1
|
Moccia V, Tucciarone CM, Garutti S, Milazzo M, Ferri F, Palizzotto C, Mazza M, Basset M, Zini E, Ricagno S, Ferro S. AA amyloidosis in vertebrates: epidemiology, pathology and molecular aspects. Amyloid 2024:1-11. [PMID: 39427299 DOI: 10.1080/13506129.2024.2417219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 10/03/2024] [Accepted: 10/11/2024] [Indexed: 10/22/2024]
Abstract
AA amyloidosis is a prototypic example of systemic amyloidosis: it results from the prolonged overproduction of SAA protein produced in response to chronic inflammation. AA amyloidosis primarily affects the kidneys, liver, spleen, gastrointestinal tract, leading to a variety of symptoms. First, this review examines AA amyloidosis in humans, focusing on pathogenesis, clinical presentation, and diagnosis and then in animals. In fact AA amyloidosis is the only systemic amyloidosis that has been largely documented in a remarkable number of vertebrate species: mammals, birds, and fishes, especially in individuals with comorbidities, chronic stress, or held in captivity. Secondly, here, we summarise independent sets of evidence obtained on different animal species, exploring the possible transmissibility of AA amyloidosis especially in crowded or confined populations. Finally, biochemical and structural data on native SAA and on AA amyloid fibrils from human, murine, and cat ex vivo samples are discussed. The available structural data depict a complex scenario, where SAA can misfold forming highly different amyloid assemblies. This review highlights the complexity of AA amyloidosis, emphasising the need for further research into its spread in the animal kingdom, its structural aspects, and pathogenetic mechanisms to evaluate its impact on human and animal health.
Collapse
Affiliation(s)
- Valentina Moccia
- Department of Comparative Biomedicine and Food Science, University of Padua, Padua, Italy
- Department of Physics and Astronomy, University of Padua, Padua, Italy
| | | | - Silvia Garutti
- Ambulatorio Veterinario Libia, Bologna, Italy
- Ambulatorio Veterinario Pievese, Pieve di Cento, BO, Italy
| | - Melissa Milazzo
- Department of Biosciences, University of Milan, Milan, Italy
| | - Filippo Ferri
- Department of Animal Medicine, Production and Health, University of Padua, Padua, Italy
- AniCura Istituto Veterinario Novara, Granozzo con Monticello, NO, Italy
- Studio Veterinario Associato Vet2Vet di Ferri e Porporato, Orbassano, TO, Italy
| | - Carlo Palizzotto
- AniCura Istituto Veterinario Novara, Granozzo con Monticello, NO, Italy
| | - Maria Mazza
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta
| | - Marco Basset
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
- Amyloidosis Research and Treatment Center, Foundation "Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Policlinico San Matteo", Pavia, Italy
| | - Eric Zini
- Department of Animal Medicine, Production and Health, University of Padua, Padua, Italy
- AniCura Istituto Veterinario Novara, Granozzo con Monticello, NO, Italy
- Clinic for Small Animal Internal Medicine, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Stefano Ricagno
- Department of Biosciences, University of Milan, Milan, Italy
| | - Silvia Ferro
- Department of Comparative Biomedicine and Food Science, University of Padua, Padua, Italy
| |
Collapse
|
2
|
Ferri F, Ferro S, Benali SL, Aresu L, Muscardin L, Porporato F, Rossi F, Guglielmetti C, Gallo E, Palizzotto C, Callegari C, Ricagno S, Mazza M, Coppola LM, Gerardi G, Lavatelli F, Caminito S, Mazzini G, Palladini G, Merlini G, Zini E. Renal alterations in cats ( Felis catus) housed in shelters and affected by systemic AA-amyloidosis: Clinicopathological data, histopathology, and ultrastructural features. Vet Pathol 2024; 61:771-782. [PMID: 38864284 DOI: 10.1177/03009858241257903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
