University Federico II, Naples, Italy.
| |
Collapse
|
2
|
Gellée N, Legrand N, Jouve M, Devaux PJ, Dubuquoy L, Sobolewski C. Tristetraprolin Family Members and Processing Bodies: A Complex Regulatory Network Involved in Fatty Liver Disease, Viral Hepatitis and Hepatocellular Carcinoma. Cancers (Basel) 2025; 17:348. [PMID: 39941720 PMCID: PMC11815756 DOI: 10.3390/cancers17030348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 01/15/2025] [Accepted: 01/18/2025] [Indexed: 02/16/2025] Open
Abstract
Chronic liver diseases, such as those encountered with obesity, chronic/abusive alcohol consumption or viral infections, represent not only major public health concerns with limited therapeutic options but also important risk factors for the onset of hepatocellular carcinoma (HCC). Deciphering the molecular traits underlying these disorders is of high interest for designing new and effective treatments. The tristetraprolin (TTP) family members are of particular importance given their ability to control the expression of a wide range of genes involved in metabolism, inflammation and carcinogenesis at the post-transcriptional level. This regulation can occur within small cytoplasmic granules, namely, processing bodies (P-bodies), where the mRNA degradation occurs. Increasing evidence indicates that TTP family members and P-bodies are involved in the development of chronic liver diseases and cancers. In this review, we discuss the role of this regulatory mechanism in metabolic-dysfunction-associated steatotic liver disease (MASLD), alcohol-related liver disease (ALD), hepatic viral infections and HCC.
Collapse
Affiliation(s)
| | | | | | | | | | - Cyril Sobolewski
- Univ Lille, Inserm, CHU Lille, U1286-INFINITE-Institute for Translational Research in Inflammation, F-59000 Lille, France; (N.G.); (N.L.); (M.J.); (L.D.)
| |
Collapse
|
3
|
Chen Z, Liu J, Zheng M, Mo M, Hu X, Liu C, Pathak JL, Wang L, Chen L. TRIM24-DTNBP1-ATP7A mediated astrocyte cuproptosis in cognition and memory dysfunction caused by Y 2O 3 NPs. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176353. [PMID: 39304169 DOI: 10.1016/j.scitotenv.2024.176353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 08/27/2024] [Accepted: 09/16/2024] [Indexed: 09/22/2024]
Abstract
Yttrium oxide nanoparticles (Y2O3 NPs), extensively utilized rare earth nanoparticles, exhibited a diverse range of applications across various fields, which leading to increased human exposure. Moreover, potential neurotoxic risks have been associated with their use, yet the underlying mechanism remains unclear. The present study aimed to investigate the effects of Y2O3 NPs on cognitive function in rats with a particular focus on elucidating the pivotal role played by astrocytes in this process. The results demonstrated that Y2O3 NPs induced cognitive and memory impairment in rats, copper (Cu) accumulation and cuproptosis of astrocytes as contributing factors. Furthermore, we elucidated that Y2O3 NPs induced astrocytes cuproptosis by inhibiting TRIM24/DTNBP1/ATP7A signaling pathway-mediated cellular Cu efflux. We provide, for the first time, the important involvement of astrocytes in Y2O3 NPs-induced neurotoxicity, elucidating that cuproptosis as the primary mode of cell death. These results offer valuable insights for the future safe application of rare earth nanoparticles in field of neurology.
