1
|
Wu X, Xu H, Zhang Z, Ma Z, Zhang L, Wang C, Lan K, Li R, Chen M. Disulfiram Alleviates MTX-Induced Pulmonary Fibrosis by Inhibiting EMT in Type 2 Alveolar Epithelial Cells. Lung 2024; 203:4. [PMID: 39601871 DOI: 10.1007/s00408-024-00764-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Accepted: 10/14/2024] [Indexed: 11/29/2024]
Abstract
PURPOSE Methotrexate (MTX)-induced pulmonary fibrosis is associated with high morbidity and mortality, with limited treatment options available. This study investigates whether disulfiram (DSF) can mitigate MTX-induced pulmonary fibrosis and explores the underlying mechanisms. METHODS Eight-week-old male mice were divided into control, DSF, MTX, and MTX+DSF groups and treated for 8 weeks. Weight, food, and water intake were monitored. Post-treatment, lung tissues were analyzed using HE and Masson staining, and electron microscopy. Real-time qPCR and ELISA were employed to assess inflammatory markers such as IL-1β and TNF-α in lung tissues and serum. PCR, ELISA, and Western blot were used for fibrotic markers including Col1α1, α-SMA, and hydroxyproline. Type 2 alveolar epithelial cell line MLE12 cells were similarly grouped, followed by RNA sequencing and bioinformatics analysis to elucidate the mechanisms by which DSF exerts anti-MTX-induced pulmonary fibrosis effects. ELISA and Western blot were used to measure E-cadherin and α-SMA expression. RESULTS DSF significantly reduced MTX-induced alveolar septal thickening, pulmonary fibrosis, and inflammatory cell infiltration. It also decreased the expression of inflammatory factors IL-1β and TNF-α, as well as the expression of Col1α1, α-SMA, and others. RNA-seq revealed that DSF induces changes in multiple signaling pathways associated with pulmonary fibrosis, particularly in extracellular matrix-related genes. ELISA and Western blot showed decreased E-cadherin and increased α-SMA in the MTX group, which was partially restored with DSF treatment. CONCLUSION DSF alleviates MTX-induced pulmonary fibrosis by reducing epithelial-mesenchymal transition (EMT) in type 2 alveolar epithelial cells. Disulfiram shows potential as a therapeutic agent for MTX-induced pulmonary fibrosis.
Collapse
Affiliation(s)
- Xiaohui Wu
- Clinical Medical School, Xi'an Medical University, Xi'an, 710021, Shaanxi, China.
| | - Hong Xu
- Department of Pathology, State Key Laboratory of Cancer Biology, Xijing Hospital and School of Basic Medicine, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Zhaohua Zhang
- Pharmacy School, Xi'an Medical University, Xi'an, 710021, Shaanxi, China
| | - Ziyi Ma
- Clinical Medical School, Xi'an Medical University, Xi'an, 710021, Shaanxi, China
| | - Linyi Zhang
- Clinical Medical School, Xi'an Medical University, Xi'an, 710021, Shaanxi, China
| | - Chunyang Wang
- Clinical Medical School, Xi'an Medical University, Xi'an, 710021, Shaanxi, China
| | - Kai Lan
- Clinical Medical School, Xi'an Medical University, Xi'an, 710021, Shaanxi, China
| | - Rong Li
- Clinical Medical School, Xi'an Medical University, Xi'an, 710021, Shaanxi, China
| | - Min Chen
- Clinical Medical School, Xi'an Medical University, Xi'an, 710021, Shaanxi, China
| |
Collapse
|
2
|
Pan C, Wei H, Chen B, Wu L, Song J, Zhang Q, Wu X, Liang G, Chen W, Wang Y, Xie Y. Inhalation of itraconazole mitigates bleomycin-induced lung fibrosis via regulating SPP1 and C3 signaling pathway pivotal in the interaction between phagocytic macrophages and diseased fibroblasts. J Transl Med 2024; 22:1058. [PMID: 39587675 PMCID: PMC11587652 DOI: 10.1186/s12967-024-05895-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 11/15/2024] [Indexed: 11/27/2024] Open
Abstract
BACKGROUND Idiopathic pulmonary fibrosis (IPF) stands as a significant contributor to global mortality rates. Presently, there exists a dearth of effective anti-fibrotic treatments for this condition. While itraconazole (ITR) has exhibited potential in mitigating pulmonary fibrosis, its oral administration is hampered by unfavorable pharmacokinetics, which elevate the risk of adverse reactions, thus limiting its clinical utility. METHODS An inhalable formulation of ITR were engineered which aimed at enhancing its pulmonary dispersion. First, pharmacokinetics were conducted to investigate the blood concentration and tissue residue of ITR after inhalation administration. In addition, bleomycin induced mouse pulmonary fibrosis model was used to compare the therapeutic effects of ITR administered by inhalation and intragastric administration. Finally, single-cell RNA sequencing (scRNAseq) was used to explore the mechanism of ITR inhalation administration. RESULTS We found that a large amount of drugs accumulated in the lung tissue for a long time after inhalation administration, thus maximizing the therapeutic effect of drugs. Inhalation of ITR daily at for 21 days significantly attenuated bleomycin-induced lung fibrosis and inflammation in murine models. Additionally, our findings revealed that ITR inhalation diminished the proportion of diseased fibroblasts while promoting reparative fibroblast populations in the murine model. Furthermore, it effectively reversed the proportion of activated phagocytic macrophages. Mechanistically, ITR inhalation exerted its effects by regulating SPP1 and C3 signaling pathway pivotal in the interaction between phagocytic macrophages and diseased fibroblasts. CONCLUSIONS These insights into the molecular mechanisms underlying ITR's therapeutic effects on IPF underscore the favorable pharmacokinetic profile conferred by inhalation, thus presenting a promising formulation poised for clinical translation.
Collapse
Affiliation(s)
- Caizhe Pan
- Department of Pulmonology and Orthopedic Surgery, Children's Hospital, School of Medicine, Zhejiang University, National Clinical Research Center for Child Health, Hangzhou, 310052, China
| | - Hao Wei
- Department of Pulmonology and Orthopedic Surgery, Children's Hospital, School of Medicine, Zhejiang University, National Clinical Research Center for Child Health, Hangzhou, 310052, China
- School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Bi Chen
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221000, China
| | - Lei Wu
- Department of Pulmonology and Orthopedic Surgery, Children's Hospital, School of Medicine, Zhejiang University, National Clinical Research Center for Child Health, Hangzhou, 310052, China
| | - Jiayao Song
- Department of Pulmonology and Orthopedic Surgery, Children's Hospital, School of Medicine, Zhejiang University, National Clinical Research Center for Child Health, Hangzhou, 310052, China
| | - Qing Zhang
- School of of Computer Science and Engineering, Hubei Key Laboratory of Intelligent Robot, Wuhan Institute of Technology, Wuhan, 430205, China
| | - Xinglong Wu
- School of of Computer Science and Engineering, Hubei Key Laboratory of Intelligent Robot, Wuhan Institute of Technology, Wuhan, 430205, China
| | | | - Wenhao Chen
- Department of Pulmonology and Orthopedic Surgery, Children's Hospital, School of Medicine, Zhejiang University, National Clinical Research Center for Child Health, Hangzhou, 310052, China.
| | - Yingshuo Wang
- Department of Pulmonology and Orthopedic Surgery, Children's Hospital, School of Medicine, Zhejiang University, National Clinical Research Center for Child Health, Hangzhou, 310052, China.