AA-amyloidosis is frequent in shelter cats, and chronic kidney disease is the foremost cause of death. The aims were to describe kidney laboratory and microscopic findings in shelter cats with AA-amyloidosis. Cats were included if kidney specimens were collected post-mortem and laboratory data were available within 6 months before death. Renal lesions were evaluated with optical and electron microscopy. Mass spectrometry was used to characterize amyloid. Nine domestic short-hair cats were included; 4 females and 5 males with a median age of 8 years (range = 2-13). All cats had blood analyses and urinalyses available. Serum creatinine concentrations were increased in 6 cats and symmetric dimethylarginine was increased in all of the cats. All of the cats had proteinuria. Eight of 9 cats had amyloid in the medulla, and 9 had amyloid in the cortex (glomeruli). All cats had amyloid in the interstitium. Six cats had concurrent interstitial nephritis and 1 had membranoproliferative glomerulonephritis. All cats had extrarenal amyloid deposits. Amyloid was AA in each case. In conclusion, renal deposition of amyloid occurs in both cortex and medulla in shelter cats and is associated with azotemia and proteinuria. Renal involvement of systemic AA-amyloidosis should be considered in shelter cats with chronic kidney disease. The cat represents a natural model of renal AA-amyloidosis.
Collapse
Affiliation(s)
- Filippo Ferri
- AniCura Istituto Veterinario Novara, Novara, Italy
- Studio Veterinario Associato Vet2Vet di Ferri e Porporato, Torino, Italy
- Department of Animal Medicine, Production and Health, University of Padova, Padova, Italy
| | - Silvia Ferro
- Department of Comparative Biomedicine and Food Sciences, University of Padova, Padova, Italy
| | | | - Luca Aresu
- Department of Veterinary Sciences, University of Torino, Torino, Italy
| | | | - Federico Porporato
- AniCura Istituto Veterinario Novara, Novara, Italy
- Studio Veterinario Associato Vet2Vet di Ferri e Porporato, Torino, Italy
| | | | - Chiara Guglielmetti
- Istituto Zooprofilattico Sperimentale del Piemonte Liguria e Valle d'Aosta, S.C. Diagnostica Specialistica, Torino, Italy
| | - Enrico Gallo
- Department of Comparative Biomedicine and Food Sciences, University of Padova, Padova, Italy
| | | | | | - Stefano Ricagno
- Institute of Molecular and Translational Cardiology, IRCCS Policlinico San Donato, Milan, Italy
- Departments of Biosciences, La Statale, University of Milan, Milan, Italy
| | - Maria Mazza
- Istituto Zooprofilattico Sperimentale del Piemonte Liguria e Valle d'Aosta, S.C. Diagnostica Specialistica, Torino, Italy
| | - Luigi Michele Coppola
- Department of Animal Medicine, Production and Health, University of Padova, Padova, Italy
| | - Gabriele Gerardi
- Department of Animal Medicine, Production and Health, University of Padova, Padova, Italy
| | - Francesca Lavatelli
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
- Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Serena Caminito
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
- Amyloidosis Research and Treatment Center, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Giulia Mazzini
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
- Amyloidosis Research and Treatment Center, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Giovanni Palladini
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
- Amyloidosis Research and Treatment Center, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Giampaolo Merlini
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
- Amyloidosis Research and Treatment Center, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Eric Zini
- AniCura Istituto Veterinario Novara, Novara, Italy
- Department of Animal Medicine, Production and Health, University of Padova, Padova, Italy
- Clinic for Small Animal Internal Medicine, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| |
Collapse
|
3
|
Baek Y, Lee M. Exploring the complexity of amyloid-beta fibrils: structural polymorphisms and molecular interactions. Biochem Soc Trans 2024; 52:1631-1646. [PMID: 39034652 DOI: 10.1042/bst20230854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/09/2024] [Accepted: 07/12/2024] [Indexed: 07/23/2024]
Abstract
The aggregation of amyloid-beta (Aβ) peptides into cross-β structures forms a variety of distinct fibril conformations, potentially correlating with variations in neurodegenerative disease progression. Recent advances in techniques such as X-ray crystallography, solid-state NMR, and cryo-electron microscopy have enabled the development of high-resolution molecular structures of these polymorphic amyloid fibrils, which are either grown in vitro or isolated from human and transgenic mouse brain tissues. This article reviews our current understanding of the structural polymorphisms in amyloid fibrils formed by Aβ40 and Aβ42, as well as disease-associated mutants of Aβ peptides. The aim is to enhance our understanding of various molecular interactions, including hydrophobic and ionic interactions, within and among cross-β structures.