Collapse
Affiliation(s)
- Ziwei Chen
- Department of orthodontics, School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, Guangzhou, China
| | - Jia Liu
- Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Manjia Zheng
- Department of orthodontics, School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, Guangzhou, China
| | - Minhua Mo
- Department of orthodontics, School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, Guangzhou, China
| | - Xiaowen Hu
- Department of orthodontics, School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, Guangzhou, China
| | - Chang Liu
- Department of orthodontics, School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, Guangzhou, China
| | - Janak Lal Pathak
- Department of orthodontics, School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, Guangzhou, China
| | - Lijing Wang
- Department of orthodontics, School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, Guangzhou, China
| | - Liangjiao Chen
- Department of orthodontics, School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
4
|
Zhang H, Lei S, Zhuo H, Xu Y, Ye Y, Luo Y. TRIM24 Up-Regulates ORM2 to Alleviate Abnormal Lipid Metabolism, Inflammation, and Oxidative Stress in Mice with Obstructive Sleep Apnea Syndrome and Metabolic Dysfunction-Associated Steatotic Liver Disease. THE AMERICAN JOURNAL OF PATHOLOGY 2024; 194:2091-2105. [PMID: 39168366 DOI: 10.1016/j.ajpath.2024.07.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 06/29/2024] [Accepted: 07/31/2024] [Indexed: 08/23/2024]
Abstract
Obstructive sleep apnea syndrome (OSAS) is associated with the development and progression of metabolic dysfunction-associated steatotic liver disease (MASLD). Tripartite motif containing 24 (TRIM24) deficiency causes hepatic lipid accumulation and hepatitis. However, the expression, function, and mechanism of TRIM24 in OSAS and MASLD remain unclear. Herein, an OSAS and MASLD mouse model was established by intermittent hypoxia (IH) and high-fat diet. IH- and 1% free fatty acid-induced mouse liver cells served as an in vitro model. TRIM24 and HIF1A were up-regulated under the IH condition. HIF1A enhanced the transcriptional activity of TRIM24. Overexpression of TRIM24 reduced hepatic lipid accumulation, decreased serum levels of total cholesterol, triglyceride, and low-density lipoprotein cholesterol, and increased serum levels of high-density lipoprotein cholesterol in OSAS and MASLD mice. Additionally, overexpression of TRIM24 alleviated inflammation and oxidative stress, and modulated aberrant lipid metabolism. Mechanically, TRIM24 up-regulated the expression of ORM2, a key regulator of hepatic lipogenesis, by binding to H3K27ac and recruiting retinoic acid receptor-α to ORM2 promoter. The cell rescue model was used to verify that ORM2 mediated the hepatoprotective effects of TRIM24. The current study reveals the important role of TRIM24 as an epigenetic coregulator of transcription in OSAS and MASLD, providing additional insights into understanding the pathogenesis and preventing the development of OSAS and MASLD.
Collapse
Affiliation(s)
- Hui Zhang
- Department of Geriatrics, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Si Lei
- Department of General Medicine, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Hui Zhuo
- Department of General Medicine, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Yan Xu
- Department of General Medicine, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Yun Ye
- Department of General Medicine, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Yingquan Luo
- Department of General Medicine, The Second Xiangya Hospital of Central South University, Changsha, China.
| |
Collapse
|
5
|
Zhan W, Li Z, Zhang J, Liu Y, Liu G, Li B, Shen R, Jiang Y, Shang W, Gao S, Wu H, Wang Y, Chen W, Wang Z. Energy stress promotes P-bodies formation via lysine-63-linked polyubiquitination of HAX1. EMBO J 2024; 43:2759-2788. [PMID: 38769438 PMCID: PMC11217408 DOI: 10.1038/s44318-024-00120-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 03/22/2024] [Accepted: 04/15/2024] [Indexed: 05/22/2024] Open
Abstract
Energy stress, characterized by the reduction of intracellular ATP, has been implicated in various diseases, including cancer. Here, we show that energy stress promotes the formation of P-bodies in a ubiquitin-dependent manner. Upon ATP depletion, the E3 ubiquitin ligase TRIM23 catalyzes lysine-63 (K63)-linked polyubiquitination of HCLS1-associated protein X-1 (HAX1). HAX1 ubiquitination triggers its liquid‒liquid phase separation (LLPS) and contributes to P-bodies assembly induced by energy stress. Ubiquitinated HAX1 also interacts with the essential P-body proteins, DDX6 and LSM14A, promoting their condensation. Moreover, we find that this TRIM23/HAX1 pathway is critical for the inhibition of global protein synthesis under energy stress conditions. Furthermore, high HAX1 ubiquitination, and increased cytoplasmic localization of TRIM23 along with elevated HAX1 levels, promotes colorectal cancer (CRC)-cell proliferation and correlates with poor prognosis in CRC patients. Our data not only elucidate a ubiquitination-dependent LLPS mechanism in RNP granules induced by energy stress but also propose a promising target for CRC therapy.
Collapse
Affiliation(s)
- Wanqi Zhan
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
- Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong, China
| | - Zhiyang Li
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
- Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong, China
| | - Jie Zhang
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China
| | - Yongfeng Liu
- Radiation Medicine Institute, The First Affiliated Hospital, ZhengZhou University, ZhengZhou, Henan, China
| | - Guanglong Liu
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
- Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong, China
| | - Bingsong Li
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
- Jinfeng Laboratory, Chongqing, China
| | - Rong Shen
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
- Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong, China
| | - Yi Jiang
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China
| | - Wanjing Shang
- Lymphocyte Biology Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, USA
| | - Shenjia Gao
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China
| | - Han Wu
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China
| | - Ya'nan Wang
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
- Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong, China
| | - Wankun Chen
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China.
- Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China.
- Department of Anesthesiology, Qingpu Branch of Zhongshan Hospital, Fudan University, Shanghai, China.
| | - Zhizhang Wang
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China.
- Jinfeng Laboratory, Chongqing, China.
| |
Collapse
|
6
|
Bo T, Gao L, Yao Z, Shao S, Wang X, Proud CG, Zhao J. Hepatic selective insulin resistance at the intersection of insulin signaling and metabolic dysfunction-associated steatotic liver disease. Cell Metab 2024; 36:947-968. [PMID: 38718757 DOI: 10.1016/j.cmet.2024.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 01/22/2024] [Accepted: 04/09/2024] [Indexed: 06/26/2024]
Abstract
Insulin resistance (IR) is a major pathogenic factor in the progression of MASLD. In the liver, insulin suppresses gluconeogenesis and enhances de novo lipogenesis (DNL). During IR, there is a defect in insulin-mediated suppression of gluconeogenesis, but an unrestrained increase in hepatic lipogenesis persists. The mechanism of increased hepatic steatosis in IR is unclear and remains controversial. The key discrepancy is whether insulin retains its ability to directly regulate hepatic lipogenesis. Blocking insulin/IRS/AKT signaling reduces liver lipid deposition in IR, suggesting insulin can still regulate lipid metabolism; hepatic glucose metabolism that bypasses insulin's action may contribute to lipogenesis; and due to peripheral IR, other tissues are likely to impact liver lipid deposition. We here review the current understanding of insulin's action in governing different aspects of hepatic lipid metabolism under normal and IR states, with the purpose of highlighting the essential issues that remain unsettled.
Collapse
Affiliation(s)
- Tao Bo
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China; Central Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China; Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Ling Gao
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China; Central Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China; Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, Shandong, China
| | - Zhenyu Yao
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China; Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, Shandong, China
| | - Shanshan Shao
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China; Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, Shandong, China
| | - Xuemin Wang
- Lifelong Health, South Australian Health & Medical Research Institute, North Terrace, Adelaide, SA, Australia
| | - Christopher G Proud
- Lifelong Health, South Australian Health & Medical Research Institute, North Terrace, Adelaide, SA, Australia.
| | - Jiajun Zhao
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China; Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, Shandong, China.
| |
Collapse
|
7
|
Šimon M, Mikec Š, Atanur SS, Konc J, Morton NM, Horvat S, Kunej T. Whole genome sequencing of mouse lines divergently selected for fatness (FLI) and leanness (FHI) revealed several genetic variants as candidates for novel obesity genes. Genes Genomics 2024; 46:557-575. [PMID: 38483771 PMCID: PMC11024027 DOI: 10.1007/s13258-024-01507-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 02/25/2024] [Indexed: 04/18/2024]
Abstract
BACKGROUND Analysing genomes of animal model organisms is widely used for understanding the genetic basis of complex traits and diseases, such as obesity, for which only a few mouse models exist, however, without their lean counterparts. OBJECTIVE To analyse genetic differences in the unique mouse models of polygenic obesity (Fat line) and leanness (Lean line) originating from the same base population and established by divergent selection over more than 60 generations. METHODS Genetic variability was analysed using WGS. Variants were identified with GATK and annotated with Ensembl VEP. g.Profiler, WebGestalt, and KEGG were used for GO and pathway enrichment analysis. miRNA seed regions were obtained with miRPathDB 2.0, LncRRIsearch was used to predict targets of identified lncRNAs, and genes influencing adipose tissue amount were searched using the IMPC database. RESULTS WGS analysis revealed 6.3 million SNPs, 1.3 million were new. Thousands of potentially impactful SNPs were identified, including within 24 genes related to adipose tissue amount. SNP density was highest in pseudogenes and regulatory RNAs. The Lean line carries SNP rs248726381 in the seed region of mmu-miR-3086-3p, which may affect fatty acid metabolism. KEGG analysis showed deleterious missense variants in immune response and diabetes genes, with food perception pathways being most enriched. Gene prioritisation considering SNP GERP scores, variant consequences, and allele comparison with other mouse lines identified seven novel obesity candidate genes: 4930441H08Rik, Aff3, Fam237b, Gm36633, Pced1a, Tecrl, and Zfp536. CONCLUSION WGS revealed many genetic differences between the lines that accumulated over the selection period, including variants with potential negative impacts on gene function. Given the increasing availability of mouse strains and genetic polymorphism catalogues, the study is a valuable resource for researchers to study obesity.
