1
|
Capdevila DA, Rondón JJ, Edmonds KA, Rocchio JS, Dujovne MV, Giedroc DP. Bacterial Metallostasis: Metal Sensing, Metalloproteome Remodeling, and Metal Trafficking. Chem Rev 2024. [PMID: 39658019 DOI: 10.1021/acs.chemrev.4c00264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2024]
Abstract
Transition metals function as structural and catalytic cofactors for a large diversity of proteins and enzymes that collectively comprise the metalloproteome. Metallostasis considers all cellular processes, notably metal sensing, metalloproteome remodeling, and trafficking (or allocation) of metals that collectively ensure the functional integrity and adaptability of the metalloproteome. Bacteria employ both protein and RNA-based mechanisms that sense intracellular transition metal bioavailability and orchestrate systems-level outputs that maintain metallostasis. In this review, we contextualize metallostasis by briefly discussing the metalloproteome and specialized roles that metals play in biology. We then offer a comprehensive perspective on the diversity of metalloregulatory proteins and metal-sensing riboswitches, defining general principles within each sensor superfamily that capture how specificity is encoded in the sequence, and how selectivity can be leveraged in downstream synthetic biology and biotechnology applications. This is followed by a discussion of recent work that highlights selected metalloregulatory outputs, including metalloproteome remodeling and metal allocation by metallochaperones to both client proteins and compartments. We close by briefly discussing places where more work is needed to fill in gaps in our understanding of metallostasis.
Collapse
Affiliation(s)
- Daiana A Capdevila
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA-CONICET), C1405 BWE Buenos Aires, Argentina
| | - Johnma J Rondón
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA-CONICET), C1405 BWE Buenos Aires, Argentina
| | - Katherine A Edmonds
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405-7102, United States
| | - Joseph S Rocchio
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405-7102, United States
| | - Matias Villarruel Dujovne
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA-CONICET), C1405 BWE Buenos Aires, Argentina
| | - David P Giedroc
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405-7102, United States
| |
Collapse
|
2
|
Salgueiro V, Bertol J, Gutierrez C, Serrano-Mestre JL, Ferrer-Luzon N, Vázquez-Iniesta L, Palacios A, Pasquina-Lemonche L, Espaillat A, Lerma L, Weinrick B, Lavin JL, Elortza F, Azkalgorta M, Prieto A, Buendía-Nacarino P, Luque-García JL, Neyrolles O, Cava F, Hobbs JK, Sanz J, Prados-Rosales R. Maintenance of cell wall remodeling and vesicle production are connected in Mycobacterium tuberculosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.11.19.567727. [PMID: 38187572 PMCID: PMC10769192 DOI: 10.1101/2023.11.19.567727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Pathogenic and nonpathogenic mycobacteria secrete extracellular vesicles (EVs) under various conditions. EVs produced by Mycobacterium tuberculosis ( Mtb ) have raised significant interest for their potential in cell communication, nutrient acquisition, and immune evasion. However, the relevance of vesicle secretion during tuberculosis infection remains unknown due to the limited understanding of mycobacterial vesicle biogenesis. We have previously shown that a transposon mutant in the LCP-related gene virR ( virR mut ) manifested a strong attenuated phenotype during experimental macrophage and murine infections, concomitant to enhanced vesicle release. In this study, we aimed to understand the role of VirR in the vesicle production process in Mtb . We employ genetic, transcriptional, proteomics, ultrastructural and biochemical methods to investigate the underlying processes explaining the enhanced vesiculogenesis phenomenon observed in the virR mut . Our results establish that VirR is critical to sustain proper cell permeability via regulation of cell envelope remodeling possibly through the interaction with similar cell envelope proteins, which control the link between peptidoglycan and arabinogalactan. These findings advance our understanding of mycobacterial extracellular vesicle biogenesis and suggest that these set of proteins could be attractive targets for therapeutic intervention.