| | - Yicheng Xie
- Department of Pulmonology and Orthopedic Surgery, Children's Hospital, School of Medicine, Zhejiang University, National Clinical Research Center for Child Health, Hangzhou, 310052, China.
| |
Collapse
|
3
|
Niu C, Hu Y, Xu K, Pan X, Wang L, Yu G. The role of the cytoskeleton in fibrotic diseases. Front Cell Dev Biol 2024; 12:1490315. [PMID: 39512901 PMCID: PMC11540670 DOI: 10.3389/fcell.2024.1490315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 10/15/2024] [Indexed: 11/15/2024] Open
Abstract
Fibrosis is the process whereby cells at a damaged site are transformed into fibrotic tissue, comprising fibroblasts and an extracellular matrix rich in collagen and fibronectin, following damage to organs or tissues that exceeds their repair capacity. Depending on the affected organs or tissues, fibrosis can be classified into types such as pulmonary fibrosis, hepatic fibrosis, renal fibrosis, and cardiac fibrosis. The primary pathological features of fibrotic diseases include recurrent damage to normal cells and the abnormal activation of fibroblasts, leading to excessive deposition of extracellular matrix and collagen in the intercellular spaces. However, the etiology of certain specific fibrotic diseases remains unclear. Recent research increasingly suggests that the cytoskeleton plays a significant role in fibrotic diseases, with structural changes in the cytoskeleton potentially influencing the progression of organ fibrosis. This review examines cytoskeletal remodeling and its impact on the transformation or activation of normal tissue cells during fibrosis, potentially offering important insights into the etiology and therapeutic strategies for fibrotic diseases.
Collapse
Affiliation(s)
- Caoyuan Niu
- State Key Laboratory Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Organ Fibrosis, College of Life Science, Henan Normal University, Xinxiang, China
| | - Yanan Hu
- Department of Reproductive Medicine, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Kai Xu
- State Key Laboratory Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Organ Fibrosis, College of Life Science, Henan Normal University, Xinxiang, China
| | - Xiaoyue Pan
- State Key Laboratory Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Organ Fibrosis, College of Life Science, Henan Normal University, Xinxiang, China
| | - Lan Wang
- State Key Laboratory Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Organ Fibrosis, College of Life Science, Henan Normal University, Xinxiang, China
| | - Guoying Yu
- State Key Laboratory Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Organ Fibrosis, College of Life Science, Henan Normal University, Xinxiang, China
| |
Collapse
|
4
|
Geng Q, Yan L, Shi C, Zhang L, Li L, Lu P, Cao Z, Li L, He X, Tan Y, Zhao N, Liu B, Lu C. Therapeutic effects of flavonoids on pulmonary fibrosis: A preclinical meta-analysis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 132:155807. [PMID: 38876010 DOI: 10.1016/j.phymed.2024.155807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/26/2024] [Accepted: 06/04/2024] [Indexed: 06/16/2024]
Abstract
BACKGROUND The efficacy of flavonoid supplementation in animal models of pulmonary fibrosis has been demonstrated. PURPOSE We conducted a systematic review and meta-analysis to evaluate the efficacy and underlying mechanisms of flavonoids in animal models of bleomycin-induced pulmonary fibrosis. STUDY DESIGN Relevant studies (n = 45) were identified from English- and Chinese-language databases from the inception of the database until October 2023. METHODS Methodological quality was evaluated using the SYRCLE risk of bias tool. Statistical analyses were conducted using RevMan 5.3 and Stata 17.0. Lung inflammation and fibrosis score were the primary outcome indicators. RESULTS Flavonoids can alleviate pathological changes in the lungs. The beneficial effects of flavonoids on pulmonary fibrosis likely relate to their inhibition of inflammatory responses, restoration of oxidative and antioxidant homeostasis, and regulation of fibroblast proliferation, migration, and activation by transforming growth factor β1/mothers against the decapentaplegic homologue/AMP-activated protein kinase (TGF-β1/Smad3/AMPK), inhibitor kappa B alpha/nuclear factor-kappa B (IκBα/NF-κB), phosphatidylinositol 3-kinase (PI3K)/AKT, interleukin 6/signal transducer/activator of transcription 3 (IL6/STAT3), and nuclear factor erythroid 2-related factor 2/Kelch-like ECH-associated protein 1 (Nrf2-Keap1) pathways. CONCLUSION Flavonoids are potential candidate compounds for the prevention and treatment of pulmonary fibrosis. However, extensive preclinical research is necessary to confirm the antifibrotic properties of natural flavonoids.
Collapse
Affiliation(s)
- Qi Geng
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, PR China
| | - Lan Yan
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, PR China
| | - Changqi Shi
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, PR China
| | - Lulu Zhang
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, PR China
| | - Li Li
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, PR China
| | - Peipei Lu
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, PR China
| | - Zhiwen Cao
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, PR China
| | - Li Li
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, PR China
| | - Xiaojuan He
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, PR China
| | - Yong Tan
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, PR China
| | - Ning Zhao
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, PR China
| | - Bin Liu
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, PR China.
| | - Cheng Lu
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, PR China.
| |
Collapse
|
5
|
Zou QC, Hu JP, Cao Y, She C, Liang LH, Liu ZY. Causal relationship between serum metabolites and idiopathic pulmonary fibrosis: Insights from a two-sample Mendelian randomization study. Heliyon 2024; 10:e36125. [PMID: 39229516 PMCID: PMC11369467 DOI: 10.1016/j.heliyon.2024.e36125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 08/05/2024] [Accepted: 08/09/2024] [Indexed: 09/05/2024] Open
Abstract
Background Idiopathic pulmonary fibrosis (IPF) is an irreversible lung disease with unclear pathological mechanisms. In this study, we utilized bidirectional Mendelian randomization (MR) to analyze the relationship between serum metabolites and IPF, and conducted metabolic pathway analysis. Aim To determine the causal relationship between serum metabolites and IPF using MR analysis. Methods A two-sample MR analysis was conducted to evaluate the causal relationship between 824 serum metabolites and IPF. The inverse variance weighted (IVW) method was used to estimate the causal relationship between exposure and results. Sensitivity analysis was conducted using MR Egger, weighted median, and maximum likelihood to eliminate pleiotropy. Additionally, metabolic pathway analysis was conducted to identify potential metabolic pathways. Results We identified 12 serum metabolites (6 risks and 6 protective) associated with IPF from 824 metabolites. Among them, 11 were known and 1 was unknown. 1-Eicosatrienoylglycophorophospholine and 1-myristoylglycophorophospholine were bidirectional MR positive factors, with 1-myristoylglycophorophospholine being a risk factor (1.0013, 1.0097) and 1-eicosatrienoylglycophorine being a protective factor (0.9914, 0.9990). The four lipids (1-linoleoylglycerophoethanolamine*, total cholesterol in large high-density lipoprotein [HDL], cholesterol esters in very large HDL, and phospholipids in very large HDL) and one NA metabolite (degree of unsaturation) were included in the known hazardous metabolites. The known protective metabolites included three types of lipids (carnitine, 1-linoleoylglycerophoethanolamine*, and 1-eicosatrienoylglycerophophophorine), one amino acid (hypoxanthine), and two unknown metabolites (the ratio of omega-6 fatty acids to omega-3 fatty acids, and the ratio of photoshopids to total lipids ratio in chylomicrons and extremely large very low-density lipoprotein [VLDL]). Moreover, sn-Glycerol 3-phosphate and 1-Acyl-sn-glycero-3-phosphocline were found to be involved in the pathogenesis of IPF through metabolic pathways such as Glycerolide metabolism and Glycerophospholipid metabolism. Conclusion Our study identified 6 causal risks and 6 protective serum metabolites associated with IPF. Additionally, 2 metabolites were found to be involved in the pathogenesis of IPF through metabolic pathways, providing a new perspective for further understanding the metabolic pathway and the pathogenesis of IPF.
