1
|
Xiao Y, Guo X, Zhang W, Ma L, Ren K. DNA Nanotechnology for Application in Targeted Protein Degradation. ACS Biomater Sci Eng 2024; 10:6814-6827. [PMID: 39367877 DOI: 10.1021/acsbiomaterials.4c01351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/07/2024]
Abstract
DNA is a kind of flexible and versatile biomaterial for constructing nanostructures and nanodevices. Due to high biocompatibility and programmability and easy modification and fabrication, DNA nanotechnology has emerged as a powerful tool for application in intracellular targeted protein degradation. In this review, we summarize the recent advances in the design and mechanism of targeted protein degradation technologies such as protein hydrolysis targeted chimeras, lysosomal targeted chimeras, and autophagy based protein degradation. Subsequently, we introduce the DNA nanotechnologies of DNA cascade circuits, DNA nanostructures, and dynamic machines. Moreover, we present the latest developments in DNA nanotechnologies in targeted protein degradation. Finally, the vision and challenges are discussed.
Collapse
Affiliation(s)
- Yang Xiao
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, P.R. China
| | - Xinyi Guo
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, P.R. China
| | - Weiwei Zhang
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Lequn Ma
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Kewei Ren
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| |
Collapse
|
2
|
Choi YJ, Haddadnezhad M, Baek SJ, Lee CN, Park S, Sim SJ. Plasmonic Nanogap-Enhanced Tunable Three-Dimensional Nanoframes in Application to Clinical Diagnosis of Alzheimer's Disease. ACS Sens 2024; 9:5587-5595. [PMID: 39356173 DOI: 10.1021/acssensors.4c02037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2024]
Abstract
Advancements in nanotechnology led to significant improvements in synthesizing plasmon-enhanced nanoarchitectures for biosensor applications, and high-yield productivity at low cost is vital to step further into medical commerce. Metal nanoframes via wet chemistry are gaining attention for their homogeneous structure and outstanding catalytic and optical properties. However, nanoframe morphology should be considered delicately when brought to biosensors to utilize its superior characteristics thoroughly, and the need to prove its clinical applicability still remains. Herein, we controlled the frameworks of double-walled nanoframes (DWFs) precisely via wet chemistry to construct a homogeneous plasmon-enhanced nanotransducer for localized surface plasmon resonance biosensors. By tuning the physical properties considering the finite-difference time-domain simulation results, biomolecular interactions were feasible in the electromagnetic field-enhanced nanospace. As a result, DWF10 exhibited a 10-fold lower detection limit of 2.21 fM compared to DWF14 for tau detection. Further application into blood-based clinical and Alzheimer's disease (AD) diagnostics, notable improvement in classifying mild cognitive impairment patients against healthy controls and AD patients, was demonstrated along with impressive AUC values. Thus, in response to diverse detection methods, optimizing nanoframe dimensions such as nanogap and frame thickness to maximize sensor performance is critical to realize future POCT diagnosis.
Collapse
Affiliation(s)
- Young Jae Choi
- Department of Chemical and Biological Engineering, Korea University, Seoul 02841, Republic of Korea
| | - MohammadNavid Haddadnezhad
- Department of Chemistry, Sungkyunkwan University, Suwon 16419, Republic of Korea
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 01003-9303, United States
| | - Seung Jong Baek
- Department of Chemical and Biological Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Chan-Nyoung Lee
- Korea University Anam Hospital, Seoul 02841, Republic of Korea
| | - Sungho Park
- Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea
| | - Sang Jun Sim
- Department of Chemical and Biological Engineering, Korea University, Seoul 02841, Republic of Korea
| |
Collapse
|
3
|
Ma L, Zhou K, Wang X, Wang J, Zhao R, Zhang Y, Cheng F. Recent Progress in the Synthesis of 3D Complex Plasmonic Intragap Nanostructures and Their Applications in Surface-Enhanced Raman Scattering. BIOSENSORS 2024; 14:433. [PMID: 39329807 PMCID: PMC11430147 DOI: 10.3390/bios14090433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/01/2024] [Accepted: 09/04/2024] [Indexed: 09/28/2024]
Abstract
Plasmonic intragap nanostructures (PINs) have garnered intensive attention in Raman-related analysis due to their exceptional ability to enhance light-matter interactions. Although diverse synthetic strategies have been employed to create these nanostructures, the emphasis has largely been on PINs with simple configurations, which often fall short in achieving effective near-field focusing. Three-dimensional (3D) complex PINs, distinguished by their intricate networks of internal gaps and voids, are emerging as superior structures for effective light trapping. These structures facilitate the generation of hot spots and hot zones that are essential for enhanced near-field focusing. Nevertheless, the synthesis techniques for these complex structures and their specific impacts on near-field focusing are not well-documented. This review discusses the recent advancements in the synthesis of 3D complex PINs and their applications in surface-enhanced Raman scattering (SERS). We begin by describing the foundational methods for fabricating simple PINs, followed by a discussion on the rational design strategies aimed at developing 3D complex PINs with superior near-field focusing capabilities. We also evaluate the SERS performance of various 3D complex PINs, emphasizing their advanced sensing capabilities. Lastly, we explore the future perspective of 3D complex PINs in SERS applications.