Collapse
|
3
|
Zhu S, Zhao W, Sun S, Yang X, Mao H, Sheng L, Chen Z. Community metagenomics reveals the processes of cadmium resistance regulated by microbial functions in soils with Oryza sativa root exudate input. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 949:175015. [PMID: 39069186 DOI: 10.1016/j.scitotenv.2024.175015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 07/21/2024] [Accepted: 07/23/2024] [Indexed: 07/30/2024]
Abstract
Plants exert a profound influence on their rhizosphere microbiome through the secretion of root exudates, thereby imparting critical effects on their growth and overall health. The results unveil that japonica rice showcases a remarkable augmentation in its antioxidative stress mechanisms under Cd stress. This augmentation is characterized by the sequestration of heavy metal ions within the root system and the prodigious secretion of a spectrum of flavonoids, including Quercetin, Luteolin, Apigenin, Kaempferide, and Sakuranetin. These flavonoids operate as formidable guardians, shielding the plant from oxidative damage instigated by Cd-induced stress. Furthermore, the metagenomic analyses divulge the transformative potential of flavonoids, as they induce profound alterations in the composition and structural dynamics of plant rhizosphere microbial communities. These alterations manifest through the recruitment of plant growth-promoting bacteria, effectively engineering a conducive milieu for japonica rice. In addition, our symbiotic network analysis discerns that flavonoid compounds significantly improved the positive correlations among dominant species within the rhizosphere of japonica rice. This, in turn, bolsters the stability and intricacy of the microenvironmental ecological network. KEGG functional analyses reveal a notable upregulation in the expression of flavonoid functional genes, specifically cadA, cznA, nccC, and czrB, alongside an array of transporters, encompassing RND, ABC, MIT, and P-ATPase. These molecular orchestrations distinctly demarcated the rhizosphere microbiome of japonica rice, markedly enhancing its tolerance to Cd-induced stress. These findings not only shed light on the establishment of Cd-resistant bacterial consortia in rice but also herald a promising avenue for the precise modulation of plant rhizosphere microbiomes, thereby fortifying the safety and efficiency of crop production.
Collapse
Affiliation(s)
- Sixi Zhu
- College of Eco-environment Engineering, Guizhou Minzu University, The Karst Environmental Geological Hazard Prevention of Key Laboratory of State Ethnic Affairs Commission, Guiyang 550025, China.
| | - Wei Zhao
- College of Eco-environment Engineering, Guizhou Minzu University, The Karst Environmental Geological Hazard Prevention of Key Laboratory of State Ethnic Affairs Commission, Guiyang 550025, China
| | - Suxia Sun
- College of Eco-environment Engineering, Guizhou Minzu University, The Karst Environmental Geological Hazard Prevention of Key Laboratory of State Ethnic Affairs Commission, Guiyang 550025, China
| | - Xiuqin Yang
- College of Eco-environment Engineering, Guizhou Minzu University, The Karst Environmental Geological Hazard Prevention of Key Laboratory of State Ethnic Affairs Commission, Guiyang 550025, China
| | - Huan Mao
- College of Eco-environment Engineering, Guizhou Minzu University, The Karst Environmental Geological Hazard Prevention of Key Laboratory of State Ethnic Affairs Commission, Guiyang 550025, China
| | - Luying Sheng
- College of Eco-environment Engineering, Guizhou Minzu University, The Karst Environmental Geological Hazard Prevention of Key Laboratory of State Ethnic Affairs Commission, Guiyang 550025, China
| | - Zhongbing Chen
- Department of Applied Ecology, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcka 129, Praha-Suchdol 16500, Czech Republic
| |
Collapse
|
4
|
Singh A, Misser S, Allam M, Chan WY, Ismail A, Munhenga G, Oliver SV. The Effect of Larval Exposure to Heavy Metals on the Gut Microbiota Composition of Adult Anopheles arabiensis (Diptera: Culicidae). Trop Med Infect Dis 2024; 9:249. [PMID: 39453276 PMCID: PMC11510740 DOI: 10.3390/tropicalmed9100249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/05/2024] [Accepted: 10/17/2024] [Indexed: 10/26/2024] Open
Abstract
Anopheles arabiensis is a highly adaptable member of the An. gambiae complex. Its flexible resting behaviour and diverse feeding habits make conventional vector control methods less effective in controlling this species. Another emerging challenge is its adaptation to breeding in polluted water, which impacts various life history traits relevant to epidemiology. The gut microbiota of mosquitoes play a crucial role in their life history, and the larval environment significantly influences the composition of this bacterial community. Consequently, adaptation to polluted breeding sites may alter the gut microbiota of adult mosquitoes. This study aimed to examine how larval exposure to metal pollution affects the gut microbial dynamics of An. arabiensis adults. Larvae of An. arabiensis were exposed to either cadmium chloride or copper nitrate, with larvae reared in untreated water serving as a control. Two laboratory strains (SENN: insecticide unselected, SENN-DDT: insecticide selected) and F1 larvae sourced from KwaZulu-Natal, South Africa, were exposed. The gut microbiota of the adults were sequenced using the Illumina Next Generation Sequencing platform and compared. Larval metal exposure affected alpha diversity, with a more marked difference in beta diversity. There was evidence of core microbiota shared between the untreated and metal-treated groups. Bacterial genera associated with metal tolerance were more prevalent in the metal-treated groups. Although larval metal exposure led to an increase in pesticide-degrading bacterial genera in the laboratory strains, this effect was not observed in the F1 population. In the F1 population, Plasmodium-protective bacterial genera were more abundant in the untreated group compared to the metal-treated group. This study therefore highlights the importance of considering the larval environment when searching for local bacterial symbionts for paratransgenesis interventions.