Collapse
Affiliation(s)
- Qiong-Chao Zou
- Cardiology Department, Hunan Provincial People's Hospital, Changsha, 410000, Hunan Province, China
- The First Affiliated Hospital of Hunan Normal University, Hunan Provincial People's Hospital, Changsha, 410000, Hunan Province, China
- Research Center for Cardiovascular Epidemiology in Hunan Province, Changsha, 410000, Hunan Province, China
| | - Jun-Pei Hu
- Geriatrics Department, Hunan Provincial People's Hospital, Changsha, 410005, Hunan Province, China
- The First Affiliated Hospital of Hunan Normal University, Hunan Provincial People's Hospital, Changsha, 410000, Hunan Province, China
| | - Yan Cao
- The First Affiliated Hospital of Hunan Normal University, Hunan Provincial People's Hospital, Changsha, 410000, Hunan Province, China
- Department of Emergency, Hunan Provincial People's Hospital, Changsha, 410000, Hunan Province, China
| | - Chang She
- Cardiology Department, Hunan Provincial People's Hospital, Changsha, 410000, Hunan Province, China
- The First Affiliated Hospital of Hunan Normal University, Hunan Provincial People's Hospital, Changsha, 410000, Hunan Province, China
| | - Li-Hui Liang
- Geriatrics Department, Hunan Provincial People's Hospital, Changsha, 410005, Hunan Province, China
- The First Affiliated Hospital of Hunan Normal University, Hunan Provincial People's Hospital, Changsha, 410000, Hunan Province, China
- Research Center for Cardiovascular Epidemiology in Hunan Province, Changsha, 410000, Hunan Province, China
| | - Zheng-Yu Liu
- Cardiology Department, Hunan Provincial People's Hospital, Changsha, 410000, Hunan Province, China
- The First Affiliated Hospital of Hunan Normal University, Hunan Provincial People's Hospital, Changsha, 410000, Hunan Province, China
- Research Center for Cardiovascular Epidemiology in Hunan Province, Changsha, 410000, Hunan Province, China
| |
Collapse
|
6
|
Shen Y, Yan J, Li L, Sun H, Zhang L, Li G, Wang X, Liu R, Wu X, Han B, Sun X, Liu J, Fan X. LOXL2-induced PEAR1 Ser891 phosphorylation suppresses CD44 degradation and promotes triple-negative breast cancer metastasis. J Clin Invest 2024; 134:e177357. [PMID: 39145451 PMCID: PMC11324313 DOI: 10.1172/jci177357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 06/20/2024] [Indexed: 08/16/2024] Open
Abstract
CD44 is associated with a high risk of metastasis, recurrence, and drug resistance in various cancers. Here we report that platelet endothelial aggregation receptor 1 (PEAR1) is a CD44 chaperone protein that protected CD44 from endocytosis-mediated degradation and enhances cleavage of the CD44 intracellular domain (CD44-ICD). Furthermore, we found that lysyl oxidase-like protein 2 (LOXL2), an endogenous ligand of PEAR1, bound to the PEAR1-EMI domain and facilitated the interaction between PEAR1 and CD44 by inducing PEAR1 Ser891 phosphorylation in a manner that was independent of its enzyme activity. Levels of PEAR1 protein and PEAR1 phosphorylation at Ser891 were increased in patients with triple-negative breast cancer (TNBC), were positively correlated with expression of LOXL2 and CD44, and were negatively correlated with overall survival. The level of PEAR1 Ser891 phosphorylation was identified as the best independent prognostic factor in TNBC patients. The prognostic efficacy of the combination of PEAR1 phosphorylation at Ser891 and CD44 expression was superior to that of PEAR1 phosphorylation at Ser891 alone. Blocking the interaction between LOXL2 and PEAR1 with monoclonal antibodies significantly inhibited TNBC metastasis, representing a promising therapeutic strategy for TNBC.
Collapse
Affiliation(s)
- Yingzhi Shen
- Department of Biochemistry and Molecular Cell Biology
| | - Jie Yan
- Department of Biochemistry and Molecular Cell Biology
| | - Lin Li
- Department of Biochemistry and Molecular Cell Biology
| | - Huiyan Sun
- Department of Biochemistry and Molecular Cell Biology
| | - Lin Zhang
- Department of Biochemistry and Molecular Cell Biology
| | - Guoming Li
- Department of Biochemistry and Molecular Cell Biology
| | - Xinxia Wang
- Department of Biochemistry and Molecular Cell Biology
| | - Ruoyan Liu
- Department of Biochemistry and Molecular Cell Biology
| | - Xuefeng Wu
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, and
| | - Baosan Han
- Department of General Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xueqing Sun
- Department of Biochemistry and Molecular Cell Biology
| | - Junling Liu
- Department of Biochemistry and Molecular Cell Biology
- Shanghai Synvida Biotechnology Co., Shanghai, China
| | - Xuemei Fan
- Department of Biochemistry and Molecular Cell Biology
| |
Collapse
|
7
|
Bai X, Chen Q, Li F, Teng Y, Tang M, Huang J, Xu X, Zhang XQ. Optimized inhaled LNP formulation for enhanced treatment of idiopathic pulmonary fibrosis via mRNA-mediated antibody therapy. Nat Commun 2024; 15:6844. [PMID: 39122711 PMCID: PMC11315999 DOI: 10.1038/s41467-024-51056-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 07/24/2024] [Indexed: 08/12/2024] Open
Abstract
Lipid nanoparticle-assisted mRNA inhalation therapy necessitates addressing challenges such as resistance to shear force damage, mucus penetration, cellular internalization, rapid lysosomal escape, and target protein expression. Here, we introduce the innovative "LOOP" platform with a four-step workflow to develop inhaled lipid nanoparticles specifically for pulmonary mRNA delivery. iLNP-HP08LOOP featuring a high helper lipid ratio, acidic dialysis buffer, and excipient-assisted nebulization buffer, demonstrates exceptional stability and enhanced mRNA expression in the lungs. By incorporating mRNA encoding IL-11 single chain fragment variable (scFv), scFv@iLNP-HP08LOOP effectively delivers and secretes IL-11 scFv to the lungs of male mice, significantly inhibiting fibrosis. This formulation surpasses both inhaled and intravenously injected IL-11 scFv in inhibiting fibroblast activation and extracellular matrix deposition. The HP08LOOP system is also compatible with commercially available ALC0315 LNPs. Thus, the "LOOP" method presents a powerful platform for developing inhaled mRNA nanotherapeutics with potential for treating various respiratory diseases, including idiopathic pulmonary fibrosis.
Collapse
Affiliation(s)
- Xin Bai
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai, China
- National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University, Shanghai, China
| | - Qijing Chen
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai, China
- National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University, Shanghai, China
| | - Fengqiao Li
- Department of Chemical and Materials Engineering, New Jersey Institute of Technology, Newark, NJ, USA
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, USA
| | - Yilong Teng
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai, China
- National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University, Shanghai, China
| | - Maoping Tang
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai, China
- National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University, Shanghai, China
| | - Jia Huang
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai, China
- National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaoyang Xu
- Department of Chemical and Materials Engineering, New Jersey Institute of Technology, Newark, NJ, USA.
