1
|
Zheng N, Cai Y, Zhang Z, Zhou H, Deng Y, Du S, Tu M, Fang W, Xia X. Tailoring industrial enzymes for thermostability and activity evolution by the machine learning-based iCASE strategy. Nat Commun 2025; 16:604. [PMID: 39799136 PMCID: PMC11724889 DOI: 10.1038/s41467-025-55944-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 01/03/2025] [Indexed: 01/15/2025] Open
Abstract
The pursuit of obtaining enzymes with high activity and stability remains a grail in enzyme evolution due to the stability-activity trade-off. Here, we develop an isothermal compressibility-assisted dynamic squeezing index perturbation engineering (iCASE) strategy to construct hierarchical modular networks for enzymes of varying complexity. Molecular mechanism analysis elucidates that the peak of adaptive evolution is reached through a structural response mechanism among variants. Furthermore, this dynamic response predictive model using structure-based supervised machine learning is established to predict enzyme function and fitness, demonstrating robust performance across different datasets and reliable prediction for epistasis. The universality of the iCASE strategy is validated by four sorts of enzymes with different structures and catalytic types. This machine learning-based iCASE strategy provides guidance for future research on the fitness evolution of enzymes.
Collapse
Affiliation(s)
- Nan Zheng
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, PR China
| | - Yongchao Cai
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, PR China
| | - Zehua Zhang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, PR China
| | - Huimin Zhou
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, PR China
| | - Yu Deng
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, PR China
| | - Shuang Du
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, PR China
| | - Mai Tu
- School of Artificial Intelligence and Computer Science, Jiangnan University, Wuxi, PR China
| | - Wei Fang
- School of Artificial Intelligence and Computer Science, Jiangnan University, Wuxi, PR China
| | - Xiaole Xia
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, PR China.
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, PR China.
| |
Collapse
|
2
|
Gonzales J, Kim I, Hwang W, Cho JH. Evolutionary rewiring of the dynamic network underpinning allosteric epistasis in NS1 of influenza A virus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.24.595776. [PMID: 38826371 PMCID: PMC11142230 DOI: 10.1101/2024.05.24.595776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Viral proteins frequently mutate to evade or antagonize host innate immune responses, yet the impact of these mutations on the molecular energy landscape remains unclear. Epistasis, the intramolecular communications between mutations, often renders the combined mutational effects unpredictable. Nonstructural protein 1 (NS1) is a major virulence factor of the influenza A virus (IAV) that activates host PI3K by binding to its p85β subunit. Here, we present the deep analysis for the impact of evolutionary mutations in NS1 that emerged between the 1918 pandemic IAV strain and its descendant PR8 strain. Our analysis reveal how the mutations rewired inter-residue communications which underlies long-range allosteric and epistatic networks in NS1. Our findings show that PR8 NS1 binds to p85β with approximately 10-fold greater affinity than 1918 NS1 due to allosteric mutational effects. Notably, these mutations also exhibited long-range epistatic effects. NMR chemical shift perturbation and methyl-axis order parameter analyses revealed that the mutations induced long-range structural and dynamic changes in PR8 NS1, enhancing its affinity to p85β. Complementary MD simulations and graph-based network analysis uncover how these mutations rewire dynamic residue interaction networks, which underlies the long-range epistasis and allosteric effects on p85β-binding affinity. Significantly, we find that conformational dynamics of residues with high betweenness centrality play a crucial role in communications between network communities and are highly conserved across influenza A virus evolution. These findings advance our mechanistic understanding of the allosteric and epistatic communications between distant residues and provides insight into their role in the molecular evolution of NS1.
Collapse
|
3
|
Judge A, Sankaran B, Hu L, Palaniappan M, Birgy A, Prasad BVV, Palzkill T. Network of epistatic interactions in an enzyme active site revealed by large-scale deep mutational scanning. Proc Natl Acad Sci U S A 2024; 121:e2313513121. [PMID: 38483989 PMCID: PMC10962969 DOI: 10.1073/pnas.2313513121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 02/14/2024] [Indexed: 03/19/2024] Open
Abstract
Cooperative interactions between amino acids are critical for protein function. A genetic reflection of cooperativity is epistasis, which is when a change in the amino acid at one position changes the sequence requirements at another position. To assess epistasis within an enzyme active site, we utilized CTX-M β-lactamase as a model system. CTX-M hydrolyzes β-lactam antibiotics to provide antibiotic resistance, allowing a simple functional selection for rapid sorting of modified enzymes. We created all pairwise mutations across 17 active site positions in the β-lactamase enzyme and quantitated the function of variants against two β-lactam antibiotics using next-generation sequencing. Context-dependent sequence requirements were determined by comparing the antibiotic resistance function of double mutations across the CTX-M active site to their predicted function based on the constituent single mutations, revealing both positive epistasis (synergistic interactions) and negative epistasis (antagonistic interactions) between amino acid substitutions. The resulting trends demonstrate that positive epistasis is present throughout the active site, that epistasis between residues is mediated through substrate interactions, and that residues more tolerant to substitutions serve as generic compensators which are responsible for many cases of positive epistasis. Additionally, we show that a key catalytic residue (Glu166) is amenable to compensatory mutations, and we characterize one such double mutant (E166Y/N170G) that acts by an altered catalytic mechanism. These findings shed light on the unique biochemical factors that drive epistasis within an enzyme active site and will inform enzyme engineering efforts by bridging the gap between amino acid sequence and catalytic function.