Collapse
Affiliation(s)
- Ashmika Singh
- Wits Research Institute for Malaria, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2193, South Africa
- Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases, Division of the National Health Laboratory Service, Johannesburg 2193, South Africa
| | - Shristi Misser
- Wits Research Institute for Malaria, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2193, South Africa
- Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases, Division of the National Health Laboratory Service, Johannesburg 2193, South Africa
| | - Mushal Allam
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, Abu Dhabi 15551, United Arab Emirates
- Antimicrobial Research Unit, School of Health Sciences, University of KwaZulu-Natal, Durban 4041, South Africa
| | - Wai-Yin Chan
- Department of Biochemistry, Genetics and Microbiology (BGM), Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria 0028, South Africa;
| | - Arshad Ismail
- Sequencing Core Facility, National Institute for Communicable Diseases, Division of the National Health Laboratory Service, Johannesburg 2193, South Africa;
- Department of Biochemistry and Microbiology, Faculty of Science, Engineering and Agriculture, University of Venda, Thohoyandou 0950, South Africa
- Institute for Water and Wastewater Technology, Durban University of Technology, Durban 4000, South Africa
| | - Givemore Munhenga
- Wits Research Institute for Malaria, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2193, South Africa
- Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases, Division of the National Health Laboratory Service, Johannesburg 2193, South Africa
| | - Shüné V. Oliver
- Wits Research Institute for Malaria, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2193, South Africa
- Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases, Division of the National Health Laboratory Service, Johannesburg 2193, South Africa
| |
Collapse
|
5
|
D’Elia JA, Weinrauch LA. Role of Divalent Cations in Infections in Host-Pathogen Interaction. Int J Mol Sci 2024; 25:9775. [PMID: 39337264 PMCID: PMC11432163 DOI: 10.3390/ijms25189775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/29/2024] [Accepted: 09/05/2024] [Indexed: 09/30/2024] Open
Abstract
With increasing numbers of patients worldwide diagnosed with diabetes mellitus, renal disease, and iatrogenic immune deficiencies, an increased understanding of the role of electrolyte interactions in mitigating pathogen virulence is necessary. The levels of divalent cations affect host susceptibility and pathogen survival in persons with relative immune insufficiency. For instance, when host cellular levels of calcium are high compared to magnesium, this relationship contributes to insulin resistance and triples the risk of clinical tuberculosis. The movement of divalent cations within intracellular spaces contributes to the host defense, causing apoptosis or autophagy of the pathogen. The control of divalent cation flow is dependent in part upon the mammalian natural resistance-associated macrophage protein (NRAMP) in the host. Survival of pathogens such as M tuberculosis within the bronchoalveolar macrophage is also dependent upon NRAMP. Pathogens evolve mutations to control the movement of calcium through external and internal channels. The host NRAMP as a metal transporter competes for divalent cations with the pathogen NRAMP in M tuberculosis (whether in latent, dormant, or active phase). This review paper summarizes mechanisms of pathogen offense and patient defense using inflow and efflux through divalent cation channels under the influence of parathyroid hormone vitamin D and calcitonin.
Collapse
Affiliation(s)
| | - Larry A. Weinrauch
- Kidney and Hypertension Section, E P Joslin Research Laboratory, Joslin Diabetes Center, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| |
Collapse
|
6
|
Guallar-Garrido S, Soldati T. Exploring host-pathogen interactions in the Dictyostelium discoideum-Mycobacterium marinum infection model of tuberculosis. Dis Model Mech 2024; 17:dmm050698. [PMID: 39037280 PMCID: PMC11552500 DOI: 10.1242/dmm.050698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/23/2024] Open
Abstract
Mycobacterium tuberculosis is a pathogenic mycobacterium that causes tuberculosis. Tuberculosis is a significant global health concern that poses numerous clinical challenges, particularly in terms of finding effective treatments for patients. Throughout evolution, host immune cells have developed cell-autonomous defence strategies to restrain and eliminate mycobacteria. Concurrently, mycobacteria have evolved an array of virulence factors to counteract these host defences, resulting in a dynamic interaction between host and pathogen. Here, we review recent findings, including those arising from the use of the amoeba Dictyostelium discoideum as a model to investigate key mycobacterial infection pathways. D. discoideum serves as a scalable and genetically tractable model for human phagocytes, providing valuable insights into the intricate mechanisms of host-pathogen interactions. We also highlight certain similarities between M. tuberculosis and Mycobacterium marinum, and the use of M. marinum to more safely investigate mycobacteria in D. discoideum.