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, USA.
| | - Xue-Qing Zhang
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai, China.
- National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
8
|
Jia Q, Yang Y, Yao S, Chen X, Hu Z. Emerging Roles of Galectin-3 in Pulmonary Diseases. Lung 2024; 202:385-403. [PMID: 38850292 DOI: 10.1007/s00408-024-00709-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 05/24/2024] [Indexed: 06/10/2024]
Abstract
Galectin-3 is a multifunctional protein that is involved in various physiological and pathological events. Emerging evidence suggests that galectin-3 also plays a critical role in the pathogenesis of pulmonary diseases. Galectin-3 can be produced and secreted by various cell types in the lungs, and the overexpression of galectin-3 has been found in acute lung injury/acute respiratory distress syndrome (ALI/ARDS), pulmonary hypertension (PH), pulmonary fibrosis diseases, lung cancer, lung infection, chronic obstructive pulmonary disease (COPD), and asthma. Galectin-3 exerts diverse effects on the inflammatory response, immune cell activation, fibrosis and tissue remodeling, and tumorigenesis in these pulmonary disorders, and genetic and pharmacologic modulation of galectin-3 has therapeutic effects on the treatment of pulmonary illnesses. In this review, we summarize the structure and function of galectin-3 and the underlying mechanisms of galectin-3 in pulmonary disease pathologies; we also discuss preclinical and clinical evidence regarding the therapeutic potential of galectin-3 inhibitors in these pulmonary disorders. Additionally, targeting galectin-3 may be a very promising therapeutic approach for the treatment of pulmonary diseases.
Collapse
Affiliation(s)
- Qi Jia
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, Wuhan, China
| | - Yiyi Yang
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, Wuhan, China
| | - Shanglong Yao
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, Wuhan, China
| | - Xiangdong Chen
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, Wuhan, China
| | - Zhiqiang Hu
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, Wuhan, China.
| |
Collapse
|
9
|
Wei B, Li H, Wang C, Hu J. Global research status and trends of interactions between Traditional Chinese medicine and pulmonary fibrosis: A new dawn in treatment. Heliyon 2024; 10:e34592. [PMID: 39149021 PMCID: PMC11325230 DOI: 10.1016/j.heliyon.2024.e34592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 06/05/2024] [Accepted: 07/12/2024] [Indexed: 08/17/2024] Open
Abstract
Background Pulmonary fibrosis (PF) remains a major sequela of COVID-19, yet its pharmacotherapy remains unsatisfactory. Recently, Traditional Chinese medicine (TCM) has garnered increasing recognition among patients and researchers because of its few side effects and efficacy. The objective of this study is to use bibliometric analysis to explore the current research landscape and emerging trajectories of TCM treating PF(TCM/PF) researches, and comprehensively evaluate publications with substantial citations within the domain of TCM/PF. Materials and methods TCM/PF publications from 1996 to June 15, 2023 were identified by a comprehensive search of the Web of Science Core Collection (WoSCC). The Bibliometrix of Origin, CiteSpace, Gephi, dycharts and VOSviewer were used for bibliometric analysis. Results A total of 358 papers were included. A rapid increase in the number of papers after 2013 was observed. China had the highest publication output and research contributions in this field. Beijing University of Traditional Chinese Medicine and Nanjing University of Traditional Chinese Medicineare leaders in productive research of this field. Nanjing University of Traditional Chinese Medicine had the highest citations (227). LI JIANSHENG from Henan University of Chinese Medicine was the most prolific author (8), with the highest number of citations (61), and TONG XIAO LIN from China Academy of Chinese Medical Sciences had the highest H-index (30). The leading journal publishing the most research (37) is Frontiers in Pharmacology and the Journal of Ethnopharmacology had the highest total citations (486). Burst analysis of keywords revealed three distinct phases of research. 1996 to 2013 marked the nascent stage of TCM/PF research; from 2014 to 2018, studies gradually focused on the underlying mechanisms governing TCM/PF. The most significant phase occurred from 2019 onward, where TCM/PF exhibited an explosive growth trend. This progression signifies a transition from foundational explorations to a comprehensive understanding of the mechanisms involved, ultimately leading to the current surge in research activities focused on TCM/PF. Notable research teams of this stage, led by LI JIAN SHENG and TONG XIAO LIN, have been at the forefront of advancing TCM/PF research. Their studies on Jinshui Huanxian formula and Qimai Feiluoping decoction have been pivotal in advancing the frontier of research in this domain. Furthermore, the monomeric compounds, including emodin, curcumin, salvianolic acid, baicalin, and oxymatrine, have sustained longstanding prominence. Conclusions This study gained insight into the research status, focal areas and evolving trends of global TCM/PF research. It also identified the most cited articles in TCM/PF and analyzed their characteristics, which may hold significant relevance for both clinical researchers and practitioners on future directions in this field.
Collapse
Affiliation(s)
- Bokai Wei
- School of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 1200# Cailun Rd., Shanghai, 201203, PR China
| | - Haozheng Li
- Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, 130# Dongan Road, Shanghai, 200032, PR China
- Department of Rehabilitation Medicine, Huanshan Hospital, Fudan University, 12# Wulumuqi Road, Shanghai, 200040, PR China
| | - Chengyu Wang
- School of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 1200# Cailun Rd., Shanghai, 201203, PR China
| | - Jing Hu
- School of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 1200# Cailun Rd., Shanghai, 201203, PR China
| |
Collapse
|
10
|
Shao M, Qiu Y, Shen M, Liu W, Feng D, Luo Z, Zhou Y. Procyanidin C1 inhibits bleomycin-induced pulmonary fibrosis in mice by selective clearance of senescent myofibroblasts. FASEB J 2024; 38:e23749. [PMID: 38953707 DOI: 10.1096/fj.202302547rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 05/05/2024] [Accepted: 06/06/2024] [Indexed: 07/04/2024]
Abstract
Pulmonary fibrosis is a formidable challenge in chronic and age-related lung diseases. Myofibroblasts secrete large amounts of extracellular matrix and induce pro-repair responses during normal wound healing. Successful tissue repair results in termination of myofibroblast activity via apoptosis; however, some myofibroblasts exhibit a senescent phenotype and escape apoptosis, causing over-repair that is characterized by pathological fibrotic scarring. Therefore, the removal of senescent myofibroblasts using senolytics is an important method for the treatment of pulmonary fibrosis. Procyanidin C1 (PCC1) has recently been discovered as a senolytic compound with very low toxicity and few side effects. This study aimed to determine whether PCC1 could improve lung fibrosis by promoting apoptosis in senescent myofibroblasts and to investigate the mechanisms involved. The results showed that PCC1 attenuates bleomycin (BLM)-induced pulmonary fibrosis in mice. In addition, we found that PCC1 inhibited extracellular matrix deposition and promoted the apoptosis of senescent myofibroblasts by increasing PUMA expression and activating the BAX signaling pathway. Our findings represent a new method of pulmonary fibrosis management and emphasize the potential of PCC1 as a senotherapeutic agent for the treatment of pulmonary fibrosis, providing hope for patients with pulmonary fibrosis worldwide. Our results advance our understanding of age-related diseases and highlight the importance of addressing cellular senescence in treatment.