Collapse
Affiliation(s)
- Li Ma
- State Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Keyi Zhou
- State Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Xinyue Wang
- State Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Jiayue Wang
- State Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Ruyu Zhao
- State Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Yifei Zhang
- State Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Fang Cheng
- State Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| |
Collapse
|
4
|
Lu Y, Liu L, Gao R, Xiong Y, Sun P, Wu Z, Wu K, Yu T, Zhang K, Zhang C, Bourouina T, Li X, Liu X. Ultrafast near-infrared pyroelectric detector based on inhomogeneous plasmonic metasurface. LIGHT, SCIENCE & APPLICATIONS 2024; 13:241. [PMID: 39237500 PMCID: PMC11377428 DOI: 10.1038/s41377-024-01572-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 07/18/2024] [Accepted: 08/11/2024] [Indexed: 09/07/2024]
Abstract
Pyroelectric (PE) detection technologies have attracted extensive attention due to the cooling-free, bias-free, and broadband properties. However, the PE signals are generated by the continuous energy conversion processes from light, heat, to electricity, normally leading to very slow response speeds. Herein, we design and fabricate a PE detector which shows extremely fast response in near-infrared (NIR) band by combining with the inhomogeneous plasmonic metasurface. The plasmonic effect dramatically accelerates the light-heat conversion process, unprecedentedly improving the NIR response speed by 2-4 orders of magnitude to 22 μs, faster than any reported infrared (IR) PE detector. We also innovatively introduce the concept of time resolution into the field of PE detection, which represents the detector's ability to distinguish multiple fast-moving targets. Furthermore, the spatially inhomogeneous design overcomes the traditional narrowband constraint of plasmonic systems and thus ensures a wideband response from visible to NIR. This study provides a promising approach to develop next-generation IR PE detectors with ultrafast and broadband responses.
Collapse
Affiliation(s)
- Youyan Lu
- School of Optoelectronic Science and Engineering & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, 215006, China
- Key Lab of Advanced Optical Manufacturing Technologies of Jiangsu Province & Key Lab of Modern Optical Technologies of Education Ministry of China, Soochow University, Suzhou, 215006, China
| | - Liyun Liu
- School of Optoelectronic Science and Engineering & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, 215006, China
- Key Lab of Advanced Optical Manufacturing Technologies of Jiangsu Province & Key Lab of Modern Optical Technologies of Education Ministry of China, Soochow University, Suzhou, 215006, China
| | - Ruoqian Gao
- Suzhou Institute of Biomedical Engineering and Technology of the Chinese Academy of Sciences, Suzhou, 215163, China
| | - Ying Xiong
- College of Intelligence Science and Technology, National University of Defense Technology, Changsha, 410073, China
- Laboratory of Science and Technology on Integrated Logistics Support, National University of Defense Technology, Changsha, 410073, China
| | - Peiqing Sun
- School of Optoelectronic Science and Engineering & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, 215006, China
- Key Lab of Advanced Optical Manufacturing Technologies of Jiangsu Province & Key Lab of Modern Optical Technologies of Education Ministry of China, Soochow University, Suzhou, 215006, China
| | - Zhanghao Wu
- School of Optoelectronic Science and Engineering & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, 215006, China
- Key Lab of Advanced Optical Manufacturing Technologies of Jiangsu Province & Key Lab of Modern Optical Technologies of Education Ministry of China, Soochow University, Suzhou, 215006, China
| | - Kai Wu
- School of Optoelectronic Science and Engineering & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, 215006, China
- Key Lab of Advanced Optical Manufacturing Technologies of Jiangsu Province & Key Lab of Modern Optical Technologies of Education Ministry of China, Soochow University, Suzhou, 215006, China
| | - Tong Yu
- School of Optoelectronic Science and Engineering & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, 215006, China
- Key Lab of Advanced Optical Manufacturing Technologies of Jiangsu Province & Key Lab of Modern Optical Technologies of Education Ministry of China, Soochow University, Suzhou, 215006, China
| | - Kai Zhang
- School of Optoelectronic Science and Engineering & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, 215006, China
- Key Lab of Advanced Optical Manufacturing Technologies of Jiangsu Province & Key Lab of Modern Optical Technologies of Education Ministry of China, Soochow University, Suzhou, 215006, China
| | - Cheng Zhang
- School of Optoelectronic Science and Engineering & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, 215006, China.