Collapse
Affiliation(s)
- Yoongyeong Baek
- Department of Chemistry, Drexel University, Philadelphia, PA 19104, U.S.A
| | - Myungwoon Lee
- Department of Chemistry, Drexel University, Philadelphia, PA 19104, U.S.A
| |
Collapse
|
4
|
Palizzotto C, Ferri F, Callegari C, Rossi F, Manfredi M, Carcangiu L, Gerardi G, Ferro S, Cavicchioli L, Müller E, Weiss M, Vogt A, Lavatelli F, Ricagno S, Hurley K, Zini E. Renal amyloid-A amyloidosis in cats: Characterization of proteinuria and biomarker discovery, and associations with kidney histology. J Vet Intern Med 2024; 38:205-215. [PMID: 37991136 PMCID: PMC10800178 DOI: 10.1111/jvim.16920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 10/13/2023] [Indexed: 11/23/2023] Open
Abstract
BACKGROUND Amyloid A (AA) amyloidosis is a protein misfolding disease arising from serum amyloid A (SAA). Systemic AA amyloidosis recently was shown to have a high prevalence in shelter cats in Italy and was associated with azotemia and proteinuria. OBJECTIVES Investigate urine protein profiles and diagnostic biomarkers in cats with renal AA amyloidosis. ANIMALS Twenty-nine shelter cats. METHODS Case-control study. Cats with renal proteinuria that died or were euthanized between 2018 and 2021 with available necropsy kidney, liver and spleen samples, and with surplus urine collected within 30 days before death, were included. Histology was used to characterize renal damage and amyloid amount and distribution; immunohistochemistry was used to confirm AA amyloidosis. Urine protein-to-creatinine (UPC) and urine amyloid A-to-creatinine (UAAC) ratios were calculated, and sodium dodecyl sulfate-agarose gel electrophoresis (SDS-AGE) and liquid chromatography-mass spectrometry (LC-MS) of proteins were performed. RESULTS Twenty-nine cats were included. Nineteen had AA amyloidosis with renal involvement. Cats with AA amyloidosis had a higher UPC (median, 3.9; range, 0.6-12.7 vs 1.5; 0.6-3.1; P = .03) and UAAC ratios (median, 7.18 × 10-3 ; range, 23 × 10-3 -21.29 × 10-3 vs 1.26 × 10-3 ; 0.21 × 10-3 -6.33 × 10-3 ; P = .04) than unaffected cats. The SDS-AGE identified mixed-type proteinuria in 89.4% of cats with AA amyloidosis and in 55.6% without AA amyloidosis (P = .57). The LC-MS identified 63 potential biomarkers associated with AA amyloidosis (P < .05). Among these, urine apolipoprotein C-III was higher in cats with AA amyloidosis (median, 1.38 × 107 ; range, 1.85 × 105 -5.29 × 107 vs 1.76 × 106 ; 0.0 × 100 -1.38 × 107 ; P = .01). In the kidney, AA-amyloidosis was associated with glomerulosclerosis (P = .02) and interstitial fibrosis (P = .05). CONCLUSIONS AND CLINICAL IMPORTANCE Renal AA amyloidosis is associated with kidney lesions, increased proteinuria and increased urine excretion of SAA in shelter cats. Additional studies are needed to characterize the role of lipid transport proteins in the urine of affected cats.