Collapse
Affiliation(s)
- Sandra Guallar-Garrido
- Department of Biochemistry, Faculty of Science, University of Geneva, 30 quai Ernest-Ansermet, Science II, 1211 Geneva-4, Switzerland
| | - Thierry Soldati
- Department of Biochemistry, Faculty of Science, University of Geneva, 30 quai Ernest-Ansermet, Science II, 1211 Geneva-4, Switzerland
| |
Collapse
|
7
|
Buglino JA, Ozakman Y, Hatch C, Benjamin A, Tan D, Glickman MS. Chalkophore mediated respiratory oxidase flexibility controls M. tuberculosis virulence. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.12.589290. [PMID: 38645185 PMCID: PMC11030325 DOI: 10.1101/2024.04.12.589290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Oxidative phosphorylation has emerged as a critical therapeutic vulnerability of M. tuberculosis, but it is unknown how M. tuberculosis and other pathogens maintain respiration during infection. M. tuberculosis synthesizes diisonitrile lipopeptide chalkophores that chelate copper tightly, but their role in host-pathogen interactions is also unknown. We demonstrate that M. tuberculosis chalkophores maintain the function of the heme-copper bcc:aa3 respiratory oxidase under copper limitation. Chalkophore deficient M. tuberculosis cannot survive, respire to oxygen, or produce ATP under copper deprivation in culture. M. tuberculosis lacking chalkophore biosynthesis is attenuated in mice, a phenotype that is severely exacerbated by loss of the CytBD alternative respiratory oxidase (encoded by cydAB), revealing a multilayered flexibility of the respiratory chain that maintains oxidative phosphorylation during infection. Taken together, these data demonstrate that chalkophores counter host inflicted copper deprivation and highlight that protection of cellular respiration is a critical virulence function in M. tuberculosis.
Collapse
Affiliation(s)
- John A. Buglino
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, New York 10065 USA
| | - Yaprak Ozakman
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, New York 10065 USA
| | - Chad Hatch
- Chemical Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, New York 10065 USA
| | - Anna Benjamin
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, New York 10065 USA
| | - Derek Tan
- Chemical Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, New York 10065 USA
- Tri-Institutional Research Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, New York 10065 USA
| | - Michael S. Glickman
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, New York 10065 USA
| |
Collapse
|
8
|
Maure A, Lawarée E, Fiorentino F, Pawlik A, Gona S, Giraud-Gatineau A, Eldridge MJG, Danckaert A, Hardy D, Frigui W, Keck C, Gutierrez C, Neyrolles O, Aulner N, Mai A, Hamon M, Barreiro LB, Brodin P, Brosch R, Rotili D, Tailleux L. A host-directed oxadiazole compound potentiates antituberculosis treatment via zinc poisoning in human macrophages and in a mouse model of infection. PLoS Biol 2024; 22:e3002259. [PMID: 38683873 PMCID: PMC11081512 DOI: 10.1371/journal.pbio.3002259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 05/09/2024] [Accepted: 03/13/2024] [Indexed: 05/02/2024] Open
Abstract
Antituberculosis drugs, mostly developed over 60 years ago, combined with a poorly effective vaccine, have failed to eradicate tuberculosis. More worryingly, multiresistant strains of Mycobacterium tuberculosis (MTB) are constantly emerging. Innovative strategies are thus urgently needed to improve tuberculosis treatment. Recently, host-directed therapy has emerged as a promising strategy to be used in adjunct with existing or future antibiotics, by improving innate immunity or limiting immunopathology. Here, using high-content imaging, we identified novel 1,2,4-oxadiazole-based compounds, which allow human macrophages to control MTB replication. Genome-wide gene expression analysis revealed that these molecules induced zinc remobilization inside cells, resulting in bacterial zinc intoxication. More importantly, we also demonstrated that, upon treatment with these novel compounds, MTB became even more sensitive to antituberculosis drugs, in vitro and in vivo, in a mouse model of tuberculosis. Manipulation of heavy metal homeostasis holds thus great promise to be exploited to develop host-directed therapeutic interventions.