Collapse
Affiliation(s)
- Min Shao
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, China
| | - Yujia Qiu
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, China
| | - Mengxia Shen
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, China
| | - Wei Liu
- Department of Community Nursing, Xiangya Nursing School, Central South University, Changsha, China
| | - Dandan Feng
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, China
| | - Ziqiang Luo
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, China
- Hunan Key Laboratory of Organ Fibrosis, Changsha, China
| | - Yan Zhou
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, China
| |
Collapse
|
11
|
Gu M, Wang Y, Yu Y. Ovarian fibrosis: molecular mechanisms and potential therapeutic targets. J Ovarian Res 2024; 17:139. [PMID: 38970048 PMCID: PMC11225137 DOI: 10.1186/s13048-024-01448-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 06/03/2024] [Indexed: 07/07/2024] Open
Abstract
Ovarian fibrosis, characterized by the excessive proliferation of ovarian fibroblasts and the accumulation of extracellular matrix (ECM), serves as one of the primary causes of ovarian dysfunction. Despite the critical role of ovarian fibrosis in maintaining the normal physiological function of the mammalian ovaries, research on this condition has been greatly underestimated, which leads to a lack of clinical treatment options for ovarian dysfunction caused by fibrosis. This review synthesizes recent research on the molecular mechanisms of ovarian fibrosis, encompassing TGF-β, extracellular matrix, inflammation, and other profibrotic factors contributing to abnormal ovarian fibrosis. Additionally, we summarize current treatment approaches for ovarian dysfunction targeting ovarian fibrosis, including antifibrotic drugs, stem cell transplantation, and exosomal therapies. The purpose of this review is to summarize the research progress on ovarian fibrosis and to propose potential therapeutic strategies targeting ovarian fibrosis for the treatment of ovarian dysfunction.
Collapse
Affiliation(s)
- Mengqing Gu
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, China
- Key Laboratory of Assisted Reproduction (Peking University), Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Ministry of Education, Beijing, 100191, China
- Clinical Stem Cell Research Center, Peking University Third Hospital, Beijing, 100191, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, 100191, China
| | - Yibo Wang
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, China.
- Key Laboratory of Assisted Reproduction (Peking University), Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Ministry of Education, Beijing, 100191, China.
- Clinical Stem Cell Research Center, Peking University Third Hospital, Beijing, 100191, China.
- Institute of Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China.
| | - Yang Yu
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, China.
- Key Laboratory of Assisted Reproduction (Peking University), Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Ministry of Education, Beijing, 100191, China.
- Clinical Stem Cell Research Center, Peking University Third Hospital, Beijing, 100191, China.
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, 100191, China.
| |
Collapse
|
12
|
Hu Y, Huang Y, Zong L, Lin J, Liu X, Ning S. Emerging roles of ferroptosis in pulmonary fibrosis: current perspectives, opportunities and challenges. Cell Death Discov 2024; 10:301. [PMID: 38914560 PMCID: PMC11196712 DOI: 10.1038/s41420-024-02078-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 06/13/2024] [Accepted: 06/18/2024] [Indexed: 06/26/2024] Open
Abstract
Pulmonary fibrosis (PF) is a chronic interstitial lung disorder characterized by abnormal myofibroblast activation, accumulation of extracellular matrix (ECM), and thickening of fibrotic alveolar walls, resulting in deteriorated lung function. PF is initiated by dysregulated wound healing processes triggered by factors such as excessive inflammation, oxidative stress, and coronavirus disease (COVID-19). Despite advancements in understanding the disease's pathogenesis, effective preventive and therapeutic interventions are currently lacking. Ferroptosis, an iron-dependent regulated cell death (RCD) mechanism involving lipid peroxidation and glutathione (GSH) depletion, exhibits unique features distinct from other RCD forms (e.g., apoptosis, necrosis, and pyroptosis). Imbalance between reactive oxygen species (ROS) production and detoxification leads to ferroptosis, causing cellular dysfunction through lipid peroxidation, protein modifications, and DNA damage. Emerging evidence points to the crucial role of ferroptosis in PF progression, driving macrophage polarization, fibroblast proliferation, and ECM deposition, ultimately contributing to alveolar cell death and lung tissue scarring. This review provides a comprehensive overview of the latest findings on the involvement and signaling mechanisms of ferroptosis in PF pathogenesis, emphasizing potential novel anti-fibrotic therapeutic approaches targeting ferroptosis for PF management.
Collapse
Affiliation(s)
- Yixiang Hu
- Department of Clinical Pharmacy, The Affiliated Xiangtan Center Hospital of Hunan University, Xiangtan, 411100, China
| | - Ying Huang
- Zhongshan Hospital of Traditional Chinese Medicine Afflilated to Guangzhou University of Chinese Medicine, Zhongshan, 528400, China
| | - Lijuan Zong
- Department of Rehabilitation Medicine, Zhongda Hospital of Southeast University, Nanjing, 210096, China
| | - Jiaxin Lin
- Department of Breast Surgery, The Second Affiliated Hospital of Guangxi Medical University, Nanning, 530000, China
| | - Xiang Liu
- Department of Clinical Pharmacy, The Affiliated Xiangtan Center Hospital of Hunan University, Xiangtan, 411100, China.
| | - Shipeng Ning
- Department of Breast Surgery, The Second Affiliated Hospital of Guangxi Medical University, Nanning, 530000, China.
| |
Collapse
|
13
|
Xie H, Zhong X, Chen J, Wang S, Huang Y, Yang N. VISTA Deficiency Exacerbates the Development of Pulmonary Fibrosis by Promoting Th17 Differentiation. J Inflamm Res 2024; 17:3983-3999. [PMID: 38911987 PMCID: PMC11194012 DOI: 10.2147/jir.s458651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 05/30/2024] [Indexed: 06/25/2024] Open
Abstract
Background Interstitial lung disease (ILD), characterized by pulmonary fibrosis (PF), represents the end-stage of various ILDs. The immune system plays an important role in the pathogenesis of PF. V-domain immunoglobulin suppressor of T-cell activation (VISTA) is an immune checkpoint with immune suppressive functions. However, its specific role in the development of PF and the underlying mechanisms remain to be elucidated. Methods We assessed the expression of VISTA in CD4 T cells from patients with connective tissue disease-related interstitial lung disease (CTD-ILD). Spleen cells from wild-type (WT) or Vsir -/- mice were isolated and induced for cell differentiation in vitro. Additionally, primary lung fibroblasts were isolated and treated with interleukin-17A (IL-17A). Mice were challenged with bleomycin (BLM) following VISTA blockade or Vsir knockout. Moreover, WT or Vsir -/- CD4 T cells were transferred into Rag1 -/- mice, which were then challenged with BLM. Results VISTA expression was decreased in CD4 T cells from patients with CTD-ILD. Vsir deficiency augmented T-helper 17 (Th17) cell differentiation in vitro. Furthermore, IL-17A enhanced the production of inflammatory cytokines, as well as the differentiation and migration of lung fibroblasts. Both VISTA blockade and knockout of Vsir increased the percentage of IL-17A-producing Th17 cells and promoted BLM-induced PF. In addition, mice receiving Vsir -/- CD4 T cells exhibited a higher percentage of Th17 cells and more severe PF compared to those receiving WT CD4 T cells. Conclusion These findings demonstrate the significant role of VISTA in modulating the development of PF by controlling Th17 cell differentiation. These insights suggest that targeting VISTA could be a promising therapeutic strategy for PF.