Collapse
Affiliation(s)
- Carlo Palizzotto
- AniCura Istituto Veterinario NovaraGranozzo con MonticelloNOItaly
| | - Felippo Ferri
- AniCura Istituto Veterinario NovaraGranozzo con MonticelloNOItaly
- Department of Animal Medicine, Production and HealthUniversity of PadovaLegnaroPDItaly
- Studio Veterinario Associato Vet2Vet di Ferri e PorporatoOrbassanoTOItaly
| | | | - Francesco Rossi
- AniCura Istituto Veterinario NovaraGranozzo con MonticelloNOItaly
| | - Marcello Manfredi
- Department of Translational MedicineUniversity of Piemonte OrientaleNovaraItaly
| | - Laura Carcangiu
- Department of Translational MedicineUniversity of Piemonte OrientaleNovaraItaly
| | - Gabriele Gerardi
- Department of Animal Medicine, Production and HealthUniversity of PadovaLegnaroPDItaly
| | - Silvia Ferro
- Department of Comparative Biomedicine and Food ScienceUniversity of PadovaLegnaroPDItaly
| | - Laura Cavicchioli
- Department of Comparative Biomedicine and Food ScienceUniversity of PadovaLegnaroPDItaly
| | - Elizabeth Müller
- Laboklin, Laboratory for Clinical DiagnosticsBad KissingenGermany
| | - Marco Weiss
- Laboklin, Laboratory for Clinical DiagnosticsBad KissingenGermany
| | - Anne‐Catherine Vogt
- Department of Rheumatology and ImmunologyUniversity Hospital BernBernSwitzerland
- Department of BioMedical ResearchUniversity of BernBernSwitzerland
- Graduate School for Cellular and Biomedical Sciences (GCB)University of BernBernSwitzerland
| | | | - Stefano Ricagno
- Institute of Molecular and Translational CardiologyIRCCS Policlinico San DonatoMilanItaly
- Department of BiosciencesUniversità degli Studi di MilanoMilanItaly
| | | | - Eric Zini
- AniCura Istituto Veterinario NovaraGranozzo con MonticelloNOItaly
- Department of Animal Medicine, Production and HealthUniversity of PadovaLegnaroPDItaly
- Clinic for Small Animal Internal Medicine, Vetsuisse FacultyUniversity of ZurichZurichSwitzerland
| |
Collapse
|
5
|
Horgan NG, Moore KBE, Fortin JS. Investigation of serum amyloid a within animal species focusing on the 1-25 amino acid region. Vet Q 2023; 43:1-8. [PMID: 37800590 PMCID: PMC10614707 DOI: 10.1080/01652176.2023.2267605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 10/03/2023] [Indexed: 10/07/2023] Open
Abstract
AA amyloidosis, characterized by the misfolding of serum amyloid A (SAA) protein, is the most common amyloid protein disorder across multiple species. SAA is a positive-acute phase protein synthesized by the liver in response to inflammation or stress, and it normally associates with high-density lipoprotein at its N-terminus. In this study, we focused on the 1-25 amino acid (aa) region of the complete 104 aa SAA sequence to examine the aggregation propensity of AA amyloid. A library comprising eight peptides from different species was assembled for analysis. To access the aggregation propensity of each peptide region, a bioinformatic study was conducted using the algorithm TANGO. Congo red (CR) binding assays, Thioflavin T (ThT) assays, and transmission electron microscopy (TEM) were utilized to evaluate whether the synthesized peptides formed amyloid-like fibrils. All synthetic SAA 1-25 congeners resulted in amyloid-like fibrils formation (per CR and/or ThT staining and TEM detection) at the exception of the ferret SAA1-25 fragment, which generated plaque-like materials by TEM. Ten residues were preserved among SAA 1-25 congeners resulting in amyloid-like fibrils, i.e. F6, E9, A10, G13, D16, M17, A20, Y21, D23, and M24. Amino acid residues highlighted by this study may have a role in increasing the propensity for amyloid-like fibril formation. This study put an emphasis on region 1-25 in the mechanism of SAA1 misfolding.
