1
|
Harding BD, Hiett A, Tonelli M, Wang S, Rienstra CM, Henzler-Wildman KA. Backbone and Sidechain 1H, 15N and 13C Resonance Assignments of a Multidrug Efflux Membrane Protein using Solution and Solid-State NMR. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.07.631770. [PMID: 39829842 PMCID: PMC11741409 DOI: 10.1101/2025.01.07.631770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
EmrE is a bacterial membrane-embedded multidrug transporter that functions as an asymmetric homodimer. EmrE is implicated in antibiotic resistance, but is now known to confer either resistance or susceptibility depending on the identity of the small molecule substrate. Here, we report both solution- and solid-state NMR assignments of S64V-EmrE at pH 5.8, below the pKa of critical residues E14 and H110. This includes 1H, 15N, and 13C resonance assignments of the backbone, methyl groups (isoleucine, leucine, valine, threonine and alanine) from solution NMR experiments in bicelles, and backbone and side-chain assignments from solid-state NMR 13C-detected experiments in liposomes.
Collapse
Affiliation(s)
- Benjamin D Harding
- Biophysics Graduate Program, University of Wisconsin-Madison, Madison, WI, 53706 USA
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, 53706 USA
| | - Ashley Hiett
- Biophysics Graduate Program, University of Wisconsin-Madison, Madison, WI, 53706 USA
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, 53706 USA
| | - Marco Tonelli
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, 53706 USA
- National Magnetic Resonance Facility at Madison, University of Wisconsin-Madison, Madison, WI, 53706 USA
| | - Songlin Wang
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, 53706 USA
- National Magnetic Resonance Facility at Madison, University of Wisconsin-Madison, Madison, WI, 53706 USA
| | - Chad M Rienstra
- Biophysics Graduate Program, University of Wisconsin-Madison, Madison, WI, 53706 USA
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, 53706 USA
- National Magnetic Resonance Facility at Madison, University of Wisconsin-Madison, Madison, WI, 53706 USA
- Morgridge Institute for Discovery, University of Wisconsin-Madison, Madison, WI, 53706 USA
| | - Katherine A Henzler-Wildman
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, 53706 USA
- National Magnetic Resonance Facility at Madison, University of Wisconsin-Madison, Madison, WI, 53706 USA
| |
Collapse
|
2
|
Harding BD, Hu Z, Hiett A, Delaglio F, Henzler-Wildman K, Rienstra CM. Enhancing Spectrometer Performance with Unsupervised Machine Learning. J Phys Chem B 2024; 128:10397-10407. [PMID: 39395040 PMCID: PMC11550512 DOI: 10.1021/acs.jpcb.4c05109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2024]
Abstract
Solid-state NMR spectroscopy (SSNMR) is a powerful technique to probe structural and dynamic properties of biomolecules at an atomic level. Modern SSNMR methods employ multidimensional pulse sequences requiring data collection over a period of days to weeks. Variations in signal intensity or frequency due to environmental fluctuation introduce artifacts into the spectra. Therefore, it is critical to actively monitor instrumentation subject to fluctuations. Here, we demonstrate a method rooted in the unsupervised machine learning algorithm principal component analysis (PCA) to evaluate the impact of environmental parameters that affect sensitivity, resolution and peak positions (chemical shifts) in multidimensional SSNMR protein spectra. PCA loading spectra illustrate the unique features associated with each drifting parameter, while the PCA scores quantify the magnitude of parameter drift. This is demonstrated both for double (HC) and triple resonance (HCN) experiments. Furthermore, we apply this methodology to identify magnetic field B0 drift, and leverage PCA to "denoise" multidimensional SSNMR spectra of the membrane protein, EmrE, using several spectra collected over several days. Finally, we utilize PCA to identify changes in B1 (CP and decoupling) and B0 fields in a manner that we envision could be automated in the future. Overall, these approaches enable improved objectivity in monitoring NMR spectrometers, and are also applicable to other forms of spectroscopy.
