1
|
Wang X, Wen S, Wu Z, Jiang JH. Orthogonal Control of Nucleic Acid Function via Chemical Caging-Decaging Strategies. Chembiochem 2024:e202400516. [PMID: 39141545 DOI: 10.1002/cbic.202400516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 08/09/2024] [Accepted: 08/13/2024] [Indexed: 08/16/2024]
Abstract
The ability to precisely control the function of nucleic acids plays an important role in biosensing and biomedicine. In recent years, novel strategies employing biological, physical, and chemical triggers have been developed to modulate the function of nucleic acids spatiotemporally. These approaches commonly involve the incorporation of stimuli-responsive groups onto nucleic acids to block their functions until triggers-induced decaging restore activity. These inventive strategies deepen our comprehension of nucleic acid molecules' dynamic behavior and provide new techniques for precise disease diagnosis and treatment. Focusing on the spatiotemporal regulation of nucleic acid molecules through the chemical caging-decaging strategy, we here present an overview of the innovative triggered control mechanisms and accentuate their implications across the fields of chemical biology, biomedicine, and biosensing.
Collapse
Affiliation(s)
- Xiangnan Wang
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, School of Biomedical Science, Hunan University, Changsha, Hunan, 410082, P. R. China
- School of Resource & Environment, Hunan University of Technology and Business, Changsha, Hunan, 410082, P. R. China
| | - Siyu Wen
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, School of Biomedical Science, Hunan University, Changsha, Hunan, 410082, P. R. China
| | - Zhenkun Wu
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, School of Biomedical Science, Hunan University, Changsha, Hunan, 410082, P. R. China
| | - Jian-Hui Jiang
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, School of Biomedical Science, Hunan University, Changsha, Hunan, 410082, P. R. China
| |
Collapse
|
2
|
Okamura H, Yao T, Nagatsugi F. Reversible Control of Gene Expression by Guest-Modified Adenosines in a Cell-Free System via Host-Guest Interaction. J Am Chem Soc 2024; 146:18513-18523. [PMID: 38941287 PMCID: PMC11240562 DOI: 10.1021/jacs.4c04262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/08/2024] [Accepted: 05/09/2024] [Indexed: 06/30/2024]
Abstract
Gene expression technology has become an indispensable tool for elucidating biological processes and developing biotechnology. Cell-free gene expression (CFE) systems offer a fundamental platform for gene expression-based technology, in which the reversible and programmable control of transcription can expand its use in synthetic biology and medicine. This study shows that CFE can be controlled via the host-guest interaction of cucurbit[7]uril (CB[7]) with N6-guest-modified adenosines. These adenosine derivatives were conveniently incorporated into the DNA strand using a post-synthetic approach and formed a selective and stable base pair with complementary thymidine in DNA. Meanwhile, alternate addition of CB[7] and the exchanging guest molecule induced the reversible formation of a duplex structure through the formation and dissociation of a bulky complex on DNA. The kinetics of the reversibility was fine-tuned by changing the size of the modified guest moieties. When incorporated into a specific region of the T7 promoter sequence, the guest-modified adenosines enabled tight and reversible control of in vitro transcription and protein expression in the CFE system. This study marks the first utility of the host-guest interaction for gene expression control in the CFE system, opening new avenues for developing DNA-based technology, particularly for precise gene therapy and DNA nanotechnology.