Collapse
Affiliation(s)
- Natalie G. Horgan
- Department of Basic Medical Sciences, College of Veterinary Medicine, Purdue University, West Lafayette, IN, USA
| | - Kendall B. E. Moore
- Department of Basic Medical Sciences, College of Veterinary Medicine, Purdue University, West Lafayette, IN, USA
| | - Jessica S. Fortin
- Department of Basic Medical Sciences, College of Veterinary Medicine, Purdue University, West Lafayette, IN, USA
| |
Collapse
|
6
|
Zámocký M, Ferianc P. Discovering the deep evolutionary roots of serum amyloid A protein family. Int J Biol Macromol 2023; 252:126537. [PMID: 37634776 DOI: 10.1016/j.ijbiomac.2023.126537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/23/2023] [Accepted: 08/24/2023] [Indexed: 08/29/2023]
Abstract
Deep evolutionary origin of the conserved animal serum amyloid A (SAA) apolipoprotein family leading to yet unknown highly similar SAA-like sequences occurring in certain bacterial genomes is demonstrated in this contribution. Horizontal gene transfer event of corresponding genes between gut bacteria and non-vertebrate animals was discovered in the reconstructed phylogenetic tree obtained with maximum likelihood and neighbor-joining methods, respectively. This detailed phylogeny based on totally 128 complete sequences comprised diverse serum amyloid A isoforms from various animal vertebrate and non-vertebrate phyla and also corresponding genes coding for highly similar proteins from animal gut bacteria. Typical largely conserved sequence motifs and a peculiar structural fold consisting mainly of four α-helices in a bundle within all reconstructed clades of the SAA protein family are discussed with respect to their supposed biological functions in various organisms that contain corresponding genes.
Collapse
Affiliation(s)
- Marcel Zámocký
- Laboratory of Phylogenomic Ecology, Institute of Molecular Biology, Slovak Academy of Sciences, Dúbravská cesta 21, SK-84551 Bratislava, Slovakia; Department of Inorganic Chemistry, Faculty of Natural Sciences, Comenius University Bratislava, Mlynská dolina, Ilkovičova 6, SK-84215 Bratislava, Slovakia.
| | - Peter Ferianc
- Laboratory of Phylogenomic Ecology, Institute of Molecular Biology, Slovak Academy of Sciences, Dúbravská cesta 21, SK-84551 Bratislava, Slovakia
| |
Collapse
|
7
|
Moccia V, Vogt AC, Ricagno S, Callegari C, Vogel M, Zini E, Ferro S. Histological evaluation of the distribution of systemic AA-amyloidosis in nine domestic shorthair cats. PLoS One 2023; 18:e0293892. [PMID: 37917747 PMCID: PMC10621960 DOI: 10.1371/journal.pone.0293892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 10/23/2023] [Indexed: 11/04/2023] Open
Abstract
Amyloidosis is a group of protein-misfolding disorders characterized by the accumulation of amyloid in organs, both in humans and animals. AA-amyloidosis is considered a reactive type of amyloidosis and in humans is characterized by the deposition of AA-amyloid fibrils in one or more organs. In domestic shorthair cats, AA-amyloidosis was recently reported to be frequent in shelters. To better characterize this pathology, we report the distribution of amyloid deposits and associated histological lesions in the organs of shelter cats with systemic AA-amyloidosis. AA-amyloid deposits were identified with Congo Red staining and immunofluorescence. AA-amyloid deposits were then described and scored, and associated histological lesions were reported. Based on Congo Red staining and immunofluorescence nine shelter cats presented systemic AA-amyloidosis. The kidney (9/9), the spleen (8/8), the adrenal glands (8/8), the small intestine (7/7) and the liver (8/9) were the organs most involved by amyloid deposits, with multifocal to diffuse and from moderate to severe deposits, both in the organ parenchyma and/or in the vascular compartment. The lung (2/9) and the skin (1/8) were the least frequently involved organs and deposits were mainly focal to multifocal, mild, vascular and perivascular. Interestingly, among the organs with fibril deposition, the stomach (7/9), the gallbladder (6/6), the urinary bladder (3/9), and the heart (6/7) were reported for the first time in cats. All eye, brain and skeletal muscle samples had no amyloid deposits. An inflammatory condition was identified in 8/9 cats, with chronic enteritis and chronic nephritis being the most common. Except for secondary cell compression, other lesions were not associated to amyloid deposits. To conclude, this study gives new insights into the distribution of AA-amyloid deposits in cats. A concurrent chronic inflammation was present in almost all cases, possibly suggesting a relationship with AA-amyloidosis.