Collapse
Affiliation(s)
- Haiping Xie
- Department of Rheumatology and Clinical Immunology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, People’s Republic of China
| | - Xuexin Zhong
- Department of Rheumatology and Clinical Immunology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, People’s Republic of China
| | - Junlin Chen
- Department of Pediatrics, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, People’s Republic of China
| | - Shuang Wang
- Department of Rheumatology and Clinical Immunology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, People’s Republic of China
| | - Yuefang Huang
- Department of Pediatrics, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, People’s Republic of China
| | - Niansheng Yang
- Department of Rheumatology and Clinical Immunology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, People’s Republic of China
| |
Collapse
|
14
|
Zhang L, Meng Z, Wang H, Miao Y. Effect of PEAR1, PTGS1 gene polymorphisms on the recurrence of aspirin-treated patients with ischemic stroke in the Han population of China: A 4-year follow-up study. Medicine (Baltimore) 2024; 103:e38031. [PMID: 38728491 PMCID: PMC11081601 DOI: 10.1097/md.0000000000038031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 04/05/2024] [Indexed: 05/12/2024] Open
Abstract
Platelet endothelial aggregation receptor 1 (PEAR1) and prostaglandin endoperoxide synthase 1 (PTGS1) polymorphisms can affect laboratory aspirin resistance. However, the impact of genetic polymorphisms on the recurrence of ischemic stroke (IS) patients treated with aspirin is not fully understood. This study aimed to examine the relationship between gene polymorphisms of PEAR1 and PTGS1 and IS recurrence in patients treated with aspirin. Peripheral blood samples were collected from 174 patients with nonrecurrent IS and 34 with recurrent IS after aspirin treatment. Follow-up was performed on all patients. PEAR1 rs12041331 and PTGS1 rs10306114 polymorphisms were determined using the PCR fluorescence probe method. And the correlations of them with the clinical characteristics were examined by multivariable logistic regression analysis. The distribution frequencies of PEAR1 rs12041331 and PTGS1 rs10306114 genotypes were in Hardy-Weinberg equilibrium, and there was no significant difference in the distribution of PEAR1 rs12041331 polymorphism. Compared to the nonrecurrent group, the AA genotype of the PTGS1 polymorphism was more frequent in the recurrent group (59.77% vs 35.29%, P = .003), and the A allele also showed a higher frequency than the G allele in the recurrent group (P = .001). Multivariable logistic regression analysis showed that smoking (OR = 5.228, 95% CI: 1.938-14.102, P = .001), coronary heart disease (OR = 4.754, 95% CI: 1.498-15.089, P = .008), and the polymorphism at PTGS1(A>G) AA/AG + GG (OR = 2.955, 95% CI: 1.320-6.616, P = .008) were independently associated with IS recurrence in Chinese patients. Our findings suggested that PTGS rs10306114 polymorphisms should receive more attention in the use of aspirin in patients with IS.
Collapse
Affiliation(s)
- Linlin Zhang
- Department of Pharmacology, the First People’s Hospital of Yancheng, Yancheng 224000, Jiangsu, China
| | - Zhongru Meng
- Department of Pharmacology, the First People’s Hospital of Yancheng, Yancheng 224000, Jiangsu, China
| | - Hongxia Wang
- Department of Pharmacology, the First People’s Hospital of Yancheng, Yancheng 224000, Jiangsu, China
| | - Yang Miao
- Department of Pharmacology, the First People’s Hospital of Yancheng, Yancheng 224000, Jiangsu, China
| |
Collapse
|
15
|
Zhang J, Zhang Y, Chen Q, Qi Y, Zhang X. The XPO1 inhibitor selinexor ameliorates bleomycin-induced pulmonary fibrosis in mice via GBP5/NLRP3 inflammasome signaling. Int Immunopharmacol 2024; 130:111734. [PMID: 38422768 DOI: 10.1016/j.intimp.2024.111734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 02/04/2024] [Accepted: 02/18/2024] [Indexed: 03/02/2024]
Abstract
Pulmonary fibrosis is an irreversible and progressive lung disease with limited treatments available. Selinexor (Sel), an orally available, small-molecule, selective inhibitor of XPO1, exhibits notable antitumor, anti-inflammatory and antiviral activities. However, its potential role in treating pulmonary fibrosis is unknown. C57BL/6J mice were used to establish a pulmonary fibrosis model by intratracheal administration of bleomycin (BLM). Subsequently, Sel was administered intraperitoneally. Our data demonstrated that Sel administration ameliorated BLM-induced pulmonary fibrosis by increasing mouse body weights; reducing H&E staining, Masson staining scores, and shadows in mouse lung computed tomography (CT) images, decreasing the total cell and neutrophil counts in the lung and bronchoalveolar lavage fluid (BALF); and decreasing the levels of TGF-β1. We next confirmed that Sel reduced the deposition of extracellular matrix (ECM) components in the lungs of BLM-induced pulmonary fibrosis mice. We showed that collagen I, alpha-smooth muscle actin (α-SMA), and hydroxyproline levels and the mRNA levels of Col1a1, Eln, Fn1, Ctgf, and Fgf2 were reduced. Mechanistically, tandem mass tags (TMT)- based quantitative proteomics analysis revealed a significant increase in GBP5 in the lungs of BLM mice but a decrease in that of BLM + Sel mice; this phenomenon was confirmed by western blotting and RT-qPCR. NLRP3 inflammasome signaling was significantly enriched in both the BLM group and BLM + Sel group based on GO and KEGG analyses of differentially expressed proteins between the groups. Furthermore, Sel reduced the expression of NLRP3, cleaved caspase 1, and ASC in vivo and in vitro, and decreased the levels of IL-1β, IL-18, and IFN-r in lung tissue and BALF. SiRNA-GBP5 inhibited NLRP3 signaling in vitro, and overexpression of GBP5 inhibited the protective effect of Sel against BLM-induced cellular injury. Taken together, our findings indicate that Sel ameliorates BLM-induced pulmonary fibrosis by targeting GBP5 via NLRP3 inflammasome signaling. Thus, the XPO1 inhibitor - Sel might be a potential therapeutic agent for pulmonary fibrosis.
Collapse
Affiliation(s)
- Jia Zhang
- Department of Respiratory and Critical Care Medicine, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, 450003 Zhengzhou, Henan, China
| | - Yihua Zhang
- Department of Respiratory and Critical Care Medicine, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, 450003 Zhengzhou, Henan, China; Xinxiang Medical University, 453003 Xinxiang, Henan, China
| | - Qi Chen
- Henan University People's Hospital, 450003 Zhengzhou, Henan, China
| | - Yong Qi
- Department of Respiratory and Critical Care Medicine, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, 450003 Zhengzhou, Henan, China; Henan University People's Hospital, 450003 Zhengzhou, Henan, China.
| | - Xiaoju Zhang
- Department of Respiratory and Critical Care Medicine, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, 450003 Zhengzhou, Henan, China; Xinxiang Medical University, 453003 Xinxiang, Henan, China.
| |
Collapse
|
16
|
Zhou BW, Liu HM, Xu F, Jia XH. The role of macrophage polarization and cellular crosstalk in the pulmonary fibrotic microenvironment: a review. Cell Commun Signal 2024; 22:172. [PMID: 38461312 PMCID: PMC10924385 DOI: 10.1186/s12964-024-01557-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 03/03/2024] [Indexed: 03/11/2024] Open
Abstract
Pulmonary fibrosis (PF) is a progressive interstitial inflammatory disease with a high mortality rate. Patients with PF commonly experience a chronic dry cough and progressive dyspnoea for years without effective mitigation. The pathogenesis of PF is believed to be associated with dysfunctional macrophage polarization, fibroblast proliferation, and the loss of epithelial cells. Thus, it is of great importance and necessity to explore the interactions among macrophages, fibroblasts, and alveolar epithelial cells in lung fibrosis, as well as in the pro-fibrotic microenvironment. In this review, we discuss the latest studies that have investigated macrophage polarization and activation of non-immune cells in the context of PF pathogenesis and progression. Next, we discuss how profibrotic cellular crosstalk is promoted in the PF microenvironment by multiple cytokines, chemokines, and signalling pathways. And finally, we discuss the potential mechanisms of fibrogenesis development and efficient therapeutic strategies for the disease. Herein, we provide a comprehensive summary of the vital role of macrophage polarization in PF and its profibrotic crosstalk with fibroblasts and alveolar epithelial cells and suggest potential treatment strategies to target their cellular communication in the microenvironment.