Collapse
Affiliation(s)
- Alexandra Maure
- Institut Pasteur, Université Paris Cité, CNRS UMR 6047, Unit for Integrated Mycobacterial Pathogenomics, Paris, France
| | - Emeline Lawarée
- Institut Pasteur, Université Paris Cité, CNRS UMR 6047, Unit for Integrated Mycobacterial Pathogenomics, Paris, France
| | - Francesco Fiorentino
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, Rome, Italy
| | - Alexandre Pawlik
- Institut Pasteur, Université Paris Cité, CNRS UMR 6047, Unit for Integrated Mycobacterial Pathogenomics, Paris, France
| | - Saideep Gona
- Department of Genetic Medicine, University of Chicago, Chicago, Illinois, United States of America
| | | | | | - Anne Danckaert
- Institut Pasteur, Université Paris Cité, UTechS BioImaging-C2RT, Paris, France
| | - David Hardy
- Institut Pasteur, Université Paris Cité, Histopathology Platform, Paris, France
| | - Wafa Frigui
- Institut Pasteur, Université Paris Cité, CNRS UMR 6047, Unit for Integrated Mycobacterial Pathogenomics, Paris, France
| | - Camille Keck
- Institut Pasteur, Université Paris Cité, CNRS UMR 6047, Unit for Integrated Mycobacterial Pathogenomics, Paris, France
| | - Claude Gutierrez
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Olivier Neyrolles
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Nathalie Aulner
- Institut Pasteur, Université Paris Cité, UTechS BioImaging-C2RT, Paris, France
| | - Antonello Mai
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, Rome, Italy
- Pasteur Institute, Cenci-bolognetti Foundation, Sapienza University of Rome, Rome, Italy
| | - Mélanie Hamon
- Institut Pasteur, Université Paris Cité, Chromatine et Infection unit, Paris, France
| | - Luis B. Barreiro
- Department of Genetic Medicine, University of Chicago, Chicago, Illinois, United States of America
| | - Priscille Brodin
- Université de Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, Lille, France
| | - Roland Brosch
- Institut Pasteur, Université Paris Cité, CNRS UMR 6047, Unit for Integrated Mycobacterial Pathogenomics, Paris, France
| | - Dante Rotili
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, Rome, Italy
| | - Ludovic Tailleux
- Institut Pasteur, Université Paris Cité, CNRS UMR 6047, Unit for Integrated Mycobacterial Pathogenomics, Paris, France
| |
Collapse
|
9
|
Kotey SK, Tan X, Fleming O, Kasiraju RR, Dagnell AL, Van Pelt KN, Rogers J, Hartson SD, Thadathil N, Selvarani R, Ranjit R, Logan S, Deepa SS, Richardson A, Cheng Y. Intracellular iron accumulation facilitates mycobacterial infection in old mouse macrophages. GeroScience 2024; 46:2739-2754. [PMID: 38159133 PMCID: PMC10828278 DOI: 10.1007/s11357-023-01048-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 12/14/2023] [Indexed: 01/03/2024] Open
Abstract
Aging has a significant impact on the immune system, leading to a gradual decline in immune function and changes in the body's ability to respond to bacterial infections. Non-tuberculous mycobacteria (NTM), also known as atypical mycobacteria or environmental mycobacteria, are commonly found in soil, water, and various environmental sources. While many NTM species are considered opportunistic pathogens, some can cause significant infections, particularly in individuals with compromised immune systems, such as older individuals. When mycobacteria enter the body, macrophages are among the first immune cells to encounter them and attempt to engulf mycobacteria through a process called phagocytosis. Some NTM species, including Mycobacterium avium (M. avium) can survive and replicate within macrophages. However, little is known about the interaction between NTM and macrophages in older individuals. In this study, we investigated the response of bone marrow-derived macrophage (BMMs) isolated from young (5 months) and old (25 months) mice to M. avium serotype 4, one of the main NTM species in patients with pulmonary NTM diseases. Our results demonstrated that BMMs from old mice have an increased level of intracellular iron and are more susceptible to M. avium serotype 4 infection compared to BMMs from young mice. The whole-cell proteomic analysis indicated a dysregulated expression of iron homeostasis-associated proteins in old BMMs regardless of mycobacterial infection. Deferoxamine, an iron chelator, significantly rescued mycobacterial killing and phagolysosome maturation in BMMs from old mice. Therefore, our data for the first time indicate that an intracellular iron accumulation improves NTM survival within macrophages from old mice and suggest a potential application of iron-chelating drugs as a host-directed therapy for pulmonary NTM infection in older individuals.