Collapse
Affiliation(s)
- Valentina Moccia
- Department of Comparative Biomedicine and Food Science, University of Padua, Legnaro, PD, Italy
| | - Anne-Cathrine Vogt
- Department for BioMedical Research, Faculty of Medicine, University of Bern, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Stefano Ricagno
- Department of Biosciences, University of Milano, Milano, MI, Italy
| | | | - Monique Vogel
- Department for BioMedical Research, Faculty of Medicine, University of Bern, Bern, Switzerland
| | - Eric Zini
- Department of Animal Medicine, Production and Health, University of Padova, Legnaro, PD, Italy
- AniCura Istituto Veterinario Novara, Granozzo con Monticello, NO, Italy
- Clinic for Small Animal Internal Medicine, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Silvia Ferro
- Department of Comparative Biomedicine and Food Science, University of Padua, Legnaro, PD, Italy
| |
Collapse
|
8
|
Puri S, Schulte T, Chaves-Sanjuan A, Mazzini G, Caminito S, Pappone C, Anastasia L, Milani P, Merlini G, Bolognesi M, Nuvolone M, Palladini G, Ricagno S. The Cryo-EM STRUCTURE of Renal Amyloid Fibril Suggests Structurally Homogeneous Multiorgan Aggregation in AL Amyloidosis. J Mol Biol 2023; 435:168215. [PMID: 37516426 DOI: 10.1016/j.jmb.2023.168215] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 07/15/2023] [Accepted: 07/24/2023] [Indexed: 07/31/2023]
Abstract
Immunoglobulin light chain amyloidosis (AL) is caused by the aberrant production of amyloidogenic light chains (LC) that accumulate as amyloid deposits in vital organs. Distinct LC sequences in each patient yield distinct amyloid structures. However different tissue microenvironments may also cause identical protein precursors to adopt distinct amyloid structures. To address the impact of the tissue environment on the structural polymorphism of amyloids, we extracted fibrils from the kidney of an AL patient (AL55) whose cardiac amyloid structure was previously determined by our group. Here we show that the 4.0 Å resolution cryo-EM structure of the renal fibril is virtually identical to that reported for the cardiac fibril. These results provide the first structural evidence that LC amyloids independently deposited in different organs of the same AL patient share a common fold.