Collapse
Affiliation(s)
- Bo-Wen Zhou
- The First School of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250014, China
| | - Hua-Man Liu
- Department of General Medicine, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250014, China
| | - Fei Xu
- Department of Pneumology and Critical Care Medicine, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250014, China
| | - Xin-Hua Jia
- Department of Pneumology and Critical Care Medicine, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250014, China.
| |
Collapse
|
17
|
Yin SY, Liu YJ, Li JP, Liu J. Overexpression of FERM Domain Containing Kindlin 2 (FERMT2) in Fibroblasts Correlates with EMT and Immunosuppression in Gastric Cancer. Int J Genomics 2024; 2024:4123737. [PMID: 38352691 PMCID: PMC10864055 DOI: 10.1155/2024/4123737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/26/2023] [Accepted: 01/16/2024] [Indexed: 02/16/2024] Open
Abstract
The mesenchymal feature, dominated by epithelial mesenchymal transition (EMT) and stromal cell activation, is one of the main reasons for the aggressive nature of tumors, yet it remains poorly understood. In gastric cancer (GC), the fermitin family homolog-2 (FERMT2) is involved in macrophage signaling, promoting migration and invasion. However, the function of FERMT2 in fibroblasts remains unclear. Here, we demonstrated that downregulation of FERMT2 expression can block EMT in GC cells by inhibiting fibroblast activation in vitro. Furthermore, we found that, in addition to the known pathways, fibroblast-derived FERMT2 promotes M2-like macrophage growth and that in human GC samples, there is a strong positive correlation between FERMT2 and CD163 and CD206 levels. Notably, high FERMT2 expression was significantly associated with poor clinical outcomes and was upregulated in patients with advanced disease. Taken together, our results provide evidence that the fibroblast-FERMT2-EMT-M2 macrophage axis plays a critical role in the GC mesenchymal phenotype and may be a promising target for the treatment of advanced GC.
Collapse
Affiliation(s)
- Sheng-yan Yin
- The Second Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Second Chinese Medicine Hospital, Nanjing, Jiangsu 210029, China
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu 210029, China
| | - Yuan-jie Liu
- The Second Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Second Chinese Medicine Hospital, Nanjing, Jiangsu 210029, China
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu 210029, China
| | - Jie-pin Li
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu 210029, China
- No. 1 Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
| | - Jian Liu
- The Second Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Second Chinese Medicine Hospital, Nanjing, Jiangsu 210029, China
| |
Collapse
|
18
|
Wei X, Jing J, Huang R, Zhou T, Wu L, Ou G, Wu Y, Hu J, Zhu W, Wu Y, Li Y, Zhang S, You Z. QFAE-nB alleviates pulmonary fibrosis by inhibiting the STING pathway in mice. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117295. [PMID: 37806536 DOI: 10.1016/j.jep.2023.117295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 09/29/2023] [Accepted: 10/06/2023] [Indexed: 10/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Pulmonary fibrosis (PF) is an irreversible lung disease that severely affects human respiratory function. Traditionally, the natural plant Quzhou Fructus Arantii (QFA) has therapeutic effects on respiratory diseases. However, the effects and the mechanism of anti-fibrotic have not been elucidated. AIM OF THE STUDY In this study, QFAE-nB was extracted from QFA, the aims of this study include understanding the correlation between Bleomycin (BLM)-induced PF and STING pathway in mice, as well as exploring the role and mechanisms of QFAE-nB in the treatment of PF. MATERIALS AND METHODS QFAE-nB was extracted from QFA, six main chemical components in QFAE-nB were identified by HPLC-QTOF-MS/MS, and quantitative analysis was conducted by HPLC. qPCR and Western blot were used to verify the molecular mechanism of QFAE-nB, and the anti-fibrotic effect of QFAE-nB was determined by hematoxylin-eosin (HE) staining and Masson staining as well as immunohistochemistry. TREX1-KO and STING-KO mice were used to verify the relationship between STING and PF and the important target action of QFAE-nB. RESULTS Six main flavonoids in QFAE-nB were identified as eriocitrin (0.76%), neoeriocitrin (2.79%), narirutin (4.31%), naringin (35.41%), hesperidin (1.74%), and neohesperidin (27.18%). The results showed that BLM-induced PF was associated with its exacerbated release of proinflammatory factors and chemokines in lung tissues. In addition, QFAE-nB alleviated BLM-induced lung fibrosis in mice by inhibiting the activation of the STING signaling pathway and reducing the signal transduction of TBK1-IRF3 and TBK1-NF-κB pathways. Notably, knockout of the TREX1 gene caused massive inflammation and even induced PF in the lung tissues, whereas QFAE-nB effectively alleviated inflammation and reduced PF. The deletion of the STING gene suppressed BLM-induced PF and inflammation, but STING-KO mice treated with QFAE-nB showed even lower expression levels of proinflammatory factors and chemokine. CONCLUSIONS The STING pathway plays an important role in PF, and QFAE-nB alleviates PF by mainly targeting the inhibition of the STING pathway to reduce inflammation. Together, the study paves the way for targeting the STING pathway in PF treatment.
Collapse
Affiliation(s)
- Xueping Wei
- School of Public Health, Hangzhou Medical College, Hangzhou, China; Key Discipline of Zhejiang Province in Public Health and Preventive Medicine (First Class, Category A), Hangzhou Medical College, China
| | - Junsong Jing
- School of Public Health, Hangzhou Medical College, Hangzhou, China; Key Discipline of Zhejiang Province in Public Health and Preventive Medicine (First Class, Category A), Hangzhou Medical College, China
| | - Rongrong Huang
- School of Public Health, Hangzhou Medical College, Hangzhou, China; Key Discipline of Zhejiang Province in Public Health and Preventive Medicine (First Class, Category A), Hangzhou Medical College, China
| | - Ting Zhou
- School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, China
| | - Lianhao Wu
- School of Public Health, Hangzhou Medical College, Hangzhou, China; Key Discipline of Zhejiang Province in Public Health and Preventive Medicine (First Class, Category A), Hangzhou Medical College, China
| | - Guoteng Ou
- School of Public Health, Hangzhou Medical College, Hangzhou, China; Key Discipline of Zhejiang Province in Public Health and Preventive Medicine (First Class, Category A), Hangzhou Medical College, China
| | - Youping Wu
- The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Jingjin Hu
- School of Public Health, Hangzhou Medical College, Hangzhou, China; Key Discipline of Zhejiang Province in Public Health and Preventive Medicine (First Class, Category A), Hangzhou Medical College, China
| | - Wenwen Zhu
- School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, China
| | - Yueguo Wu
- School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, China
| | - Yuanyuan Li
- School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, China.