Collapse
Affiliation(s)
- Stephen K Kotey
- Department of Biochemistry and Molecular Biology, Oklahoma State University, 246 Noble Research Center, Stillwater, OK, 74078, USA
- Oklahoma Center for Respiratory and Infectious Diseases, Oklahoma State University, Stillwater, OK, USA
| | - Xuejuan Tan
- Department of Biochemistry and Molecular Biology, Oklahoma State University, 246 Noble Research Center, Stillwater, OK, 74078, USA
- Oklahoma Center for Respiratory and Infectious Diseases, Oklahoma State University, Stillwater, OK, USA
| | - Owen Fleming
- Department of Biochemistry and Molecular Biology, Oklahoma State University, 246 Noble Research Center, Stillwater, OK, 74078, USA
- Oklahoma Center for Respiratory and Infectious Diseases, Oklahoma State University, Stillwater, OK, USA
| | - Ramakrishnama Raju Kasiraju
- Department of Biochemistry and Molecular Biology, Oklahoma State University, 246 Noble Research Center, Stillwater, OK, 74078, USA
- Oklahoma Center for Respiratory and Infectious Diseases, Oklahoma State University, Stillwater, OK, USA
| | - Audrey L Dagnell
- Department of Biochemistry and Molecular Biology, Oklahoma State University, 246 Noble Research Center, Stillwater, OK, 74078, USA
- Oklahoma Center for Respiratory and Infectious Diseases, Oklahoma State University, Stillwater, OK, USA
| | - Kyle N Van Pelt
- Department of Biochemistry and Molecular Biology, Oklahoma State University, 246 Noble Research Center, Stillwater, OK, 74078, USA
- Oklahoma Center for Respiratory and Infectious Diseases, Oklahoma State University, Stillwater, OK, USA
| | - Janet Rogers
- Department of Biochemistry and Molecular Biology, Oklahoma State University, 246 Noble Research Center, Stillwater, OK, 74078, USA
- Center for Genomics and Proteomics, Oklahoma State University, Stillwater, OK, USA
| | - Steven D Hartson
- Department of Biochemistry and Molecular Biology, Oklahoma State University, 246 Noble Research Center, Stillwater, OK, 74078, USA
- Center for Genomics and Proteomics, Oklahoma State University, Stillwater, OK, USA
| | - Nidheesh Thadathil
- Department of Biochemistry & Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Ramasamy Selvarani
- Department of Biochemistry & Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Rojina Ranjit
- Department of Biochemistry & Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Sreemathi Logan
- Department of Biochemistry & Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Sathyaseelan S Deepa
- Department of Biochemistry & Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Arlan Richardson
- Department of Biochemistry & Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Okalahoma City Veteran Affairs Medical Center, Oklahoma City, OK, USA
| | - Yong Cheng
- Department of Biochemistry and Molecular Biology, Oklahoma State University, 246 Noble Research Center, Stillwater, OK, 74078, USA.
- Oklahoma Center for Respiratory and Infectious Diseases, Oklahoma State University, Stillwater, OK, USA.
| |
Collapse
|
10
|
Chatterjee D, Panda AP, Daya Manasi AR, Ghosh AS. P-type ATPase zinc transporter Rv3270 of Mycobacterium tuberculosis enhances multi-drug efflux activity. MICROBIOLOGY (READING, ENGLAND) 2024; 170:001441. [PMID: 38373028 PMCID: PMC10924464 DOI: 10.1099/mic.0.001441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 02/08/2024] [Indexed: 02/20/2024]
Abstract
Metal homeostasis is maintained by the uptake, storage and efflux of metal ions that are necessary for the survival of the bacterium. Homeostasis is mostly regulated by a group of transporters categorized as ABC transporters and P-type ATPases. On the other hand, efflux pumps often play a role in drug-metal cross-resistance. Here, with the help of antibiotic sensitivity, antibiotic/dye accumulation and semi-quantitative biofilm formation assessments we report the ability of Rv3270, a P-type ATPase known for its role in combating Mn2+ and Zn2+ metal ion toxicity in Mycobacterium tuberculosis, in influencing the extrusion of multiple structurally unrelated drugs and enhancing the biofilm formation of Escherichia coli and Mycobacterium smegmatis. Overexpression of Rv3270 increased the tolerance of host cells to norfloxacin, ofloxacin, sparfloxacin, ampicillin, oxacillin, amikacin and isoniazid. A significantly lower accumulation of norfloxacin, ethidium bromide, bocillin FL and levofloxacin in cells harbouring Rv3270 as compared to host cells indicated its role in enhancing efflux activity. Although over-expression of Rv3270 did not alter the susceptibility levels of levofloxacin, rifampicin and apramycin, the presence of a sub-inhibitory concentration of Zn2+ resulted in low-level tolerance towards these drugs. Of note, the expression of Rv3270 enhanced the biofilm-forming ability of the host cells strengthening its role in antimicrobial resistance. Therefore, the study indicated that the over-expression of Rv3270 enhances the drug efflux activity of the micro-organism where zinc might facilitate drug-metal cross-resistance for some antibiotics.