Collapse
Affiliation(s)
- Sarita Puri
- Department of Biosciences, Università degli Studi di Milano, Milan, Italy. https://twitter.com/@Saritapuri1504
| | - Tim Schulte
- Institute of Molecular and Translational Cardiology, IRCCS Policlinico San Donato, 20097 Milan, Italy. https://twitter.com/@timpaul81
| | - Antonio Chaves-Sanjuan
- Department of Biosciences, Università degli Studi di Milano, Milan, Italy; Pediatric Research Center Fondazione R.E. Invernizzi and NOLIMITS Center, Università degli Studi di Milano, Milan, Italy. https://twitter.com/@ChavesSanjuan
| | - Giulia Mazzini
- Department of Molecular Medicine, University of Pavia, Pavia, Italy; Amyloidosis Research and Treatment Center, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Serena Caminito
- Department of Molecular Medicine, University of Pavia, Pavia, Italy; Amyloidosis Research and Treatment Center, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Carlo Pappone
- Institute of Molecular and Translational Cardiology, IRCCS Policlinico San Donato, 20097 Milan, Italy; Faculty of Medicine, University of Vita-Salute San Raffaele, 20132 Milan, Italy; Arrhythmia and Electrophysiology Department, IRCCS Policlinico San Donato, San Donato, 20097 Milan, Italy
| | - Luigi Anastasia
- Institute of Molecular and Translational Cardiology, IRCCS Policlinico San Donato, 20097 Milan, Italy; Faculty of Medicine, University of Vita-Salute San Raffaele, 20132 Milan, Italy. https://twitter.com/@skinski74
| | - Paolo Milani
- Department of Molecular Medicine, University of Pavia, Pavia, Italy; Amyloidosis Research and Treatment Center, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Giampaolo Merlini
- Department of Molecular Medicine, University of Pavia, Pavia, Italy; Amyloidosis Research and Treatment Center, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Martino Bolognesi
- Department of Biosciences, Università degli Studi di Milano, Milan, Italy; Pediatric Research Center Fondazione R.E. Invernizzi and NOLIMITS Center, Università degli Studi di Milano, Milan, Italy. https://twitter.com/@Martinobologne2
| | - Mario Nuvolone
- Department of Molecular Medicine, University of Pavia, Pavia, Italy; Amyloidosis Research and Treatment Center, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Giovanni Palladini
- Department of Molecular Medicine, University of Pavia, Pavia, Italy; Amyloidosis Research and Treatment Center, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Stefano Ricagno
- Department of Biosciences, Università degli Studi di Milano, Milan, Italy; Institute of Molecular and Translational Cardiology, IRCCS Policlinico San Donato, 20097 Milan, Italy.
| |
Collapse
|
9
|
Ferri F, Ferro S, Porporato F, Callegari C, Guglielmetti C, Mazza M, Ferrero M, Crinò C, Gallo E, Drigo M, Coppola LM, Gerardi G, Schulte TP, Ricagno S, Vogel M, Storni F, Bachmann MF, Vogt AC, Caminito S, Mazzini G, Lavatelli F, Palladini G, Merlini G, Zini E. AA-amyloidosis in cats (Felis catus) housed in shelters. PLoS One 2023; 18:e0281822. [PMID: 36989207 PMCID: PMC10057811 DOI: 10.1371/journal.pone.0281822] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 01/31/2023] [Indexed: 03/30/2023] Open
Abstract
Systemic AA-amyloidosis is a protein-misfolding disease characterized by fibril deposition of serum amyloid-A protein (SAA) in several organs in humans and many animal species. Fibril deposits originate from abnormally high serum levels of SAA during chronic inflammation. A high prevalence of AA-amyloidosis has been reported in captive cheetahs and a horizontal transmission has been proposed. In domestic cats, AA-amyloidosis has been mainly described in predisposed breeds but only rarely reported in domestic short-hair cats. Aims of the study were to determine AA-amyloidosis prevalence in dead shelter cats. Liver, kidney, spleen and bile were collected at death in cats from 3 shelters. AA-amyloidosis was scored. Shedding of amyloid fibrils was investigated with western blot in bile and scored. Descriptive statistics were calculated. In the three shelters investigated, prevalence of AA-amyloidosis was 57.1% (16/28 cats), 73.0% (19/26) and 52.0% (13/25), respectively. In 72.9% of cats (35 in total) three organs were affected concurrently. Histopathology and immunofluorescence of post-mortem extracted deposits identified SAA as the major protein source. The duration of stay in the shelters was positively associated with a histological score of AA-amyloidosis (B = 0.026, CI95% = 0.007-0.046; p = 0.010). AA-amyloidosis was very frequent in shelter cats. Presence of SAA fragments in bile secretions raises the possibility of fecal-oral transmission of the disease. In conclusion, AA-amyloidosis was very frequent in shelter cats and those staying longer had more deposits. The cat may represent a natural model of AA-amyloidosis.