- Key Lab of Advanced Optical Manufacturing Technologies of Jiangsu Province & Key Lab of Modern Optical Technologies of Education Ministry of China, Soochow University, Suzhou, 215006, China.
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Zhejiang University, Hangzhou, 310027, China.
| | - Tarik Bourouina
- ESYCOM Lab, UMR 9007 CNRS, Univ Gustave Eiffel, 77454, Marne-la-Vallée, France
- CINTRA, IRL 3288 CNRS-NTU-THALES, Nanyang Technological University, Singapore, 637553, Singapore
| | - Xiaofeng Li
- School of Optoelectronic Science and Engineering & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, 215006, China.
- Key Lab of Advanced Optical Manufacturing Technologies of Jiangsu Province & Key Lab of Modern Optical Technologies of Education Ministry of China, Soochow University, Suzhou, 215006, China.
| | - Xiaoyi Liu
- School of Optoelectronic Science and Engineering & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, 215006, China.
- Key Lab of Advanced Optical Manufacturing Technologies of Jiangsu Province & Key Lab of Modern Optical Technologies of Education Ministry of China, Soochow University, Suzhou, 215006, China.
| |
Collapse
|
5
|
Park W, Lee S, Oh MJ, Zhao Q, Kim J, Lee S, Haddadnezhad M, Jung I, Park S. Step-by-Step Nanoscale Top-Down Blocking and Etching Lead to Nanohexapods with Cartesian Geometry. ACS NANO 2024; 18:7402-7410. [PMID: 38411049 DOI: 10.1021/acsnano.3c09844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
In this research, we designed a stepwise synthetic method for Au@Pt hexapods where six elongated Au pods are arranged in a pairwise perpendicular fashion, sharing a common point (the central origin in a Cartesian-coordinate-like hexapod shape), featured with tip-selectively decorated Pt square nanoplates. Au@Pt hexapods were successfully synthesized by applying three distinctive chemical reactions in a stepwise manner. The Pt adatoms formed discontinuous thin nanoplates that selectively covered six concave facets of a Au truncated octahedron and served as etching masks in the succeeding etching process, which prevented underlying Au atoms from being oxidized. The subsequent isotropic etching proceeded radially, starting from the bare Au surface, carving the central nanocrystal in a concave manner. By controlling the etching conditions, Au@Pt hexapods were successfully fabricated, wherein the core Au domain is connected to six protruding arms, which hold Pt nanoplates at the ends. Due to their morphology, Au@Pt hexapods feature distinctive optical properties in the near-infrared region, as a proof of concept, allowing for surface-enhanced Raman spectroscopy (SERS)-based monitoring of in situ CO electrooxidation. We further extended our synthetic library by tailoring the size of the Pt nanoplates and neck widths of Au branches, demonstrating the validity of selective blocking and etching-based colloidal synthesis.
