1
|
Yang L, Hou H, Li J. Frontiers in fluorescence imaging: tools for the in situ sensing of disease biomarkers. J Mater Chem B 2024. [PMID: 39668682 DOI: 10.1039/d4tb01867b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
Fluorescence imaging has been recognized as a powerful tool for the real-time detection and specific imaging of biomarkers within living systems, which is crucial for early diagnosis and treatment evaluation of major diseases. Over the years, significant advancements in this field have been achieved, particularly with the development of novel fluorescent probes and advanced imaging technologies such as NIR-II imaging, super-resolution imaging, and 3D imaging. These technologies have enabled deeper tissue penetration, higher image contrast, and more accurate detection of disease-related biomarkers. Despite these advancements, challenges such as improving probe specificity, enhancing imaging depth and resolution, and optimizing signal-to-noise ratios still remain. The emergence of artificial intelligence (AI) has injected new vitality into the designs and performances of fluorescent probes, offering new tools for more precise disease diagnosis. This review will not only discuss chemical modifications of classic fluorophores and in situ visualization of various biomarkers including metal ions, reactive species, and enzymes, but also share some breakthroughs in AI-driven fluorescence imaging, aiming to provide a comprehensive understanding of these advancements. Future prospects of fluorescence imaging for biomarkers including the potential impact of AI in this rapidly evolving field are also highlighted.
Collapse
Affiliation(s)
- Lei Yang
- Department of Chemistry, Center for Bioanalytical Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, China.
| | - Hongwei Hou
- Beijing Life Science Academy, Beijing 102209, China.
| | - Jinghong Li
- Department of Chemistry, Center for Bioanalytical Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, China.
- Beijing Life Science Academy, Beijing 102209, China.
| |
Collapse
|
2
|
Soubies E, Nogueron A, Pelletier F, Mangeat T, Leterrier C, Unser M, Sage D. Surpassing light inhomogeneities in structured-illumination microscopy with FlexSIM. J Microsc 2024; 296:94-106. [PMID: 39012071 DOI: 10.1111/jmi.13344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 06/03/2024] [Accepted: 06/29/2024] [Indexed: 07/17/2024]
Abstract
Super-resolution structured-illumination microscopy (SIM) is a powerful technique that allows one to surpass the diffraction limit by up to a factor two. Yet, its practical use is hampered by its sensitivity to imaging conditions which makes it prone to reconstruction artefacts. In this work, we present FlexSIM, a flexible SIM reconstruction method capable to handle highly challenging data. Specifically, we demonstrate the ability of FlexSIM to deal with the distortion of patterns, the high level of noise encountered in live imaging, as well as out-of-focus fluorescence. Moreover, we show that FlexSIM achieves state-of-the-art performance over a variety of open SIM datasets.
Collapse
Affiliation(s)
| | | | | | - Thomas Mangeat
- LITC Core Facility, Centre de Biologie Integrative, Université de Toulouse, CNRS, Toulouse, France
| | | | - Michael Unser
- Biomedical Imaging Group, EPFL, Lausanne, Switzerland
| | - Daniel Sage
- Biomedical Imaging Group, EPFL, Lausanne, Switzerland
| |
Collapse
|
3
|
Ward EN, McClelland RM, Lamb JR, Rubio-Sánchez R, Christensen CN, Mazumder B, Kapsiani S, Mascheroni L, Di Michele L, Kaminski Schierle GS, Kaminski CF. Fast, multicolour optical sectioning over extended fields of view with patterned illumination and machine learning. BIOMEDICAL OPTICS EXPRESS 2024; 15:1074-1088. [PMID: 38404329 PMCID: PMC10890859 DOI: 10.1364/boe.510912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/22/2023] [Accepted: 01/09/2024] [Indexed: 02/27/2024]
Abstract
Structured illumination can reject out-of-focus signal from a sample, enabling high-speed and high-contrast imaging over large areas with widefield detection optics. However, this optical sectioning technique is currently limited by image reconstruction artefacts and poor performance at low signal-to-noise ratios. We combine multicolour interferometric pattern generation with machine learning to achieve high-contrast, real-time reconstruction of image data that is robust to background noise and sample motion. We validate the method in silico and demonstrate imaging of diverse specimens, from fixed and live biological samples to synthetic biosystems, reconstructing data live at 11 Hz across a 44 × 44μm2 field of view, and demonstrate image acquisition speeds exceeding 154 Hz.