Collapse
Affiliation(s)
- Filippo Ferri
- AniCura Istituto Veterinario di Novara, Granozzo con Monticello, Novara, Italy
- Studio Veterinario Associato Vet2Vet di Ferri e Porporato, Orbassano, Torino, Italy
- Department of Animal Medicine, Production and Health, University of Padova, Legnaro, Padova, Italy
| | - Silvia Ferro
- Department of Comparative Biomedicine and Food Sciences, University of Padova, Legnaro, Padova, Italy
| | - Federico Porporato
- AniCura Istituto Veterinario di Novara, Granozzo con Monticello, Novara, Italy
- Studio Veterinario Associato Vet2Vet di Ferri e Porporato, Orbassano, Torino, Italy
| | - Carolina Callegari
- AniCura Istituto Veterinario di Novara, Granozzo con Monticello, Novara, Italy
| | - Chiara Guglielmetti
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, SC Diagnostica Specialistica, Torino, Italy
| | - Maria Mazza
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, SC Diagnostica Specialistica, Torino, Italy
| | - Marta Ferrero
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, SC Diagnostica Specialistica, Torino, Italy
| | - Chiara Crinò
- Department of Clinical Science and Services, The Royal Veterinary College, Hatfield, United Kingdom
| | - Enrico Gallo
- Department of Comparative Biomedicine and Food Sciences, University of Padova, Legnaro, Padova, Italy
| | - Michele Drigo
- Department of Animal Medicine, Production and Health, University of Padova, Legnaro, Padova, Italy
| | - Luigi Michele Coppola
- Department of Animal Medicine, Production and Health, University of Padova, Legnaro, Padova, Italy
| | - Gabriele Gerardi
- Department of Animal Medicine, Production and Health, University of Padova, Legnaro, Padova, Italy
| | - Tim Paul Schulte
- Institute of Molecular and Translational Cardiology, IRCCS Policlinico San Donato, Milan, Italy
| | - Stefano Ricagno
- Institute of Molecular and Translational Cardiology, IRCCS Policlinico San Donato, Milan, Italy
- Departments of Biosciences, La Statale, University of Milan, Milan, Italy
| | - Monique Vogel
- Department of Rheumatology and Immunology, University Hospital Bern, Bern, Switzerland
- Department of BioMedical Research, University of Bern, Bern, Switzerland
| | - Federico Storni
- Department of Rheumatology and Immunology, University Hospital Bern, Bern, Switzerland
- Department of BioMedical Research, University of Bern, Bern, Switzerland
- Department of Visceral Surgery and Medicine, University Hospital of Bern, Bern, Switzerland
| | - Martin F Bachmann
- Department of Rheumatology and Immunology, University Hospital Bern, Bern, Switzerland
- Department of BioMedical Research, University of Bern, Bern, Switzerland
| | - Anne-Cathrine Vogt
- Department of Rheumatology and Immunology, University Hospital Bern, Bern, Switzerland
- Department of BioMedical Research, University of Bern, Bern, Switzerland
| | - Serena Caminito
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Giulia Mazzini
- Amyloidosis Research and Treatment Center, Fondazione IRCCS Policlinico San Matteo and University of Pavia, Pavia, Italy
| | | | - Giovanni Palladini
- Amyloidosis Research and Treatment Center, Fondazione IRCCS Policlinico San Matteo and University of Pavia, Pavia, Italy
| | - Giampaolo Merlini
- Amyloidosis Research and Treatment Center, Fondazione IRCCS Policlinico San Matteo and University of Pavia, Pavia, Italy
| | - Eric Zini
- AniCura Istituto Veterinario di Novara, Granozzo con Monticello, Novara, Italy
- Department of Animal Medicine, Production and Health, University of Padova, Legnaro, Padova, Italy
- Clinic for Small Animal Internal Medicine, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| |
Collapse
|