Collapse
Affiliation(s)
- Debasmita Chatterjee
- Department of Bioscience and Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
| | - Aditya Prasad Panda
- Department of Bioscience and Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
| | - A. R. Daya Manasi
- Department of Bioscience and Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
| | - Anindya S. Ghosh
- Department of Bioscience and Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
| |
Collapse
|
11
|
Zhao W, Chen Z, Yang X, Sheng L, Mao H, Zhu S. Metagenomics reveal arbuscular mycorrhizal fungi altering functional gene expression of rhizosphere microbial community to enhance Iris tectorum's resistance to Cr stress. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 895:164970. [PMID: 37343864 DOI: 10.1016/j.scitotenv.2023.164970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 06/14/2023] [Accepted: 06/15/2023] [Indexed: 06/23/2023]
Abstract
Chromium (Cr) can disrupt a plant's normal physiological and metabolic functions and severely impact the microenvironment. However, limited studies have investigated the impact of arbuscular mycorrhizal fungi (AMF) inoculation on the rhizosphere microorganisms of Iris tectorum under Cr stress, and the mechanisms of how rhizosphere microorganisms interact with hosts and contaminants. In this study, we investigated the effects of AMF inoculation on the growth, absorption of nutrients and heavy metals, and functional genes of the rhizosphere microbial community of I. tectorum under Cr stress in a greenhouse pot experiment. The results showed that AMF significantly increased the biomass and nutrient levels of I. tectorum, while decreasing the content of Cr in soil. Furthermore, metagenome analysis demonstrated significant changes in the structure and composition of the rhizosphere microbial community after AMF formed a mycorrhizal symbiosis system with the I. tectorum. Specifically, the abundance of functional genes related to nutrient cycling (N, P) and heavy metal resistance (chrA and arsB), as well as the abundance of heavy metal transporter family (P-atPase, MIT, CDF, and ABC) in the rhizosphere microbial community were up-regulated and their expression. Additionally, the synergies between rhizosphere microbial communities were regulated, and the complexity and stability of the rhizosphere microbial ecological network were enhanced. This study provides evidence that AMF can regulate rhizosphere microbial communities to improve plant growth and heavy metal stress tolerance, and helps us to understand the potential mechanism of wetland plant remediation of Cr-contaminated soil under AMF symbiosis.
Collapse
Affiliation(s)
- Wei Zhao
- College of Eco-environment Engineering, Guizhou Minzu University, The Karst Environmental Geological Hazard Prevention of Key Laboratory of State Ethnic Affairs Commission, Guiyang 550025, China
| | - Zhongbing Chen
- Department of Applied Ecology, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcka 129, Praha-, Suchdol 16500, Czech Republic
| | - Xiuqin Yang
- College of Eco-environment Engineering, Guizhou Minzu University, The Karst Environmental Geological Hazard Prevention of Key Laboratory of State Ethnic Affairs Commission, Guiyang 550025, China
| | - Luying Sheng
- College of Eco-environment Engineering, Guizhou Minzu University, The Karst Environmental Geological Hazard Prevention of Key Laboratory of State Ethnic Affairs Commission, Guiyang 550025, China
| | - Huan Mao
- College of Eco-environment Engineering, Guizhou Minzu University, The Karst Environmental Geological Hazard Prevention of Key Laboratory of State Ethnic Affairs Commission, Guiyang 550025, China
| | - Sixi Zhu
- College of Eco-environment Engineering, Guizhou Minzu University, The Karst Environmental Geological Hazard Prevention of Key Laboratory of State Ethnic Affairs Commission, Guiyang 550025, China.
| |
Collapse
|
12
|
Dupuy P, Gutierrez C, Neyrolles O. Modulation of bacterial membrane proteins activity by clustering into plasma membrane nanodomains. Mol Microbiol 2023; 120:502-507. [PMID: 37303242 DOI: 10.1111/mmi.15105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 05/25/2023] [Accepted: 05/29/2023] [Indexed: 06/13/2023]
Abstract
Recent research has demonstrated specific protein clustering within membrane subdomains in bacteria, challenging the long-held belief that prokaryotes lack these subdomains. This mini review provides examples of bacterial membrane protein clustering, discussing the benefits of protein assembly in membranes and highlighting how clustering regulates protein activity.