Collapse
Affiliation(s)
- Benjamin D. Harding
- Biophysics Graduate Program, University of Wisconsin-Madison, Madison, WI, 53706 USA
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, 53706 USA
| | - Ziling Hu
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, 53706 USA
| | - Ashley Hiett
- Biophysics Graduate Program, University of Wisconsin-Madison, Madison, WI, 53706 USA
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, 53706 USA
| | - Frank Delaglio
- Institute for Bioscience and Biotechnology Research, National Institute of Standards and Technology and the University of Maryland, Rockville, MD, 20850 USA
| | - Katherine Henzler-Wildman
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, 53706 USA
- National Magnetic Resonance Facility at Madison, University of Wisconsin-Madison, Madison, WI, 53706 USA
| | - Chad M. Rienstra
- Biophysics Graduate Program, University of Wisconsin-Madison, Madison, WI, 53706 USA
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, 53706 USA
- National Magnetic Resonance Facility at Madison, University of Wisconsin-Madison, Madison, WI, 53706 USA
- Morgridge Institute for Discovery, University of Wisconsin-Madison, Madison, WI, 53706 USA
| |
Collapse
|
3
|
Wegrzynowicz AK, Heelan WJ, Demas SP, McLean MS, Peters JM, Henzler-Wildman KA. Substrate dependence of transport coupling and phenotype of a small multidrug resistance transporter in Pseudomonas aeruginosa. J Bacteriol 2024; 206:e0015124. [PMID: 39258918 PMCID: PMC11500531 DOI: 10.1128/jb.00151-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 08/15/2024] [Indexed: 09/12/2024] Open
Abstract
Small multidrug resistance (SMR) transporters are key players in the defense of multidrug-resistant pathogens to toxins and other homeostasis-perturbing compounds. However, recent evidence demonstrates that EmrE, an SMR from Escherichia coli and a model for understanding transport, can also induce susceptibility to some compounds by drug-gated proton leak. This runs down the ∆pH component of the proton-motive force (PMF), reducing the viability of the affected bacteria. Proton leak may provide an unexplored drug target distinct from the targets of most known antibiotics. Activating proton leak requires an SMR to be merely present, rather than be the primary resistance mechanism, and dissipates the energy source for many other efflux pumps. PAsmr, an EmrE homolog from Pseudomonas aeruginosa, transports many EmrE substrates in cells and purified systems. We hypothesized that PAsmr, like EmrE, may confer susceptibility to some compounds via drug-gated proton leak. Growth assays of E. coli expressing PAsmr displayed substrate-dependent resistance and susceptibility phenotypes, and in vitro solid-supported membrane electrophysiology experiments revealed that PAsmr performs both antiport and substrate-gated proton uniport, demonstrating the same functional promiscuity observed in EmrE. Growth assays of P. aeruginosa strain PA14 demonstrated that PAsmr contributes resistance to some antimicrobial compounds, but no growth defect is observed with susceptibility substrates, suggesting P. aeruginosa can compensate for the proton leak occurring through PAsmr. These phenotypic differences between P. aeruginosa and E. coli advance our understanding of the underlying resistance mechanisms in P. aeruginosa and prompt further investigation into the role that SMRs play in antibiotic resistance in pathogens. IMPORTANCE Small multidrug resistance (SMR) transporters are a class of efflux pumps found in many pathogens, although their contributions to antibiotic resistance are not fully understood. We hypothesize that these transporters may confer not only resistance but also susceptibility, by dissipating the proton-motive force. This means to use an SMR transporter as a target; it merely needs to be present (as opposed to being the primary resistance mechanism). Here, we test this hypothesis with an SMR transporter found in Pseudomonas aeruginosa and find that it can perform both antiport (conferring resistance) and substrate-gated proton leak. Proton leak is detrimental to growth in Escherichia coli but not P. aeruginosa, suggesting that P. aeruginosa responds differently to or can altogether prevent ∆pH dissipation.