Collapse
Affiliation(s)
- Woocheol Park
- Department of Chemistry, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Soohyun Lee
- Department of Chemistry, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Myeong Jin Oh
- Department of Chemistry, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Qiang Zhao
- Department of Chemistry, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Jeongwon Kim
- Department of Chemistry, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Sungwoo Lee
- Department of Chemistry, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | | | - Insub Jung
- Department of Chemistry, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
- Institute of Basic Science, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Sungho Park
- Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea
| |
Collapse
|
6
|
Oh MJ, Kwon S, Lee S, Jung I, Park S. Octahedron in a Cubic Nanoframe: Strong Near-Field Focusing and Surface-Enhanced Raman Scattering. ACS NANO 2024; 18:7656-7665. [PMID: 38416014 DOI: 10.1021/acsnano.4c00734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
Here, we describe the synthesis of a plasmonic particle-in-a-frame architecture in which a solid Au octahedron is enclosed by a Au cubic nanoframe. The octahedra are positioned inside and surrounded by outer Au cubic nanoframes, creating intra-nanogaps within a single entity. Six sharp vertexes in the Au octahedra point toward the open (100) facets of the cubic nanoframes. This allows not only efficient interactions with the surroundings but also tip-enhanced electromagnetic near-field focusing at the sharp tips of the octahedra, combined with intraparticle coupling. The solid core-frame shell structure enhances near-field focusing, giving rise to a heightened concentration of "hot spots". This effect enables highly sensitive detection of 2-naphthalenethiol and thiram, indicating these substrates for use in surface-enhanced Raman spectroscopy-related applications.
Collapse
Affiliation(s)
- Myeong Jin Oh
- Department of Chemistry, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Sunwoo Kwon
- Department of Chemistry, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Sungwoo Lee
- Department of Chemistry, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
- Institute of Basic Science, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Insub Jung
- Department of Chemistry, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
- Institute of Basic Science, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Sungho Park
- Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea
| |
Collapse
|
7
|
Hilal H, Haddadnezhad M, Oh MJ, Jung I, Park S. Plasmonic Dodecahedral-Walled Elongated Nanoframes for Surface-Enhanced Raman Spectroscopy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2304567. [PMID: 37688300 DOI: 10.1002/smll.202304567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/14/2023] [Indexed: 09/10/2023]
Abstract
Here, elongated pseudohollow nanoframes composed of four rectangular plates enclosing the sides and two open-frame ends with four ridges pointing at the tips for near-field focusing are reported. The side facets act as light-collecting domains and transfer the collected light to the sharp tips for near-field focusing. The nanoframes are hollow inside, allowing the gaseous analyte to penetrate through the entire architecture and enabling efficient detection of gaseous analytes when combined with Raman spectroscopy. The resulting nanostructures are named Au dodecahedral-walled nanoframes. Synthesis of the nanoframes involves shape transformation of Au nanorods with round tips to produce Au-elongated dodecahedra, followed by facet-selective Pt growth, etching of the inner Au, and regrowth steps. The close-packed assembly of Au dodecahedral-walled nanoframes exhibits an attomolar limit of detection toward benzenethiol. This significant enhancement in SERS is attributed to the presence of a flat solid terrace for a large surface area, sharp edges and vertices for strong electromagnetic near-field collection, and open frames for effective analyte transport and capture. Moreover, nanoframes are applied to detect chemical warfare agents, specifically mustard gas simulants, and 20 times higher sensitivity is achieved compared to their solid counterparts.
Collapse
Affiliation(s)
- Hajir Hilal
- Department of Chemistry, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | | | - Myeong Jin Oh
- Department of Chemistry, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Insub Jung
- Department of Chemistry, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
- Institute of Basic Science, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Sungho Park
- Department of Chemistry, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| |
Collapse
|
8
|
Haddadnezhad M, Jung I, Park W, Lee JW, Park W, Kim J, Park S. Plasmonic Double-Walled Nanoframes with Face-to-Face Nanogaps for Strong SERS Activity. NANO LETTERS 2023; 23:6831-6838. [PMID: 37083287 DOI: 10.1021/acs.nanolett.3c00679] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
A synthesis method for plasmonic double-walled nanoframes was developed, where single-walled truncated octahedral nanoframes with (111) open facets and (100) solid flat planes are nested in a core-shell manner. By applying multiple chemical toolkits to Au cuboctahedrons as a starting template, Au double-walled nanoframes with controllable face-to-face nanogaps were successfully synthesized in high homogeneity in size and shape. Importantly, when the gap distance between inner and outer flat walled frames became closer, augmentation of electromagnetic near-field focusing was achieved, leading to generation of hot-zones, which was verified by surface-enhanced Raman spectroscopy. The unique optical property of Au double-walled nanoframes with high structural intricacy was carefully investigated and the SERS substrates comprising Au double-walled nanoframes with the narrowest nanogaps exhibited much improved near-field enhancement toward strongly and/or weakly adsorbing analytes, allowing for gas phase detection in chemical warfare agents, which is a huge challenge in early warning systems.