Collapse
Affiliation(s)
- Pierre Dupuy
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Claude Gutierrez
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Olivier Neyrolles
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
| |
Collapse
|
13
|
Li X, Chen L, Wang Y, Guo X, He ZG. Zinc excess impairs Mycobacterium bovis growth through triggering a Zur-IdeR-iron homeostasis signal pathway. Microbiol Spectr 2023; 11:e0106923. [PMID: 37668384 PMCID: PMC10580935 DOI: 10.1128/spectrum.01069-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 07/15/2023] [Indexed: 09/06/2023] Open
Abstract
Zinc excess is toxic to bacteria and, thus, represents an important innate defense mechanism of host cells, especially against mycobacterial infections. However, the signaling pathway triggered by zinc excess and its relationship with iron homeostasis remain poorly understood in mycobacteria. Here, we characterize a novel Zur-IdeR-iron homeostasis signaling pathway that modulates the growth of Mycobacterium bovis under zinc toxicity. We found that the regulator Zur interacts with the iron-homeostasis regulator IdeR, enhancing the DNA-binding ability of IdeR. Excess zinc disrupts this interaction and represses ideR transcription through Zur, which promotes the expression of iron uptake genes and leads to the accumulation of intracellular iron in M. bovis. The elevated iron levels lower the bacterial survival ability under excess zinc stress. Consistently, deleting zur hinders intracellular iron accumulation of M. bovis and enhances bacterial growth under stress, while silencing ideR impairs the growth of the wild-type and zur-deleted strains under the same conditions. Interestingly, both Zur and IdeR are conserved in bacteria facing zinc toxicity. Overall, our work uncovers a novel antimicrobial signal pathway whereby zinc excess disrupts iron homeostasis, which may deepen our understanding of the crosstalk mechanism between iron and zinc homeostasis in bacteria.IMPORTANCEAs a catalytic and structural cofactor of proteins, zinc is essential for almost all living organisms. However, zinc excess is toxic and represents a vital innate immunity strategy of macrophages to combat intracellular pathogens, especially against mycobacterial pathogens such as Mycobacterium tuberculosis, the causative agent of tuberculosis. Here, we first characterize an antibacterial signaling pathway of zinc excess and its relationship with iron homeostasis in M. bovis. We found that excess zinc inhibits the transcription of ideR and its DNA-binding activity through Zur, which, in turn, promotes the expression of iron uptake genes, causes intracellular iron accumulation, and finally impairs the bacterial growth. This study reveals the existence of the Zur-IdeR-iron homeostasis pathway triggered by zinc excess in M. bovis, which will shed light on the crosstalk mechanisms between zinc and iron homeostasis in bacteria and the antimicrobial mechanisms of host-mediated zinc toxicity.
Collapse
Affiliation(s)
- Xiaohui Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, Guangxi, China
| | - Liu Chen
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Yuankun Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, Guangxi, China
| | - Xiao Guo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, Guangxi, China
| | - Zheng-Guo He
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, Guangxi, China
| |
Collapse
|
14
|
Supramolecular organization and dynamics of mannosylated phosphatidylinositol lipids in the mycobacterial plasma membrane. Proc Natl Acad Sci U S A 2023; 120:e2212755120. [PMID: 36693100 PMCID: PMC9945971 DOI: 10.1073/pnas.2212755120] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Mycobacterium tuberculosis (Mtb) is the causative agent of tuberculosis (TB), a disease that claims ~1.6 million lives annually. The current treatment regime is long and expensive, and missed doses contribute to drug resistance. Therefore, development of new anti-TB drugs remains one of the highest public health priorities. Mtb has evolved a complex cell envelope that represents a formidable barrier to antibiotics. The Mtb cell envelop consists of four distinct layers enriched for Mtb specific lipids and glycans. Although the outer membrane, comprised of mycolic acid esters, has been extensively studied, less is known about the plasma membrane, which also plays a critical role in impacting antibiotic efficacy. The Mtb plasma membrane has a unique lipid composition, with mannosylated phosphatidylinositol lipids (phosphatidyl-myoinositol mannosides, PIMs) comprising more than 50% of the lipids. However, the role of PIMs in the structure and function of the membrane remains elusive. Here, we used multiscale molecular dynamics (MD) simulations to understand the structure-function relationship of the PIM lipid family and decipher how they self-organize to shape the biophysical properties of mycobacterial plasma membranes. We assess both symmetric and asymmetric assemblies of the Mtb plasma membrane and compare this with residue distributions of Mtb integral membrane protein structures. To further validate the model, we tested known anti-TB drugs and demonstrated that our models agree with experimental results. Thus, our work sheds new light on the organization of the mycobacterial plasma membrane. This paves the way for future studies on antibiotic development and understanding Mtb membrane protein function.
Collapse
|