Collapse
Affiliation(s)
- Edward N. Ward
- Department of Chemical Engineering and
Biotechnology, University of Cambridge, Cambridge, CB3 0AS, UK
| | - Rebecca M. McClelland
- Department of Chemical Engineering and
Biotechnology, University of Cambridge, Cambridge, CB3 0AS, UK
| | - Jacob R. Lamb
- Department of Chemical Engineering and
Biotechnology, University of Cambridge, Cambridge, CB3 0AS, UK
| | - Roger Rubio-Sánchez
- Department of Chemical Engineering and
Biotechnology, University of Cambridge, Cambridge, CB3 0AS, UK
- fabriCELL, Molecular Sciences Research Hub,
Imperial College London, London, W12 0BZ,
UK
| | - Charles N. Christensen
- Department of Chemical Engineering and
Biotechnology, University of Cambridge, Cambridge, CB3 0AS, UK
| | - Bismoy Mazumder
- Department of Chemical Engineering and
Biotechnology, University of Cambridge, Cambridge, CB3 0AS, UK
| | - Sofia Kapsiani
- Department of Chemical Engineering and
Biotechnology, University of Cambridge, Cambridge, CB3 0AS, UK
| | - Luca Mascheroni
- Department of Chemical Engineering and
Biotechnology, University of Cambridge, Cambridge, CB3 0AS, UK
| | - Lorenzo Di Michele
- Department of Chemical Engineering and
Biotechnology, University of Cambridge, Cambridge, CB3 0AS, UK
- fabriCELL, Molecular Sciences Research Hub,
Imperial College London, London, W12 0BZ,
UK
| | | | - Clemens F. Kaminski
- Department of Chemical Engineering and
Biotechnology, University of Cambridge, Cambridge, CB3 0AS, UK
| |
Collapse
|
4
|
Chen ZH, Wang X, Yang M, Ming J, Yun B, Zhang L, Wang X, Yu P, Xu J, Zhang H, Zhang F. An Extended NIR-II Superior Imaging Window from 1500 to 1900 nm for High-Resolution In Vivo Multiplexed Imaging Based on Lanthanide Nanocrystals. Angew Chem Int Ed Engl 2023; 62:e202311883. [PMID: 37860881 DOI: 10.1002/anie.202311883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 10/02/2023] [Accepted: 10/17/2023] [Indexed: 10/21/2023]
Abstract
High-resolution in vivo optical multiplexing in second near-infrared window (NIR-II, 1000-1700 nm) is vital to biomedical research. Presently, limited by bio-tissue scattering, only luminescent probes located at NIR-IIb (1500-1700 nm) window can provide high-resolution in vivo multiplexed imaging. However, the number of available luminescent probes in this narrow NIR-IIb region is limited, which hampers the available multiplexed channels of in vivo imaging. To overcome the above challenges, through theoretical simulation we expanded the conventional NIR-IIb window to NIR-II long-wavelength (NIR-II-L, 1500-1900 nm) window on the basis of photon-scattering and water-absorption. We developed a series of novel lanthanide luminescent nanoprobes with emission wavelengths from 1852 nm to 2842 nm. NIR-II-L nanoprobes enabled high-resolution in vivo dynamic multiplexed imaging on blood vessels and intestines, and provided multi-channels imaging on lymph tubes, tumors and intestines. The proposed NIR-II-L probes without mutual interference are powerful tools for high-contrast in vivo multiplexed detection, which holds promise for revealing physiological process in living body.
Collapse
Affiliation(s)
- Zi-Han Chen
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers and Chem, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200433, China
| | - Xiaohan Wang
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers and Chem, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200433, China
| | - Mingzhu Yang
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers and Chem, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200433, China
| | - Jiang Ming
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers and Chem, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200433, China
| | - Baofeng Yun
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers and Chem, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200433, China
| | - Lu Zhang
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers and Chem, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200433, China
| | - Xusheng Wang
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers and Chem, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200433, China
| | - Peng Yu
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers and Chem, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200433, China
| | - Jing Xu
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers and Chem, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200433, China
| | - Hongxin Zhang
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers and Chem, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200433, China
| | - Fan Zhang
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers and Chem, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200433, China
- College of Energy Materials and Chemistry, Inner Mongolia University, Hohhot, 010021, China
| |
Collapse
|