Collapse
Affiliation(s)
- Allison Judge
- Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, TX77030
| | - Banumathi Sankaran
- Department of Molecular Biophysics and Integrated Bioimaging, Berkeley Center for Structural Biology Lawrence Berkeley National Laboratory, Berkeley, CA94720
| | - Liya Hu
- Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, TX77030
| | - Murugesan Palaniappan
- Department of Pathology and Immunology, Center for Drug Discovery, Baylor College of Medicine, Houston, TX77030
| | - André Birgy
- Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, TX77030
- Infections, Antimicrobials, Modelling, Evolution, UMR 1137, French Insitute for Medical Research (INSERM), Faculty of Health, Université Paris Cité, Paris75006, France
| | - B. V. Venkataram Prasad
- Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, TX77030
| | - Timothy Palzkill
- Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, TX77030
| |
Collapse
|
4
|
Xiao S, Alshahrani M, Gupta G, Tao P, Verkhivker G. Markov State Models and Perturbation-Based Approaches Reveal Distinct Dynamic Signatures and Hidden Allosteric Pockets in the Emerging SARS-Cov-2 Spike Omicron Variant Complexes with the Host Receptor: The Interplay of Dynamics and Convergent Evolution Modulates Allostery and Functional Mechanisms. J Chem Inf Model 2023; 63:5272-5296. [PMID: 37549201 PMCID: PMC11162552 DOI: 10.1021/acs.jcim.3c00778] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/09/2023]
Abstract
The new generation of SARS-CoV-2 Omicron variants displayed a significant growth advantage and increased viral fitness by acquiring convergent mutations, suggesting that the immune pressure can promote convergent evolution leading to the sudden acceleration of SARS-CoV-2 evolution. In the current study, we combined structural modeling, microsecond molecular dynamics simulations, and Markov state models to characterize conformational landscapes and identify specific dynamic signatures of the SARS-CoV-2 spike complexes with the host receptor ACE2 for the recently emerged highly transmissible XBB.1, XBB.1.5, BQ.1, and BQ.1.1 Omicron variants. Microsecond simulations and Markovian modeling provided a detailed characterization of the functional conformational states and revealed the increased thermodynamic stabilization of the XBB.1.5 subvariant, which can be contrasted to more dynamic BQ.1 and BQ.1.1 subvariants. Despite considerable structural similarities, Omicron mutations can induce unique dynamic signatures and specific distributions of the conformational states. The results suggested that variant-specific changes of the conformational mobility in the functional interfacial loops of the receptor-binding domain in the SARS-CoV-2 spike protein can be fine-tuned through crosstalk between convergent mutations which could provide an evolutionary path for modulation of immune escape. By combining atomistic simulations and Markovian modeling analysis with perturbation-based approaches, we determined important complementary roles of convergent mutation sites as effectors and receivers of allosteric signaling involved in modulation of conformational plasticity and regulation of allosteric communications. This study also revealed hidden allosteric pockets and suggested that convergent mutation sites could control evolution and distribution of allosteric pockets through modulation of conformational plasticity in the flexible adaptable regions.