Collapse
Affiliation(s)
- Hidenori Okamura
- Institute
of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
- Department
of Chemistry, Graduate School of Science, Tohoku University, Miyagi 980-8578, Japan
| | - Takeyuki Yao
- Institute
of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
- Department
of Chemistry, Graduate School of Science, Tohoku University, Miyagi 980-8578, Japan
| | - Fumi Nagatsugi
- Institute
of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
- Department
of Chemistry, Graduate School of Science, Tohoku University, Miyagi 980-8578, Japan
| |
Collapse
|
3
|
Lu Z, Chen X, Wang C, Luo X, Wu X, Zhao X, Xiao S. Self-Assembled Nanocomposite DOX/TPOR 4@CB[7] 4 for Enhanced Synergistic Photodynamic Therapy and Chemotherapy in Neuroblastoma. Pharmaceutics 2024; 16:822. [PMID: 38931942 PMCID: PMC11207937 DOI: 10.3390/pharmaceutics16060822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 06/10/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024] Open
Abstract
DOX/TPOR4@CB[7]4 was synthesized via self-assembly, and its physicochemical properties and ability to generate reactive oxygen species (ROS) were evaluated. The impact of photodynamic therapy on SH-SY5Y cells was assessed using the MTT assay, while flow cytometry analysis was employed to detect cell apoptosis. Confocal laser scanning microscopy was utilized to observe the intracellular distribution of DOX/TPOR4@CB[7]4 in SH-SY5Y cells. Additionally, fluorescence imaging of DOX/TPOR4@CB[7]4 in nude mice bearing SH-SY5Y tumors and examination of the combined effects of photodynamic and chemical therapies were conducted. The incorporation of CB[7] significantly enhanced the optical properties of DOX/TPOR4@CB[7]4, resulting in increased ROS production and pronounced toxicity towards SH-SY5Y cells. Moreover, both the apoptotic and mortality rates exhibited significant elevation. In vivo experiments demonstrated that tumor growth inhibition was most prominent in the DOX/TPOR4@CB[7]4 group. π-π interactions facilitated the binding between DOX and photosensitizer TPOR, with TPOR's naphthalene hydrophilic groups encapsulated within CB[7]'s cavity through host-guest interactions with CB[7]. Therefore, CB[7] can serve as a nanocarrier to enhance the combined application of chemical therapy and photodynamic therapy, thereby significantly improving treatment efficacy against neuroblastoma tumors.
Collapse
Affiliation(s)
- Zhouxia Lu
- Department of Chemistry, School of Basic Medicine, Guizhou Medical University, Guiyang 550025, China; (Z.L.); (X.C.); (C.W.); (X.L.); (X.W.)
- Department of Histology and Embryology, School of Basic Medicine, Guizhou Medical University, Guiyang 550025, China
| | - Xu Chen
- Department of Chemistry, School of Basic Medicine, Guizhou Medical University, Guiyang 550025, China; (Z.L.); (X.C.); (C.W.); (X.L.); (X.W.)
| | - Conghui Wang
- Department of Chemistry, School of Basic Medicine, Guizhou Medical University, Guiyang 550025, China; (Z.L.); (X.C.); (C.W.); (X.L.); (X.W.)
| | - Xuelian Luo
- Department of Chemistry, School of Basic Medicine, Guizhou Medical University, Guiyang 550025, China; (Z.L.); (X.C.); (C.W.); (X.L.); (X.W.)
| | - Xiaohan Wu
- Department of Chemistry, School of Basic Medicine, Guizhou Medical University, Guiyang 550025, China; (Z.L.); (X.C.); (C.W.); (X.L.); (X.W.)
| | - Xing Zhao
- Tumor Immunotherapy Technology Engineering Research Center, Guizhou Medical University, Guiyang 5500025, China;
| | - Song Xiao
- Department of Chemistry, School of Basic Medicine, Guizhou Medical University, Guiyang 550025, China; (Z.L.); (X.C.); (C.W.); (X.L.); (X.W.)
- Tumor Immunotherapy Technology Engineering Research Center, Guizhou Medical University, Guiyang 5500025, China;
| |
Collapse
|
4
|
Yan M, Wu S, Wang Y, Liang M, Wang M, Hu W, Yu G, Mao Z, Huang F, Zhou J. Recent Progress of Supramolecular Chemotherapy Based on Host-Guest Interactions. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2304249. [PMID: 37478832 DOI: 10.1002/adma.202304249] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 07/10/2023] [Indexed: 07/23/2023]
Abstract
Chemotherapy is widely recognized as an effective approach for treating cancer due to its ability to eliminate cancer cells using chemotherapeutic drugs. However, traditional chemotherapy suffers from various drawbacks, including limited solubility and stability of drugs, severe side effects, low bioavailability, drug resistance, and challenges in tracking treatment efficacy. These limitations greatly hinder its widespread clinical application. In contrast, supramolecular chemotherapy, which relies on host-guest interactions, presents a promising alternative by offering highly efficient and minimally toxic anticancer drug delivery. In this review, an overview of recent advancements in supramolecular chemotherapy based on host-guest interactions is provided. The significant role it plays in guiding cancer therapy is emphasized. Drawing on a wealth of cutting-edge research, herein, a timely and valuable resource for individuals interested in the field of supramolecular chemotherapy or cancer therapy, is presented. Furthermore, this review contributes to the progression of the field of supramolecular chemotherapy toward clinical application.