Collapse
Affiliation(s)
- Martin Šimon
- Chair of Genetics, Animal Biotechnology and Immunology, Department of Animal Science, Biotechnical Faculty, University of Ljubljana, Domžale, 1230, Slovenia.
| | - Špela Mikec
- Chair of Genetics, Animal Biotechnology and Immunology, Department of Animal Science, Biotechnical Faculty, University of Ljubljana, Domžale, 1230, Slovenia
| | - Santosh S Atanur
- Faculty of Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, SW7 2AZ, UK
- Centre for Genomic and Experimental Medicine, University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - Janez Konc
- Laboratory for Molecular Modeling, National Institute of Chemistry, Ljubljana, 1000, Slovenia
| | - Nicholas M Morton
- The Queen's Medical Research Institute, Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - Simon Horvat
- Chair of Genetics, Animal Biotechnology and Immunology, Department of Animal Science, Biotechnical Faculty, University of Ljubljana, Domžale, 1230, Slovenia
| | - Tanja Kunej
- Chair of Genetics, Animal Biotechnology and Immunology, Department of Animal Science, Biotechnical Faculty, University of Ljubljana, Domžale, 1230, Slovenia.
| |
Collapse
|
8
|
Ren D, Li W, Zeng R, Liu X, Liang H, Xiong W, Yang C, Jin X. Retinoblastoma-associated protein is important for TRIM24-mediated activation of the mTOR signaling pathway through DUSP2 action in prostate cancer. Cell Death Differ 2024; 31:592-604. [PMID: 38514847 PMCID: PMC11094112 DOI: 10.1038/s41418-024-01282-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 03/11/2024] [Accepted: 03/12/2024] [Indexed: 03/23/2024] Open
Abstract
RB transcriptional corepressor 1 (RB) deletion is the most important genomic factor associated with the prognosis of castration-resistant prostate cancer (CRPC) patients receiving androgen receptor (AR) signaling inhibitor therapy. Loss of RB could support prostate cancer cell growth in a hormone-independent manner, but the underlying mechanism by which RB regulates tumor progression extends far beyond the cell cycle pathway. A previous study indicated that RB inactivates AKT signaling but has no effect on mTOR signaling in cancer cells. Here, we found that the S249/T252 site in RB is key to regulating the transcriptional activity of the tumor-promoting factor TRIM24 in CRPC, as identified through FXXXV mapping. The RB/TRIM24 complex functions through DUSP2, which serves as an intermediate bridge, to activate the mTOR pathway and promote prostate cancer progression. Accordingly, we designed RB-linker-proteolysis-targeting chimera (PROTAC) molecules, which decreased TRIM24 protein levels and inactivated the mTOR signaling pathway, thereby inhibiting prostate cancer. Therefore, this study not only elucidates the novel function of RB but also provides a theoretical basis for the development of new drugs for treating prostate cancer.
Collapse
Affiliation(s)
- Da Ren
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
- Uro-Oncology Institute of Central South University, Changsha, Hunan, 410011, China
| | - Wei Li
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
- Uro-Oncology Institute of Central South University, Changsha, Hunan, 410011, China
| | - Ruijiang Zeng
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
- Uro-Oncology Institute of Central South University, Changsha, Hunan, 410011, China
| | - Xinlin Liu
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
- Uro-Oncology Institute of Central South University, Changsha, Hunan, 410011, China
| | - Huaiyuan Liang
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
- Uro-Oncology Institute of Central South University, Changsha, Hunan, 410011, China
| | - Wei Xiong
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
- Uro-Oncology Institute of Central South University, Changsha, Hunan, 410011, China
| | - Chunguang Yang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Xin Jin
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China.