Collapse
Affiliation(s)
- Andrea K. Wegrzynowicz
- Department of Biochemistry, University of Wisconsin—Madison, Madison, Wisconsin, USA
- Department of Obstetrics and Gynecology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - William J. Heelan
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin—Madison, Madison, Wisconsin, USA
| | - Sydnye P. Demas
- Department of Biochemistry, University of Wisconsin—Madison, Madison, Wisconsin, USA
| | - Maxwell S. McLean
- Department of Biochemistry, University of Wisconsin—Madison, Madison, Wisconsin, USA
| | - Jason M. Peters
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin—Madison, Madison, Wisconsin, USA
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin—Madison, Madison, Wisconsin, USA
- Department of Bacteriology, University of Wisconsin—Madison, Madison, Wisconsin, USA
- Department of Medical Microbiology and Immunology, University of Wisconsin—Madison, Madison, Wisconsin, USA
- Center for Genomic Science Innovation, University of Wisconsin—Madison, Madison, Wisconsin, USA
| | - Katherine A. Henzler-Wildman
- Department of Biochemistry, University of Wisconsin—Madison, Madison, Wisconsin, USA
- National Magnetic Resonance Facility at Madison, Madison, Wisconsin, USA
| |
Collapse
|
4
|
Harding BD, Barclay AM, Piehl DW, Hiett A, Warmuth OA, Han R, Henzler-Wildman K, Rienstra CM. Cross polarization stability in multidimensional NMR spectroscopy of biological solids. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2024; 365:107724. [PMID: 38991266 PMCID: PMC11364147 DOI: 10.1016/j.jmr.2024.107724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 06/03/2024] [Accepted: 06/16/2024] [Indexed: 07/13/2024]
Abstract
Magic-angle spinning (MAS) solid-state nuclear magnetic resonance (SSNMR) spectroscopy is a powerful and versatile technique for probing structure and dynamics in large, insoluble biological systems at atomic resolution. With many recent advances in instrumentation and polarization methods, technology development in SSNMR remains an active area of research and presents opportunities to further improve data collection, processing, and analysis of samples with low sensitivity and complex tertiary and quaternary structures. SSNMR spectra are often collected as multidimensional data, requiring stable experimental conditions to minimize signal fluctuations (t1 noise). In this work, we examine the factors adversely affecting signal stability as well as strategies used to mitigate them, considering laboratory environmental requirements, configuration of amplifiers, and pulse sequence parameter selection. We show that Thermopad® temperature variable attenuators (TVAs) can partially compensate for the changes in amplifier output power as a function of temperature and thereby ameliorate one significant source of instability for some spectrometers and pulse sequences. We also consider the selection of tangent ramped cross polarization (CP) waveform shapes, to balance the requirements of sensitivity and instrumental stability. These findings collectively enable improved stability and overall performance for CP-based multidimensional spectra of microcrystalline, membrane, and fibrous proteins performed at multiple magnetic field strengths.
Collapse
Affiliation(s)
- Benjamin D Harding
- Biophysics Graduate Program, University of Wisconsin-Madison, Madison, WI 53706 USA; Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706 USA
| | - Alexander M Barclay
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Dennis W Piehl
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Ashley Hiett
- Biophysics Graduate Program, University of Wisconsin-Madison, Madison, WI 53706 USA; Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706 USA
| | - Owen A Warmuth
- Biophysics Graduate Program, University of Wisconsin-Madison, Madison, WI 53706 USA; Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706 USA
| | - Ruixian Han
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706 USA
| | - Katherine Henzler-Wildman
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706 USA; National Magnetic Resonance Facility at Madison, University of Wisconsin-Madison, Madison, WI 53706 USA
| | - Chad M Rienstra
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706 USA; Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801 USA; Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706 USA; National Magnetic Resonance Facility at Madison, University of Wisconsin-Madison, Madison, WI 53706 USA; Morgridge Institute for Discovery, University of Wisconsin-Madison, Madison, WI 53706 USA.