Collapse
Affiliation(s)
| | - Insub Jung
- Department of Chemistry, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
- Institute of Basic Science, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Woongkyu Park
- Photonic & Digital Therapy Research Center, Korea Photonics Technology Institute (KOPTI), Gwangju 61007, Republic of Korea
| | - Joong Wook Lee
- Department of Physics and Optoelectronics Convergence Research Center, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Woocheol Park
- Department of Chemistry, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Jeongwon Kim
- Department of Chemistry, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Sungho Park
- Department of Chemistry, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| |
Collapse
|
9
|
Qiao L, Pollard N, Senanayake RD, Yang Z, Kim M, Ali AS, Hoang MT, Yao N, Han Y, Hernandez R, Clayborne AZ, Jones MR. Atomically precise nanoclusters predominantly seed gold nanoparticle syntheses. Nat Commun 2023; 14:4408. [PMID: 37479703 PMCID: PMC10362052 DOI: 10.1038/s41467-023-40016-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 07/07/2023] [Indexed: 07/23/2023] Open
Abstract
Seed-mediated synthesis strategies, in which small gold nanoparticle precursors are added to a growth solution to initiate heterogeneous nucleation, are among the most prevalent, simple, and productive methodologies for generating well-defined colloidal anisotropic nanostructures. However, the size, structure, and chemical properties of the seeds remain poorly understood, which partially explains the lack of mechanistic understanding of many particle growth reactions. Here, we identify the majority component in the seed solution as an atomically precise gold nanocluster, consisting of a 32-atom Au core with 8 halide ligands and 12 neutral ligands constituting a bound ion pair between a halide and the cationic surfactant: Au32X8[AQA+•X-]12 (X = Cl, Br; AQA = alkyl quaternary ammonium). Ligand exchange is dynamic and versatile, occurring on the order of minutes and allowing for the formation of 48 distinct Au32 clusters with AQAX (alkyl quaternary ammonium halide) ligands. Anisotropic nanoparticle syntheses seeded with solutions enriched in Au32X8[AQA+•X-]12 show narrower size distributions and fewer impurity particle shapes, indicating the importance of this cluster as a precursor to the growth of well-defined nanostructures.
Collapse
Affiliation(s)
- Liang Qiao
- Department of Chemistry, Rice University, Houston, TX, 77005, USA
- Division of Fundamental Research, Petrochemical Research Institute, PetroChina, Beijing, 102206, China
| | - Nia Pollard
- Department of Chemistry & Biochemistry, George Mason University, Fairfax, VA, 22030, USA
| | | | - Zhi Yang
- Department of Chemistry, Rice University, Houston, TX, 77005, USA
| | - Minjung Kim
- Department of Chemistry, Rice University, Houston, TX, 77005, USA
| | - Arzeena S Ali
- Department of Chemistry, Rice University, Houston, TX, 77005, USA
| | - Minh Tam Hoang
- Department of Chemistry, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Nan Yao
- Princeton Materials Institute, Princeton University, Princeton, NJ, 08544, USA
| | - Yimo Han
- Department of Materials Science & Nanoengineering, Rice University, Houston, TX, 77005, USA
| | - Rigoberto Hernandez
- Department of Chemistry, Johns Hopkins University, Baltimore, MD, 21218, USA
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Andre Z Clayborne
- Department of Chemistry & Biochemistry, George Mason University, Fairfax, VA, 22030, USA
| | - Matthew R Jones
- Department of Chemistry, Rice University, Houston, TX, 77005, USA.