Collapse
Affiliation(s)
- Miaomiao Yan
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang, 110819, P. R. China
| | - Sha Wu
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang, 110819, P. R. China
| | - Yuhao Wang
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang, 110819, P. R. China
| | - Minghao Liang
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang, 110819, P. R. China
| | - Mengbin Wang
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou, 310058, P. R. China
- Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, P. R. China
| | - Wenting Hu
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, P. R. China
| | - Guocan Yu
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Zhengwei Mao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Feihe Huang
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou, 310058, P. R. China
- Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, P. R. China
| | - Jiong Zhou
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang, 110819, P. R. China
- Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, 510632, P. R. China
| |
Collapse
|
5
|
Wang LL, Wu CQ, Zhang QL, Wang Y, Liu Y, Yang WJ, Ye SL, Tian Y, Xu L. Chemically Cross-Linked Hammerhead Ribozyme as an Efficient RNA Interference Tool. J Am Chem Soc 2024; 146:6665-6674. [PMID: 38412223 DOI: 10.1021/jacs.3c12702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
RNA-cleaving ribozymes are promising candidates as general tools of RNA interference (RNAi) in gene manipulation. However, compared with other RNA systems, such as siRNA and CRISPR technologies, the ribozyme tools are still far from broad applications on RNAi due to their poor performance in the cellular context. In this work, we report an efficient RNAi tool based on chemically modified hammerhead ribozyme (HHR). By the introduction of an intramolecular linkage into the minimal HHR to reconstruct the distal interaction within the tertiary ribozyme structure, this cross-linked HHR exhibits efficient RNA substrate cleavage activities with almost no sequence constraint. Cellular experiments suggest that both exogenous and endogenous RNA expression can be dramatically knocked down by this HHR tool with levels comparable to those of siRNA. Unlike the widely applied protein-recruiting RNA systems (siRNA and CRISPR), this ribozyme tool functions solely on RNA itself with great simplicity, which may provide a new approach for gene manipulation in both fundamental and translational studies.
Collapse
Affiliation(s)
- Liang-Liang Wang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
- School of Biological and Pharmaceutical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Chao-Qun Wu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Qiu-Long Zhang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
- School of Pharmacy and Medical Technology, Key Laboratory of Pharmaceutical Analysis and Laboratory Medicine of Fujian Province, Putian University, Putian 351100, China
| | - Yang Wang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Yan Liu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Wen-Jian Yang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Sen-Lin Ye
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Yongqiang Tian
- School of Biological and Pharmaceutical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Liang Xu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| |
Collapse
|
6
|
Han J, Ding Y, Lv X, Zhang Y, Fan D. Integration of G-Quadruplex and Pyrene as a Simple and Efficient Ratiometric Fluorescent Platform That Programmed by Contrary Logic Pair for Highly Sensitive and Selective Coralyne (COR) Detection. BIOSENSORS 2023; 13:bios13040489. [PMID: 37185564 PMCID: PMC10136222 DOI: 10.3390/bios13040489] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/07/2023] [Accepted: 04/18/2023] [Indexed: 05/17/2023]
Abstract
The effective and accurate detection of the anticancer drug coralyne (COR) is highly significant for drug quality control, medication safety and good health. Although various COR sensors have been reported in recent years, previous ones can only exhibit single-signal output (turn ON or turn OFF) with poor reliability and anti-interference ability. Therefore, exploring novel platform with dual-signal response for COR detection is urgently needed. Herein, we reported the first ratiometric fluorescent platform for highly sensitive and selective COR detection by integrating G-quadruplex (G4) and Pyrene (Py) as signal probes and harnessing A-COR-A interaction. In the absence of COR, the platform shows a low fluorescence signal of PPIX (F642) and a high one of Py monomer (F383). With the addition of COR, two delicately designed poly-A ssDNAs will hybridize with each other via A-COR-A coordination to form complete G4, yielding the increased fluorescence signal of PPIX and the decreased one of Py due to the formation of Py excimer. Based on the above mechanism, we constructed a simple and efficient sensor that could realize the ratiometric fluorescent detection of COR with high sensitivity and selectivity. A linear relationship between F642/F383 and COR's concentration is obtained in the range from 1 nM to 8 μM. And the limit of detection of COR could reach to as low as 0.63 nM without any amplification, which is much lower than that of most COR sensors reported so far. Notably, the logical analysis of COR can be carried out under the control of a "YES-NOT" contrary logic pair, enabling the smart dual-channel response with an adequate S/N ratio and improved reliability and anti-interference ability. Moreover, this system also presents satisfactory performance in fetal bovine serum (FBS) samples.