| |
Collapse
|
5
|
Burata OE, O’Donnell E, Hyun J, Lucero RM, Thomas JE, Gibbs EM, Reacher I, Carney NA, Stockbridge RB. Peripheral positions encode transport specificity in the small multidrug resistance exporters. Proc Natl Acad Sci U S A 2024; 121:e2403273121. [PMID: 38865266 PMCID: PMC11194549 DOI: 10.1073/pnas.2403273121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 05/02/2024] [Indexed: 06/14/2024] Open
Abstract
In secondary active transporters, a relatively limited set of protein folds have evolved diverse solute transport functions. Because of the conformational changes inherent to transport, altering substrate specificity typically involves remodeling the entire structural landscape, limiting our understanding of how novel substrate specificities evolve. In the current work, we examine a structurally minimalist family of model transport proteins, the small multidrug resistance (SMR) transporters, to understand the molecular basis for the emergence of a novel substrate specificity. We engineer a selective SMR protein to promiscuously export quaternary ammonium antiseptics, similar to the activity of a clade of multidrug exporters in this family. Using combinatorial mutagenesis and deep sequencing, we identify the necessary and sufficient molecular determinants of this engineered activity. Using X-ray crystallography, solid-supported membrane electrophysiology, binding assays, and a proteoliposome-based quaternary ammonium antiseptic transport assay that we developed, we dissect the mechanistic contributions of these residues to substrate polyspecificity. We find that substrate preference changes not through modification of the residues that directly interact with the substrate but through mutations peripheral to the binding pocket. Our work provides molecular insight into substrate promiscuity among the SMRs and can be applied to understand multidrug export and the evolution of novel transport functions more generally.
Collapse
Affiliation(s)
- Olive E. Burata
- Program in Chemical Biology, University of Michigan, Ann Arbor, MI48109
| | - Ever O’Donnell
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI48109
| | - Jeonghoon Hyun
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI48109
| | - Rachael M. Lucero
- Program in Chemical Biology, University of Michigan, Ann Arbor, MI48109
| | - Junius E. Thomas
- Program in Chemical Biology, University of Michigan, Ann Arbor, MI48109
| | - Ethan M. Gibbs
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI48109
| | - Isabella Reacher
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI48109
| | - Nolan A. Carney
- Program in Chemical Biology, University of Michigan, Ann Arbor, MI48109
| | - Randy B. Stockbridge
- Program in Chemical Biology, University of Michigan, Ann Arbor, MI48109
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI48109
| |
Collapse
|
6
|
Wegrzynowicz AK, Heelan WJ, Demas SP, McLean MS, Peters JM, Henzler-Wildman KA. A Small Multidrug Resistance Transporter in Pseudomonas aeruginosa Confers Substrate-Specific Resistance or Susceptibility. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.09.28.560013. [PMID: 37808795 PMCID: PMC10557727 DOI: 10.1101/2023.09.28.560013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Small Multidrug Resistance (SMR) transporters are key players in the defense of multidrug-resistant pathogens to toxins and other homeostasis-perturbing compounds. However, recent evidence demonstrates that EmrE, an SMR from Escherichia coli and a model for understanding transport, can also induce susceptibility to some compounds by drug-gated proton leak. This runs down the ΔpH component of the Proton Motive Force (PMF), reducing viability of the affected bacteria. Proton leak may provide an unexplored drug target distinct from the targets of most known antibiotics. Activating proton leak requires an SMR to be merely present, rather than be the primary resistance mechanism, and dissipates the energy source for many other efflux pumps. PAsmr, an EmrE homolog from P. aeruginosa, transports many EmrE substrates in cells and purified systems. We hypothesized that PAsmr, like EmrE, may confer susceptibility to some compounds via drug-gated proton leak. Growth assays of E. coli expressing PAsmr displayed substrate-dependent resistance and susceptibility phenotypes, and in vitro solid-supported membrane electrophysiology experiments revealed that PAsmr performs both antiport and substrate-gated proton uniport, demonstrating the same functional promiscuity observed in EmrE. Growth assays of P. aeruginosa strain PA14 demonstrated that PAsmr contributes resistance to some antimicrobial compounds, but no growth defect is observed with susceptibility substrates, suggesting P. aeruginosa can compensate for the proton leak occurring through PAsmr. These phenotypic differences between P. aeruginosa and E. coli advance our understanding of underlying resistance mechanisms in P. aeruginosa and prompt further investigation into the role that SMRs play in antibiotic resistance in pathogens.