- Uro-Oncology Institute of Central South University, Changsha, Hunan, 410011, China.
| |
Collapse
|
9
|
Zhang J, Cheng X, Wei Y, Zhang Z, Zhou Q, Guan Y, Yan Y, Wang R, Jia C, An J, He M. Epigenome-wide perspective of cadmium-associated DNA methylation and its mediation role in the associations of cadmium with lipid levels and dyslipidemia risk. Food Chem Toxicol 2024; 184:114409. [PMID: 38128686 DOI: 10.1016/j.fct.2023.114409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 12/13/2023] [Accepted: 12/18/2023] [Indexed: 12/23/2023]
Abstract
BACKGROUND Studies demonstrated the associations of cadmium (Cd) with lipid levels and dyslipidemia risk, but the mechanisms involved need further exploration. OBJECTIVES We aimed to explore the role of DNA methylation (DNAM) in the relationship of Cd with lipid levels and dyslipidemia risk. METHODS Urinary cadmium levels (UCd) were measured by inductively coupled plasma mass spectrometry, serum high-density lipoprotein (HDL), total cholesterol, triglyceride, and low-density lipoprotein were measured with kits, and DNAM was measured using the Infinium MethylationEPIC BeadChip. Robust linear regressions were conducted for epigenome-wide association study. Multivariate linear and logistic regressions were performed to explore the associations of UCd with lipid levels and dyslipidemia risk, respectively. Mediation analyses were conducted to explore potential mediating role of DNAM in the associations of Cd with lipid levels and dyslipidemia risk. RESULTS UCd was negatively associated with HDL levels (p = 0.01) and positively associated with dyslipidemia (p < 0.01). There were 92/11 DMPs/DMRs (FDR<0.05) associated with UCd. Cd-associated DNAM and pathways were connected with cardiometabolic diseases and immunity. Cg07829377 (LINC01060) mediated 42.05%/22.88% of the UCd-HDL/UCd-dyslipidemia associations (p = 0.02 and 0.01, respectively). CONCLUSIONS Cadmium caused site-specific DNAM alterations and the associations of UCd with lipid levels and dyslipidemia risk may be partially mediated by DNAM.
Collapse
Affiliation(s)
- Jiazhen Zhang
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Xu Cheng
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Yue Wei
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China; Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, 530021, China
| | - Zefang Zhang
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China; Department of Tuberculosis Control, Wuhan Pulmonary Hospital, Wuhan, Hubei, China
| | - Qihang Zhou
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Youbing Guan
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Yan Yan
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Ruixin Wang
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Chengyong Jia
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Jun An
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Meian He
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.
| |
Collapse
|
10
|
Isbel L, Iskar M, Durdu S, Weiss J, Grand RS, Hietter-Pfeiffer E, Kozicka Z, Michael AK, Burger L, Thomä NH, Schübeler D. Readout of histone methylation by Trim24 locally restricts chromatin opening by p53. Nat Struct Mol Biol 2023:10.1038/s41594-023-01021-8. [PMID: 37386214 DOI: 10.1038/s41594-023-01021-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 05/15/2023] [Indexed: 07/01/2023]
Abstract
The genomic binding sites of the transcription factor (TF) and tumor suppressor p53 are unusually diverse with regard to their chromatin features, including histone modifications, raising the possibility that the local chromatin environment can contextualize p53 regulation. Here, we show that epigenetic characteristics of closed chromatin, such as DNA methylation, do not influence the binding of p53 across the genome. Instead, the ability of p53 to open chromatin and activate its target genes is locally restricted by its cofactor Trim24. Trim24 binds to both p53 and unmethylated histone 3 lysine 4 (H3K4), thereby preferentially localizing to those p53 sites that reside in closed chromatin, whereas it is deterred from accessible chromatin by H3K4 methylation. The presence of Trim24 increases cell viability upon stress and enables p53 to affect gene expression as a function of the local chromatin state. These findings link H3K4 methylation to p53 function and illustrate how specificity in chromatin can be achieved, not by TF-intrinsic sensitivity to histone modifications, but by employing chromatin-sensitive cofactors that locally modulate TF function.
Collapse
Affiliation(s)
- Luke Isbel
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Murat Iskar
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Sevi Durdu
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Joscha Weiss
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
- Faculty of Sciences, University of Basel, Basel, Switzerland
| | - Ralph S Grand
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
- Zentrum für Molekulare Biologie der Universität Heidelberg, Heidelberg, Germany
| | - Eric Hietter-Pfeiffer
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
- Faculty of Sciences, University of Basel, Basel, Switzerland
| | - Zuzanna Kozicka
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
- Faculty of Sciences, University of Basel, Basel, Switzerland
| | - Alicia K Michael
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
- Biozentrum, University of Basel, Basel, Switzerland
| | - Lukas Burger
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
- Swiss Institute of Bioinformatics, Basel, Switzerland
| | - Nicolas H Thomä
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Dirk Schübeler
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland.
- Faculty of Sciences, University of Basel, Basel, Switzerland.
| |
Collapse
|