Collapse
Affiliation(s)
- Jiawen Han
- Laboratory for Marine Drugs and Bioproducts, National Laboratory for Marine Science and Technology, Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Yaru Ding
- School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China
| | - Xujuan Lv
- Laboratory for Marine Drugs and Bioproducts, National Laboratory for Marine Science and Technology, Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Yuwei Zhang
- Laboratory for Marine Drugs and Bioproducts, National Laboratory for Marine Science and Technology, Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Daoqing Fan
- Laboratory for Marine Drugs and Bioproducts, National Laboratory for Marine Science and Technology, Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| |
Collapse
|
7
|
Majid MF, Mohd Zaid HF, Abd Shukur MF, Ahmad A, Jumbri K. Host-Guest Interactions of Zirconium-Based Metal-Organic Framework with Ionic Liquid. Molecules 2023; 28:molecules28062833. [PMID: 36985805 PMCID: PMC10055841 DOI: 10.3390/molecules28062833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/16/2023] [Accepted: 03/18/2023] [Indexed: 03/30/2023] Open
Abstract
A metal-organic framework (MOF) is a three-dimensional crystalline compound made from organic ligands and metals. The cross-linkage between organic ligands and metals creates a network of coordination polymers containing adjustable voids with a high total surface area. This special feature of MOF made it possible to form a host-guest interaction with small molecules, such as ionic liquid (IL), which can alter the phase behavior and improve the performance in battery applications. The molecular interactions of MOF and IL are, however, hard to understand due to the limited number of computational studies. In this study, the structural parameters of a zirconium-based metal-organic framework (UiO-66) and 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide, [EMIM][TFSI] were investigated via a combined experimental and computational approach using the linker model approach. When IL was loaded, the bond length and bond angle of organic linkers were distorted due to the increased electron density surrounding the framework. The increase in molecular orbital energy after confining IL stabilized the structure of this hybrid system. The molecular interactions study revealed that the combination of UiO-66 and [EMIM][TFSI] could be a promising candidate as an electrolyte material in an energy storage system.
Collapse
Affiliation(s)
- Mohd Faridzuan Majid
- Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, Seri Iskandar 32610, Perak Darul Ridzuan, Malaysia
- Centre of Innovative Nanostructures & Nanodevices (COINN), Universiti Teknologi PETRONAS, Seri Iskandar 32610, Perak Darul Ridzuan, Malaysia
| | - Hayyiratul Fatimah Mohd Zaid
- Centre of Innovative Nanostructures & Nanodevices (COINN), Universiti Teknologi PETRONAS, Seri Iskandar 32610, Perak Darul Ridzuan, Malaysia
- Chemical Engineering Department, Universiti Teknologi PETRONAS, Seri Iskandar 32610, Perak Darul Ridzuan, Malaysia
| | - Muhammad Fadhlullah Abd Shukur
- Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, Seri Iskandar 32610, Perak Darul Ridzuan, Malaysia
- Centre of Innovative Nanostructures & Nanodevices (COINN), Universiti Teknologi PETRONAS, Seri Iskandar 32610, Perak Darul Ridzuan, Malaysia
| | - Azizan Ahmad
- Department of Chemical Sciences, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor Darul Ehsan, Malaysia
- Department of Physics, Faculty of Science and Technology, Airlangga University (Campus C), Mulyorejo Road, Surabaya 60115, Indonesia
| | - Khairulazhar Jumbri
- Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, Seri Iskandar 32610, Perak Darul Ridzuan, Malaysia
- Centre for Research in Ionic Liquids (CORIL), Universiti Teknologi PETRONAS, Seri Iskandar 32610, Perak Darul Ridzuan, Malaysia
| |
Collapse
|