| | - Sheng Zhang
- Center for Safety Evaluation and Research, Hangzhou Medical College, Hangzhou, China.
| | - Zhenqiang You
- School of Public Health, Hangzhou Medical College, Hangzhou, China; School of Environmental and Chemical Engineering, Shanghai University, Shanghai, China; Key Discipline of Zhejiang Province in Public Health and Preventive Medicine (First Class, Category A), Hangzhou Medical College, China.
| |
Collapse
|
19
|
Luo Z, Ji L, Liu H, Sun Y, Zhao C, Xu X, Gu X, Ai X, Yang C. Inhalation Lenalidomide-Loaded Liposome for Bleomycin-Induced Pulmonary Fibrosis Improvement. AAPS PharmSciTech 2023; 24:235. [PMID: 37973629 DOI: 10.1208/s12249-023-02690-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 10/26/2023] [Indexed: 11/19/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive, fibrotic interstitial lung disease with unclear etiology and increasing prevalence. Pulmonary administration can make the drug directly reach the lung lesion location and reduce systemic toxic and side effects. The effectiveness of lenalidomide (Len) liposomal lung delivery in idiopathic pulmonary fibrosis was investigated. Len liposomes (Len-Lip) were prepared from soybean lecithin, cholesterol (Chol), and medicine in different weight ratios by thin film hydration method. The Len-Lip were spherical in shape with an average size of 226.7 ± 1.389 nm. The liposomes with a higher negative zeta potential of around - 34 mV, which was conducive to improving stability by repelling each other. The drug loading and encapsulation rate were 2.42 ± 0.07% and 85.47 ± 2.42%. Len-Lip had little toxicity at the cellular level and were well taken up by cells. At bleomycin-induced pulmonary fibrosis model mice, inhalation Len-Lip could improve lung function and decrease lung hydroxyproline contents, and alleviate pulmonary fibrosis state. Inhalation Len-Lip provided a reference for the treatment of idiopathic pulmonary fibrosis.
Collapse
Affiliation(s)
- Zhilin Luo
- College of Pharmacy, Nankai University, No. 38 Tongyan Road, Haihe Education Park, Jinnan District, Tianjin, 300350, China
- Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, China
| | - Liyuan Ji
- College of Pharmacy, Nankai University, No. 38 Tongyan Road, Haihe Education Park, Jinnan District, Tianjin, 300350, China
| | - Hongting Liu
- College of Pharmacy, Nankai University, No. 38 Tongyan Road, Haihe Education Park, Jinnan District, Tianjin, 300350, China
- Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, China
| | - Yao Sun
- College of Pharmacy, Nankai University, No. 38 Tongyan Road, Haihe Education Park, Jinnan District, Tianjin, 300350, China
- Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, China
| | - Conglu Zhao
- College of Pharmacy, Nankai University, No. 38 Tongyan Road, Haihe Education Park, Jinnan District, Tianjin, 300350, China
- Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, China
| | - Xiang Xu
- College of Pharmacy, Nankai University, No. 38 Tongyan Road, Haihe Education Park, Jinnan District, Tianjin, 300350, China
- Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, China
| | - Xiaoting Gu
- College of Pharmacy, Nankai University, No. 38 Tongyan Road, Haihe Education Park, Jinnan District, Tianjin, 300350, China.
| | - Xiaoyu Ai
- College of Pharmacy, Nankai University, No. 38 Tongyan Road, Haihe Education Park, Jinnan District, Tianjin, 300350, China.
| | - Cheng Yang
- College of Pharmacy, Nankai University, No. 38 Tongyan Road, Haihe Education Park, Jinnan District, Tianjin, 300350, China.
| |
Collapse
|
20
|
Liu Y, Hou Q, Wang R, Liu Y, Cheng Z. FOXO4-D-Retro-Inverso targets extracellular matrix production in fibroblasts and ameliorates bleomycin-induced pulmonary fibrosis in mice. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023; 396:2393-2403. [PMID: 37074394 DOI: 10.1007/s00210-023-02452-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 02/27/2023] [Indexed: 04/20/2023]
Abstract
Pulmonary fibrosis (PF) occurs in various end stages of lung disease, and it is characterized by persistent scarring of the lung parenchyma with excessive deposition of extracellular matrix (ECM), leading to degressive quality of life and earlier mortality. FOXO4-D-Retro-Inverso (FOXO4-DRI), a synthesis peptide as a specific FOXO4 blocker, selectively induced dissociation of the FOXO4-p53 complex and nuclear exclusion of p53. Simultaneously, the p53 signaling pathway has been reported to activate in fibroblasts isolated from IPF fibrotic lung tissues and the p53 mutants cooperate with other factors that have the ability to disturb the synthesis of ECM. Yet, whether FOXO4-DRI influences the nuclear exclusion of p53 and then obstructs PF progress is still unknown. In this research, we explored the effect of FOXO4-DRI on bleomycin (BLM)-induced PF mouse model and activated fibroblasts model. The animal group of FOXO4-DRI therapeutic administration shows a milder pathologic change and less collagen deposition compared with the BLM-induced group. We also found the FOXO4-DRI resets the distribution of intranuclear p53 and concurrently decreased the total ECM proteins content. After further validation, FOXO4-DRI may well be a promising therapeutic approach to treating pulmonary fibrosis.
Collapse
Affiliation(s)
- Ying Liu
- Department of Respiratory and Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China.
| | - Qinhui Hou
- Department of Respiratory and Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Rui Wang
- Department of Respiratory and Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yuan Liu
- Department of Respiratory and Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Zhenshun Cheng
- Department of Respiratory and Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China.
- Wuhan Research Center for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Wuhan, China.
- Hubei Engineering Center for Infectious Disease Prevention, Control and Treatment, Wuhan, China.
| |
Collapse
|
21
|
Liu S, Zhang Z, Wang Y, Zhang Y, Min J, Li X, Liu S. The chemokine CCL1 facilitates pulmonary fibrosis by promoting macrophage migration and M2 polarization. Int Immunopharmacol 2023; 120:110343. [PMID: 37220693 DOI: 10.1016/j.intimp.2023.110343] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 05/05/2023] [Accepted: 05/12/2023] [Indexed: 05/25/2023]
Abstract
Macrophage M2 polarization has been identified in the pathogenesis of pulmonary fibrosis (PF), but the mediators that drive the macrophage M2 program in PF need to be clarified. We showed that the expression of AMFR and CCR8, two known receptors of CCL1, was increased in macrophages from lungs of mice with bleomycin (BLM)-induced PF. Deficiency in either AMFR or CCR8 in macrophages protected mice from BLM-induced PF. In vitro experiments revealed that CCL1 recruited macrophages by binding to its classical receptor CCR8 and drove the macrophage M2 phenotype via its interaction with the recently identified receptor AMFR. Mechanistic studies revealed that the CCL1-AMFR interaction enhanced CREB/C/EBPβ signaling to promote the macrophage M2 program. Together, our findings reveal that CCL1 acts as a mediator of macrophage M2 polarization and could be a therapeutic target in PF.
Collapse
Affiliation(s)
- Suosi Liu
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Ziying Zhang
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Yu Wang
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Yu Zhang
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Jiali Min
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Xia Li
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China.
| | - Shanshan Liu
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China.
| |
Collapse
|