- Department of Materials Science & Nanoengineering, Rice University, Houston, TX, 77005, USA.
| |
Collapse
|
10
|
Lee S, Lee J, Lee S, Haddadnezhad M, Oh MJ, Zhao Q, Yoo S, Liu L, Jung I, Park S. Multi-Layered PtAu Nanoframes and Their Light-Enhanced Electrocatalytic Activity via Plasmonic Hot Spots. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206377. [PMID: 36617524 DOI: 10.1002/smll.202206377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/29/2022] [Indexed: 06/17/2023]
Abstract
Here, the rational design of complex PtAu double nanoframes (DNFs) for plasmon-enhanced electrocatalytic activity toward the methanol oxidation reaction (MOR) is reported. The synthetic strategy for the DNFs consists of on-demand multiple synthetic chemical toolkits, including well-faceted Au growth, rim-on selective Pt deposition, and selective Au etching steps. DNFs are synthesized by utilizing Au truncated octahedrons (TOh) as a starting template. The outer octahedral (Oh) nanoframes (NFs) nest the inner TOh NFs, eventually forming DNFs with a tunable intra-nanogap distance. Residual Au adatoms on Pt skeletons act as light entrappers and produce plasmonic hot spots between inner and outer frames through localized surface plasmon resonance (LSPR) coupling, which promotes enhanced electrocatalytic activity for the MOR. Importantly, the correlation between the gap-induced hot carriers and electrocatalytic activity is evaluated. The highest catalytic activity is achieved when the gap is the narrowest. To further harness their light-trapping capability, hierarchically structured triple NFs (TNFs) are synthesized, wherein three NFs are entangled in a single entity with a high density of hot regions, exhibiting superior electrocatalytic activity toward the MOR with a sixfold larger current density under light irradiation compared to the dark conditions.
Collapse
Affiliation(s)
- Soohyun Lee
- Department of Chemistry, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Jaewon Lee
- Department of Chemistry, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Sungwoo Lee
- Department of Chemistry, Sungkyunkwan University, Suwon, 16419, Republic of Korea
- Institute of Basic Science, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | | | - Myeong Jin Oh
- Department of Chemistry, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Qiang Zhao
- Department of Chemistry, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Sungjae Yoo
- Department of Chemistry, Sungkyunkwan University, Suwon, 16419, Republic of Korea
- Research Institute for Nano Bio Convergence, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Lichun Liu
- College of Biological, Chemical Sciences and Engineering & Nanotechnology Research Institute, Jiaxing University, Jiaxing, 314000, P. R. China
| | - Insub Jung
- Department of Chemistry, Sungkyunkwan University, Suwon, 16419, Republic of Korea
- Institute of Basic Science, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Sungho Park
- Department of Chemistry, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| |
Collapse
|
11
|
Jung I, Kim J, Lee S, Park W, Park S. Multiple Stepwise Synthetic Pathways toward Complex Plasmonic 2D and 3D Nanoframes for Generation of Electromagnetic Hot Zones in a Single Entity. Acc Chem Res 2023; 56:270-283. [PMID: 36693060 DOI: 10.1021/acs.accounts.2c00670] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
ConspectusRational design of nanocrystals with high controllability via wet chemistry is of critical importance in all areas of nanoscience and nanotechnology research. Specifically, morphologically complex plasmonic nanoparticles have received considerable attention because light-matter interactions are strongly associated with the size and shape of nanoparticles. Among many types of nanostructures, plasmonic nanoframes (NFs) with controllable structural intricacy could be excellent candidates as strong light-entrappers with inner voids as well as high surface area, leading to highly effective interaction with light and analytes compared to their solid counterparts. However, so far studies on single-rim-based NFs have suffered from insufficient near-field focusing capability due to their structural simplicity (e.g., a single rim or NF molded from simple platonic solids), which necessitates a conceptually new NF architecture. If one considers a stereoscopic nanostructure with dual, triple, and multiple resonant intra-nanogaps on each crystallographic facet of nanocrystals, unprecedented physicochemical properties could be expected. Realizing such complex multiple NFs with intraparticle surface plasmon coupling via localized surface plasmon resonance is very challenging due to the lack of synthetic strategic principles with systematic structural control, all of which require a deep understanding of surface chemistry. Moreover, realizing those complex architectures with high homogeneity in size and shape via a bottom-up method where diverse particle interactions are involved is more challenging. Although there have been several reports on NFs used for