Collapse
Affiliation(s)
| | - William J. Heelan
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison
| | - Sydnye P. Demas
- Department of Biochemistry, University of Wisconsin-Madison, Madison WI
| | - Maxwell S. McLean
- Department of Biochemistry, University of Wisconsin-Madison, Madison WI
| | - Jason M. Peters
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison
- Department of Bacteriology, University of Wisconsin-Madison
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison
- Center for Genomic Science Innovation, University of Wisconsin-Madison
| | - Katherine A. Henzler-Wildman
- Department of Biochemistry, University of Wisconsin-Madison, Madison WI
- National Magnetic Resonance Facility at Madison, Madison WI
| |
Collapse
|
7
|
Drew D, Boudker O. Ion and lipid orchestration of secondary active transport. Nature 2024; 626:963-974. [PMID: 38418916 DOI: 10.1038/s41586-024-07062-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 01/12/2024] [Indexed: 03/02/2024]
Abstract
Transporting small molecules across cell membranes is an essential process in cell physiology. Many structurally diverse, secondary active transporters harness transmembrane electrochemical gradients of ions to power the uptake or efflux of nutrients, signalling molecules, drugs and other ions across cell membranes. Transporters reside in lipid bilayers on the interface between two aqueous compartments, where they are energized and regulated by symported, antiported and allosteric ions on both sides of the membrane and the membrane bilayer itself. Here we outline the mechanisms by which transporters couple ion and solute fluxes and discuss how structural and mechanistic variations enable them to meet specific physiological needs and adapt to environmental conditions. We then consider how general bilayer properties and specific lipid binding modulate transporter activity. Together, ion gradients and lipid properties ensure the effective transport, regulation and distribution of small molecules across cell membranes.
Collapse
Affiliation(s)
- David Drew
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden.
| | - Olga Boudker
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA.
- Howard Hughes Medical Institute, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
8
|
Shcherbakov AA, Brousseau M, Henzler-Wildman KA, Hong M. Microsecond Motion of the Bacterial Transporter EmrE in Lipid Bilayers. J Am Chem Soc 2023; 145:10104-10115. [PMID: 37097985 PMCID: PMC10905379 DOI: 10.1021/jacs.3c00340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2023]
Abstract
The bacterial transporter EmrE is a homo-dimeric membrane protein that effluxes cationic polyaromatic substrates against the concentration gradient by coupling to proton transport. As the archetype of the small multidrug resistance family of transporters, EmrE structure and dynamics provide atomic insights into the mechanism of transport by this family of proteins. We recently determined high-resolution structures of EmrE in complex with a cationic substrate, tetra(4-fluorophenyl)phosphonium (F4-TPP+), using solid-state NMR spectroscopy and an S64V-EmrE mutant. The substrate-bound protein exhibits distinct structures at acidic and basic pH, reflecting changes upon binding or release of a proton from residue E14, respectively. To obtain insight into the protein dynamics that mediate substrate transport, here we measure 15N rotating-frame spin-lattice relaxation (R1ρ) rates of F4-TPP+-bound S64V-EmrE in lipid bilayers under magic-angle spinning (MAS). Using perdeuterated and back-exchanged protein and 1H-detected 15N spin-lock experiments under 55 kHz MAS, we measured 15N R1ρ rates site-specifically. Many residues show spin-lock field-dependent 15N R1ρ relaxation rates. This relaxation dispersion indicates the presence of backbone motions at a rate of about 6000 s-1 at 280 K for the protein at both acidic and basic pH. This motional rate is 3 orders of magnitude faster than the alternating access rate but is within the range estimated for substrate binding. We propose that these microsecond motions may allow EmrE to sample different conformations to facilitate substrate binding and release from the transport pore.
Collapse
Affiliation(s)
- Alexander A. Shcherbakov
- Department of Chemistry, Massachusetts Institute of Technology, 170 Albany Street, Cambridge, MA 02139, United States
| | - Merissa Brousseau
- Department of Biochemistry, University of Wisconsin at Madison, Madison, WI 53706, United States
| | | | - Mei Hong
- Department of Chemistry, Massachusetts Institute of Technology, 170 Albany Street, Cambridge, MA 02139, United States
| |
Collapse
|