Collapse
Affiliation(s)
- Sian Xiao
- Department of Chemistry, Center for Research Computing, Center for Drug Discovery, Design, and Delivery (CD4), Southern Methodist University, Dallas, Texas 75275, United States
| | - Mohammed Alshahrani
- Keck Center for Science and Engineering, Schmid College of Science and Technology, Chapman University, Orange, California 92866, United States
| | - Grace Gupta
- Keck Center for Science and Engineering, Schmid College of Science and Technology, Chapman University, Orange, California 92866, United States
| | - Peng Tao
- Department of Chemistry, Center for Research Computing, Center for Drug Discovery, Design, and Delivery (CD4), Southern Methodist University, Dallas, Texas 75275, United States
| | - Gennady Verkhivker
- Keck Center for Science and Engineering, Schmid College of Science and Technology, Chapman University, Orange, California 92866, United States
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, California 92618, United States
| |
Collapse
|
5
|
Ose NJ, Campitelli P, Patel R, Kumar S, Ozkan SB. Protein dynamics provide mechanistic insights about epistasis among common missense polymorphisms. Biophys J 2023; 122:2938-2947. [PMID: 36726312 PMCID: PMC10398253 DOI: 10.1016/j.bpj.2023.01.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 12/20/2022] [Accepted: 01/26/2023] [Indexed: 02/03/2023] Open
Abstract
Sequencing of the protein coding genome has revealed many different missense mutations of human proteins and different population frequencies of corresponding haplotypes, which consist of different sets of those mutations. Here, we present evidence for pairwise intramolecular epistasis (i.e., nonadditive interactions) between many such mutations through an analysis of protein dynamics. We suggest that functional compensation for conserving protein dynamics is a likely evolutionary mechanism that maintains high-frequency mutations that are individually nonneutral but epistatically compensating within proteins. This analysis is the first of its type to look at human proteins with specific high population frequency mutations and examine the relationship between mutations that make up that observed high-frequency protein haplotype. Importantly, protein dynamics revealed a separation between high and low frequency haplotypes within a target protein cytochrome P450 2A7, with the high-frequency haplotypes showing behavior closer to the wild-type protein. Common protein haplotypes containing two mutations display dynamic compensation in which one mutation can correct for the dynamic effects of the other. We also utilize a dynamics-based metric, EpiScore, that evaluates the epistatic interactions and allows us to see dynamic compensation within many other proteins.
Collapse
Affiliation(s)
- Nicholas J Ose
- Department of Physics and Center for Biological Physics, Arizona State University, Tempe, Arizona
| | - Paul Campitelli
- Department of Physics and Center for Biological Physics, Arizona State University, Tempe, Arizona
| | - Ravi Patel
- Institute for Genomics and Evolutionary Medicine, Temple University, Philadelphia, Pennsylvania; Department of Biology, Temple University, Philadelphia, Pennsylvania
| | - Sudhir Kumar
- Institute for Genomics and Evolutionary Medicine, Temple University, Philadelphia, Pennsylvania; Department of Biology, Temple University, Philadelphia, Pennsylvania; Center for Genomic Medicine Research, King Abdulaziz University, Jeddah, Saudi Arabia.
| | - S Banu Ozkan
- Department of Physics and Center for Biological Physics, Arizona State University, Tempe, Arizona.
| |
Collapse
|
6
|
Xiao S, Alshahrani M, Gupta G, Tao P, Verkhivker G. Markov State Models and Perturbation-Based Approaches Reveal Distinct Dynamic Signatures and Hidden Allosteric Pockets in the Emerging SARS-Cov-2 Spike Omicron Variants Complexes with the Host Receptor: The Interplay of Dynamics and Convergent Evolution Modulates Allostery and Functional Mechanisms. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.20.541592. [PMID: 37292827 PMCID: PMC10245745 DOI: 10.1101/2023.05.20.541592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The new generation of SARS-CoV-2 Omicron variants displayed a significant growth advantage and the increased viral fitness by acquiring convergent mutations, suggesting that the immune pressure can promote convergent evolution leading to the sudden acceleration of SARS-CoV-2 evolution. In the current study, we combined structural modeling, extensive microsecond MD simulations and Markov state models to characterize conformational landscapes and identify specific dynamic signatures of the SARS-CoV-2 spike complexes with the host receptor ACE2 for the recently emerged highly transmissible XBB.1, XBB.1.5, BQ.1, and BQ.1.1 Omicron variants. Microsecond simulations and Markovian modeling provided a detailed characterization of the conformational landscapes and revealed the increased thermodynamic stabilization of the XBB.1.5 subvariant which is contrasted to more dynamic BQ.1 and BQ.1.1 subvariants. Despite considerable structural similarities, Omicron mutations can induce unique dynamic signatures and specific distributions of conformational states. The results suggested that variant-specific changes of conformational mobility in the functional interfacial loops of the spike receptor binding domain can be fine-tuned through cross-talk between convergent mutations thereby providing an evolutionary path for modulation of immune escape. By combining atomistic simulations and Markovian modeling analysis with perturbation-based approaches, we determined important complementary roles of convergent mutation sites as effectors and receivers of allosteric signaling involved in modulating conformational plasticity at the binding interface and regulating allosteric responses. This study also characterized the dynamics-induced evolution of allosteric pockets in the Omicron complexes that revealed hidden allosteric pockets and suggested that convergent mutation sites could control evolution and distribution of allosteric pockets through modulation of conformational plasticity in the flexible adaptable regions. Through integrative computational approaches, this investigation provides a systematic analysis and comparison of the effects of Omicron subvariants on conformational dynamics and allosteric signaling in the complexes with the ACE2 receptor. For Table of Contents Use Only
Collapse
|