catalysis, techniques for production of structurally complex NFs with high uniformity and an understanding of the correlation between such complexity in a single plasmonic entity and electromagnetic near-field focusing have remained highly elusive.In this Account, we will summarize and highlight the rational synthetic pathways for the design of complex two-dimensional (2D) and three-dimensional (3D) NFs with unique inner rim structures and characterize their optical properties. This systematic strategy is based on publications from our group during the last 10 years. First, we will introduce a chemical step of shape transformation of triangular Au nanoplates to circular and hexagonal plates, which are used as sacrificial layers for the formation of NFs. Then, we will describe the methods on how to synthesize monorim-based plasmonic NFs using Pt scaffolds with different shapes and correlate with their electromagnetic near-field. Then, we will describe a multiple stepwise synthetic method for the formation of 2D complex NFs wherein different starting Au nanocrystals evolved from systematic shape transformation are used to produce circular, triangular, hexagonal, crescent, and Y-shaped inner hot zones. Then, we will discuss how one can synthesize NFs with multiple rims wherein rims with different diameters are concentrically connected, by exploiting chemical toolkits such as eccentric and concentric growth of Au, borrowing the concept of total synthesis that is frequently adopted in organic chemistry. We then introduce dual-rim-faceted NFs and frame-in-frame 3D matryoshka NF geometries via well-faceted growth of Au with high control of intra-nanogaps. Finally, and importantly, we will provide examples of more advanced hierarchical NF architectures produced by controlling geometrical shapes of nanoparticles, number of rims, and different components, leading to the expansion of the NF library.
Collapse
Affiliation(s)
- Insub Jung
- Department of Chemistry, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea.,Institute of Basic Science, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea
| | - Jeongwon Kim
- Department of Chemistry, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea
| | - Sungwoo Lee
- Department of Chemistry, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea.,Institute of Basic Science, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea
| | - Woocheol Park
- Department of Chemistry, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea
| | - Sungho Park
- Department of Chemistry, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea
| |
Collapse
|
12
|
Haddadnezhad M, Park W, Jung I, Hilal H, Kim J, Yoo S, Zhao Q, Lee S, Lee J, Lee S, Park S. Synthesis of Pt Double-Walled Nanoframes with Well-Defined and Controllable Facets. ACS NANO 2022; 16:21283-21292. [PMID: 36473157 DOI: 10.1021/acsnano.2c09349] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
In this paper, we demonstrate the synthesis of morphologically complex nanoframes wherein a mixture of frames and thin solid planes, which we refer to as walled-nanoframes, are present in a single particle. By applying multiple chemical steps including shape evolution of Au nanocrystals and controlling chemical potential of solution for selective deposition, we successfully designed a variety of Pt nanoframes including Pt cuboctahedral nanoframes and Pt single-walled nanoframes. The rationale for on-demand chemical steps with well-faceted Au overgrowth allowed for the synthesis of double-walled nanoframes where two Pt single-walled nanoframes are concentrically overlapped in a single entity with a clearly discernible gap between the two nanoframes. Given the coexistence of an open structure of nanoframe and thin plates within one entity, the double-walled nanoframes showed a dramatic increase in catalytic activity toward the methanol oxidation reaction, acting as high-surface area, carbon-free, and volume-compact nanocatalysts.
Collapse
Affiliation(s)
| | - Woocheol Park
- Department of Chemistry, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Insub Jung
- Department of Chemistry, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
- Institute of Basic Science, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Hajir Hilal
- Department of Chemistry, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Jeongwon Kim
- Department of Chemistry, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Sungjae Yoo
- Department of Chemistry, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Qiang Zhao
- Department of Chemistry, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Soohyun Lee
- Department of Chemistry, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Jaewon Lee
- Department of Chemistry, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Sungwoo Lee
- Department of Chemistry, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
- Institute of Basic Science, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Sungho Park
- Department of Chemistry, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| |
Collapse
|